首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Retinoic acid constantly undergoes structural inter-conversions among the geometrical isomers (all-trans-retinoic acid, 9-cis-retinoic acid, 11-cis-retinoic acid, 13-cis-retinoic acid and 9-13-di-cis-retinoic acid) by photoisomerization under natural light. Geometric isomers of retinoic acid thus formed showed different effects on human epidermal keratinocyte growth and differentiation. The ability of the isomers to inhibit the synthesis of cornified envelope (terminal event in the keratinocyte differentiation program) changed rapidly when illuminated by white fluorescent light. The 11-cis-retinoic acid had a 3-fold stronger activity to inhibit the growth of keratinocytes than the other geometric isomers. On the other hand, all-trans-retinoic acid, 9-cis-retinoic acid and 9-13-di-cis-retinoic acid exhibited a 3-fold greater ability to inhibit synthesis of involucrin, transglutaminase and the cornified envelopes. The regulation of keratin expression by the geometric isomers of retinoic acids was extremely complex. Level of keratin-1 (K1) mRNA was increased by 11-cis-retinoic acid and 13-cis-retinoic acid, but suppressed by 9,13-di-cis-retinoic acids while all-trans-retinoic acid and 9-cis-retinoic acid had no effect. Level of keratin-10 (K10) mRNA was strongly inhibited by all-trans-retinoic acid, 9-cis-retinoic acid and 11-cis-retinoic acid as compared to 13-cis-retinoic acid and 9,13-di-cis-retinoic acids. The mRNA level of keratin-14 (K14) was suppressed by all-trans-retinoic acid, 9-cis-retinoic acid and 11-cis-retinoic acid but not influenced by 13-cis-retinoic acid and 9,13-di-cis-retinoic acid. Natural light induced structural inter-conversions among the geometric isomers of retinoic acids in tissues-especially the skin, might play a crucial role in the regulation of growth and differentiation of keratinocytes.  相似文献   

2.
Mechanism of the desmutagenic effect of humic acid   总被引:2,自引:0,他引:2  
T Sato  Y Ose  H Nagase  K Hayase 《Mutation research》1987,176(2):199-204
The mechanism of an apparent desmutagenic effect of humic acid was investigated. Firstly, components of humic acid (resorcinol, vanillin, vanillic acid, ferulic acid, protochatechuic acid and benzoic acid) were tested and were not found to show a desmutagenic effect. By contrast, lignin did show a desmutagenic effect. The desmutagenic effect of humic acid was decreased by ozone treatment, and the degree of decrease corresponded with a decrease in KMnO4 consumption. Benzo[a]pyrene and humic acid were incubated at 37 degrees C for 1 h and extracted by ethyl acetate and the extract was investigated by gas chromatography (GC). The peak of the decomposition product did not appear, but the amount of benzo[a]pyrene was decreased. This suggests that the desmutagenic effect of humic acid was caused by adsorption of benzo[a]pyrene by humic acid rather than by decomposition of benzo[a]pyrene. Humic acid had the largest adsorption activity at its critical micelle concentration (CMC), while adsorbed benzo[a]pyrene could be released by ultrasonication. Fulvic acid and water-soluble humic substance showed a slight inhibitory effect on the mutagenicity of benzo[a]pyrene.  相似文献   

3.
Mode of action of melinacidin, an inhibitor of nicotinic acid biosynthesis   总被引:3,自引:2,他引:1  
Melinacidin, a new antibacterial agent, blocked the synthesis of nicotinic acid and its amide in Bacillus subtilis cells. The inhibitory activity of the agent was reversed by nicotinic acid, its amide, or nicotinamide adenine dinucleotides, but not by l-kynurenine, l-3-hydroxykynurenine, l-hydroxyanthranilic acid, or quinolinic acid. These properties indicated that the antibiotic interferes with the conversion of quinolinic acid to nicotinate ribonucleotide by the enzyme quinolinate phosphoribosyl-transferase. However, the activity of a purified preparation of this enzyme derived from a Pseudomonas strain was not impaired by the antibiotic. This suggested that, in B. subtilis, melinacidin interferes with a reaction which occurs before the formation of quinolinic acid in the biosynthetic pathway leading to nicotinic acid. Failure of quinolinic acid to reverse melinacidin inhibition in B. subtilis cultures might be due to insufficient penetration of the cell membranes by quinolinate.  相似文献   

4.
We previously reported that the 7 alpha-dehydroxylation of cholic acid appears to be carried out by a multi-step pathway in intestinal anaerobic bacteria both in vitro and in vivo. The pathway is hypothesized to involve an initial oxidation of the 3 alpha-hydroxy group and the introduction of a double bond at C4-C5 generating a 3-oxo-4-cholenoic bile acid intermediate. The loss of water generates a 3-oxo-4,6-choldienoic bile acid which is reduced (three steps) yielding deoxycholic acid. We synthesized, in radiolabel, the following putative bile acid intermediates of this pathway 7 alpha,12 alpha-dihydroxy-3-oxo-4-cholenoic acid, 7 alpha,12 alpha-dihydroxy-3-oxo-5 beta-cholanoic acid, 12 alpha-dihydroxy-3-oxo-4,6-choldienoic acid, and 12 alpha-hydroxy-3-oxo-4-cholenoic acid and showed that they could be converted to 3 alpha,12 alpha-dihydroxy-5 beta-cholanoic acid (deoxycholic acid) by whole cells or cell extracts of Eubacterium sp. VPI 12708. During studies of this pathway, we discovered the accumulation of two unidentified bile acid intermediates formed from cholic acid. These bile acids were purified by thin-layer chromatography and identified by gas-liquid chromatography-mass spectrometry as 12 alpha-hydroxy-3-oxo-5 alpha-cholanoic acid and 3 alpha,12 alpha-dihydroxy-5 alpha-cholanoic (allo-deoxycholic acid). Allo-deoxycholic acid was formed only in cell extracts prepared from bacteria induced by cholic acid, suggesting that their formation may be a branch of the cholic acid 7 alpha-dehydroxylation pathway in this bacterium.  相似文献   

5.
3,5-Cyclohexadiene-1,2-diol-1-carboxylic acid (1,2-dihydro-1,2-dihydroxy-benzoic acid) is converted enzymatically to catechol in cell extracts from Acinetobacter, Alcaligenes, Azotobacter, and three Pseudomonas species. This enzymatic activity is present only in cultures which have been grown in the presence of benzoic acid, and which convert benzoic acid to catechol rather than to protocatechuic acid. The reaction is assayed by the concomitant formation of reduced nicotinamide adenine dinucleotide from nicotinamide adenine dinucleotide. The conversion of [(14)C]benzoic acid to [(14)C]dihydrodihydroxybenzoic acid is demonstrated in cell extracts. A scheme for the conversion of benzoic acid to catechol in bacteria is presented, involving the formation of dihydrodihydroxybenzoic acid from benzoic acid by a dioxygenase which is unstable in cell extracts, followed by the dehydrogenation and decarboxylation of dihydrodihydroxybenzoic acid to catechol by a previously undescribed enzyme. Experiments with anthranilic acid and phthalic acid suggest that dihydrodihydroxybenzoic acid is a metabolite unique to benzoic acid metabolism. Two new methods for assaying benzoic acid dioxygenase are suggested.  相似文献   

6.
The hepatic uptake of chenodeoxycholic acid, taurochenodeoxycholic acid, chenodeoxycholic acid 3-sulphate and taurochenodeoxycholate acid 3-sulphate by isolated rat hepatocytes was examined. Taurochenodeoxycholic acid, taurochenodeoxycholic acid 3-sulphate and chenodeoxycholic acid 3-sulphate uptake occurred by a saturable, energy-dependent process while chenodeoxycholic acid uptake was predominantly non-saturable, possibly simple diffusion. Apparent Km (mumol/l) and Vmax (nmol/mg protein per min) values (mean +/- S.D.), respectively, were: chenodeoxycholic acid (saturable component), 33 +/- 6.4 and 4.8 +/- 0.6; taurochenodeoxycholic acid, 11.1 +/- 2.0 and 3.1 +/- 0.5; chenodeoxycholic acid 3-sulphate, 6.1 +/- 0.9 and 2.3 +/- 0.4; and taurochenodeoxycholic acid 3-sulphate, 5.0 +/- 0.7 and 0.9 +/- 0.15. Both conjugation with taurine and sulphation at the 3 position resulted in a reduction in the values of Km and Vmax. Uptake of each of the bile acids taurochenodeoxycholic acid, taurochenodeoxycholic acid 3-sulphate and chenodeoxycholic acid 3-sulphate was competitively inhibited by the other two, with taurochenodeoxycholic acid a potent inhibitor of both taurochenodeoxycholic acid 3-sulphate and chenodeoxycholic acid 3-sulphate uptake. Other bile acids also inhibited. Uptake was inhibited by albumin in the order chenodeoxycholic acid 3-sulphate greater than taurochenodeoxycholic acid 3-sulphate greater than taurochenodeoxycholic acid and was dependent on the extent of bile acid binding to albumin.  相似文献   

7.
3-Hydroxyanthranilic acid, a metabolite of tryptophan, was rapidly metabolized by human erythrocytes. The final product was determined to be cinnabarinic acid as detected by spectrophotometry, paper chromatography and t.l.c. The formation of cinnabarinic acid from 3-hydroxyanthranilic acid in the cells was markedly inhibited by CO when intracellular haemoglobin was in a ferrous state, and by cyanide when it was in a ferric state. Ferrous haemoglobin in erythrocytes was oxidized to (alpha 3+ beta 2+)2, (alpha 2+ beta 3+)2 and (alpha 3+ beta 3+)2 by 3-hydroxyanthranilic acid, and the oxidation rates were very high, like those of cinnabarinic acid formation, suggesting that the metabolism of 3-hydroxyanthranilic acid is coupled with oxidoreductive reactions of intracellular haemoglobin. This view was further confirmed by the findings that 3-hydroxyanthranilic acid was metabolized by ferrous or ferric haemoglobin and that ferrous and ferric haemoglobins were oxidized and reduced by the compound respectively. The significance of the metabolism of 3-hydroxyanthranilic acid and the oxidoreductive reactions of haemoglobin with this compound may be associated with the pathological conditions with increased 3-hydroxyanthranilic acid levels in the blood of diabetic subjects.  相似文献   

8.
Biosynthesis of 5-aminolevulinic acid in mammalian cells is catalyzed by aminolevulinic acid synthase in a condensation reaction utilizing glycine and succinyl X coenzyme A. An alternate pathway in mammalian cells may involve the biosynthesis of aminolevulinic acid via a transamination reaction in which L-alanine is the amino donor and 4,5-dioxovaleric acid is the acceptor. This transamination reaction, or one very similar, is employed by plants for the biosynthesis of aminolevulinic acid which is ultimately converted to chlorophyll. The effect of glyoxalase I on the diversion of dioxovaleric acid to other products was tested using both purified glyoxalase I and crude tissue homogenates. Glyoxalase I is a metalloenzyme and glutathione is a co-substrate. Purified glyoxalase I reduced the amount of aminolevulinic acid formed in the presence of dioxovaleric acid, L-alanine, glutathione, and purified L-alanine: 4,5-dioxovaleric acid aminotransferase (dioxovalerate transaminase). The conversion of dioxovaleric acid to aminolevulinic acid was inhibited by the addition of glutathione when a dialyzed bovine liver homogenate served as the source of both glyoxalase I and dioxovalerate transaminase. Removal of metals from bovine liver homogenates produced an 85% decrease in glyoxalase I activity. These 'metal-free' homogenates still affected the conversion of dioxovaleric acid to aminolevulinic acid after preincubation with MgSO4. The effect of glyoxalase I on the metabolism of dioxovaleric acid was also studied using a fluorometric enzyme assay for the quantification of dioxovaleric acid via a coupled enzyme reaction converting it to uroporphyrin. Homogenates of both liver and barley diminished the amount of dioxovaleric acid detected by the coupled assay, but this effect could be prevented by dialysis of the homogenates. Addition of glutathione to dialyzed homogenates markedly reduced the amount of uroporphyrin generated from dioxovaleric acid. Metal-free homogenates supplemented with glutathione reduced the conversion of dioxovaleric acid to uroporphyrin in the coupled assay, but preincubation with MgSO4 greatly augmented this effect. These studies point out the difficulty in evaluating dioxovaleric acid as a heme precursor using whole cell homogenates.  相似文献   

9.
Submitochondrial particles of bovine heart were hydrolyzed by phospholipase A2 and the products were analyzed by liquid chromatography electrospray ionization-mass spectrometry. We found a fatty acid with a molecular mass of 268 Da and a retention time longer than that of linoleic acid. Next, we synthesized organically cis-9,10-methylenehexadecanoic acid, which has a molecular mass similar to that of the extracted fatty acid, and characterized its high performance liquid chromatography and gas chromatography-mass spectrometry profiles. Using these data we were able to identify endogenous cis-9,10-methylenehexadecanoic acid in rat and human heart and liver tissues that had been hydrolyzed by phospholipase A2. This fatty acid was not detected in tissue extracts that had not been hydrolyzed by phospholipase A2. Similar amounts of cis-9, 10-methylenehexadecanoic acid were measured in tissue extracts after total hydrolysis. These results suggest that cis-9, 10-methylenehexadecanoic acid is a fatty acid component, in the sn-2 position, of phospholipids in some mammalian tissue.  相似文献   

10.
Morris, George K. (University of Georgia, Athens), and William L. Williams. Inhibition of growth of Lactobacillus bulgaricus by purine deoxyribonucleotides. J. Bacteriol. 90:715-719. 1965.-An inhibition of growth of Lactobacillus bulgaricus GS was observed with deoxyadenylic acid and deoxyguanylic acid. Deoxynucleotides of cytosine, thymine, and uracil, and the deoxynucleosides of adenine, guanine, cytosine, and thymine were inactive as inhibitors. The inhibition was reversed by liver extract (a crude source of two unidentified growth factors for this organism). With suboptimal concentrations of liver extract, the inhibition was reversed by nucleotides of adenine, guanine, uracil, cytosine, and thymine. When the medium contained partially purified sources of the two growth factors rather than crude liver extract, fewer compounds reversed the inhibition. Adenylic acid and guanylic acid reversed the action of either inhibitor. Inosinic acid reversed inhibition caused by deoxyguanylic acid, but not that caused by deoxyadenylic acid. Thymidylic acid reversed inhibition caused by deoxyadenylic acid better than that caused by deoxyguanylic acid. Uridylic acid and cytidylic acid were no longer effective in reversing the inhibitions. This organism preferentially responded to monophosphorylated compounds as inhibitors and as reversers of inhibitions. Studies on the acid-soluble nucleotide pool revealed an accumulation of adenosine triphosphate, guanosine triphosphate, and an unidentified compound which resembled a nucleotide in its physical properties. These data cannot be explained by known metabolic pathways of nucleic acid biosynthesis. This organism responds differently from other related organisms to nucleic acid derivatives; therefore, it may be a new useful tool for studying nucleic acid metabolism and biosynthesis.  相似文献   

11.
The production of a highly branched beta-1,3-glucan by Aureobasidium pullulans K-1 in Czapek's medium has been found to be stimulated by ascorbic acid. When the culture supernatant, after removal of polysaccharide from the culture filtrate by ethanol precipitation, was concentrated, then added to a new medium and this strain was cultured in the medium, the polysaccharide production was stimulated the same as when L-ascorbic acid was added to the medium. The stimulating substance was partially purified from the supernatant, and was found to be oxalic acid; 0.03% oxalic acid was the most effective concentration for the stimulation of polysaccharide production. The stimulating substance, oxalic acid, was proved to be derived from ascorbic acid added to a medium in an experiment using L-[1-14C]ascorbic acid. We suggest that oxalic acid generated from the metabolism of ascorbic acid in cells of Aureobasidium pullulans K-1 participated in the stimulation of the polysaccharide production by ascorbic acid.  相似文献   

12.
C S Tsao  M Young 《Life sciences》1989,45(17):1553-1557
The effect of exogenous ascorbic acid intake on biosynthesis of ascorbic acid in mice has been studied. After the mice were on diets containing added ascorbic acid for two months, the activities of ascorbic acid synthesizing enzymes in the mouse liver homogenates were measured using L-gulono-gamma-lactone as a substrate. Exogenous ascorbic acid intake (0.5, 1 or 5% in the diet) was able to increase the concentration of ascorbic acid in the blood and to decrease the activities of ascorbic acid synthesizing enzymes in mouse liver. The results suggest that ascorbic acid synthesis was controlled by local regulatory mechanism or by the concentration of ascorbic acid in the hepatic portal blood. Ingestion of dietary erythorbic acid, a stereoisomer of ascorbic acid, had no effect on the activities of ascorbic acid synthesizing enzymes.  相似文献   

13.
Synovial fluid is a approximately 0.15% (w/v) aqueous solution of hyaluronic acid (HA), a polysaccharide consisting of alternating units of GlcA and GlcNAc. In synovial fluid of patients suffering from rheumatoid arthritis, HA is thought to be degraded either by radicals generated by Fenton chemistry (Fe2+/H2O2) or by NaOCl generated by myeloperoxidase. We investigated the course of model reactions of these two reactants in physiological buffer with HA, and with the corresponding monomers GlcA and GlcNAc. meso-Tartaric acid, arabinuronic acid, arabinaric acid and glucaric acid were identified by GC-MS as oxidation products of glucuronic acid. When GlcNAc was oxidised, erythronic acid, arabinonic acid, 2-acetamido-2-deoxy-gluconic acid, glyceric acid, erythrose and arabinose were formed. NaOCl oxidation of HA yielded meso-tartaric acid; in addition, arabinaric acid and glucaric acid were obtained by oxidation with Fe2+/H2O2. These results indicate that oxidative degradation of HA proceeds primarily at glucuronic acid residues. meso-Tartaric acid may be a useful biomarker of hyaluronate oxidation since it is produced by both NaOCl and Fenton chemistry.  相似文献   

14.
The urinary excretion of adipic acid, suberic acid and sebacic acid from two patients with the cerebrohepato-renal syndrome of Zellweger was studied. The patients had a complete lack of peroxisomes in the liver as judged by electron microscopy. In the non-ketotic state, the total excretion of free and conjugated adipic acid, suberic acid and sebacic acid was increased by about 100%, 200% and 350%, respectively, as compared to the corresponding excretion from six healthy infants of the same age. The excretion of free dicarboxylic acid was increased to a considerably lesser extent than the free + conjugated dicarboxylic acid. In view of the presence of adipic acid in urine of the Zellweger patients, it is concluded that peroxisomes are not obligatory for beta-oxidation of medium-chain dicarboxylic acids in vivo. The relative accumulation of suberic acid and sebacic acid as compared to adipic acid is, however, consistent with a relative block in the conversion of suberic acid and sebacic acid into adipic acid in patients with the Zellweger syndrome.  相似文献   

15.
Perturbation of the fatty acid composition of human lymphocytes in vitro was investigated by addition of linoleic acid complexed to bovine serum albumin (BSA-LA) and by mitogenic stimulation with phytohaemagglutinin (PHA). BSA-LA resulted in a 45% increase in linoleic acid in phosphatidylethanolamine (PE) and over 100% in phosphatidylcholine (PC) in peripheral blood cells. Supplementation with BSA-LA in PHA-stimulated lymphocytes produced even greater changes: 100% increase in linoleic acid content for PE and over 300% for PC. There was a large decrease in oleic acid: 40% for PE and almost 100% in PC. Significant decreases in arachidonic acid occurred in both phospholipid fractions. PHA alone also altered membrane phospholipid fatty acid composition, with reductions in palmitic, stearic and linoleic acid for PE and increases in oleic acid and arachidonic acid (almost 100%). For PC, there were large decreases in stearic (40%), linoleic (30%) and arachidonic (40%) acids, together with an increase in oleic acid (65%). Cells supplemented with linoleic acid grown in the presence of PHA, compared with those grown in linoleic acid-supplemented medium alone, showed a 40% decrease in palmitic acid and a 55% increase in arachidonic acid in PE. For PC, there were large decreases in stearic acid (40%) and arachidonic acid (57%). Antibody-induced redistribution of surface molecules ('capping') was inhibited by some 14% after incubation with BSA-LA. However, no consistent alterations in PHA-induced cell proliferation were observed. These data suggest that profound alterations of membrane fatty acid composition occur spontaneously during the mitotic cycle, and may be further induced by experimental manipulation, without gross perturbation of cell function.  相似文献   

16.
The mononuclear cells in peritoneal washings from normal rats can be induced to produce large amounts of slow reacting substance of anaphylaxis by incubation with 10 mM cysteine in the presence of the calcium ionophore A-23187. This production of slow reacting substance could be inhibited by the addition of non-steroidal anti-inflammatory drugs, e.g., indomethacin, ibuprofen and flurbiprofen, Furthermore, mediator production was inhibited by eicosatetraynoic acid, the substrate analog of arachidonic acid, and by 9,11-azoprosta-5, 13-dienoic acid (AZO analog 1), a structural analog of the prostaglandin endoperoxide, PGH2, which known to inhibit thromboxane synthesis. Relatively high concentrations of hydrocortisone acetate inhibited mediator production; this inhibition could be partly reversed by the addition of arachidonic acid or to a lesser extent by eicosatrienoic acid. Preliminary results suggest that a small fraction of the 3H-labled arachidonic acid which was taken up by these cells in vitro was associated with slow reacting substance. We postulate that slow reacting substance of anaphylaxis may be derived from a prostaglandin endoperoxide which is formed during the oxidation of arachidonic acid by the prostaglandin fatty acid cyclooxygenase.  相似文献   

17.
Plants and animals alike use ascorbic acid in a variety of reactions that result in net generation of dehydro-L-ascorbic acid. The ability to reduce dehydro-L-ascorbic acid back to ascorbic acid would conserve "total ascorbate" and would help to maintain the toxic oxidized form of the molecule at a low level. This study evaluated the rate of dehydro-L-ascorbic acid reduction either by following the rate of NADPH consumption or by analysis of the amount of 14C-labeled dehydro-L-ascorbic acid converted to ascorbic acid. A large percentage of the NADPH consumed by a semipurified preparation of rat colonic mucosa in vitro was dependent on the presence of dehydro-L-ascorbic acid. The tissue factor active in regenerating ascorbic acid is intermediate in size between cytochrome c and blue dextran. The present results indicate that the mucosa reduced dehydro-L-ascorbic acid by a cytosolic enzyme that uses NADPH as a hydrogen donor. Subsequent to precipitation by ammonium sulfate, the 55-70% fraction contains most of the reductase activity while consisting of only 17% of the cellular soluble protein.  相似文献   

18.
1. A premercapturic acid, i.e. a compound that yields a mercapturic acid when decomposed by acid, was isolated as a dicyclohexylammonium salt from the urine of rats and rabbits that had been dosed with bromobenzene. 2. Another premercapturic acid was isolated as its dicyclohexylammonium salt from the urine of rats that had been dosed with chlorobenzene. 3. When decomposed by acid, the premercapturic acid from the urine of animals dosed with bromobenzene gave p-bromophenylmercapturic acid, m-and p-bromophenol and NN'-diacetylcystine. 4. The premercapturic acid derived from chlorobenzene gave the corresponding chloro compounds together with NN'-diacetylcystine when decomposed by acid. 5. On the basis of these and other observations it is suggested that the premercapturic acid formed in the metabolism of bromobenzene is N-acetyl-S-(4-bromo-1,2-dihydro-2-hydroxyphenyl)-l-cysteine. 6. It is also suggested that the premercapturic acid derived from chlorobenzene has an analogous structure.  相似文献   

19.
Amino acid transport was studied in primary cultures of parenchymal cells isolated from adult rat liver by a collagenase perfusion technique and maintained as a monolayer in a serum-free culture medium. Amino acid transport was assayed by measuring the uptake of the nonmetabolizable amino acid, alpha-aminoisobutyric acid. Rat liver parenchymal cells transported alpha-aminoisobutyric acid by an energy-dependent Na+-requiring system which displayed Michaelis-Menten kinetics. Addition of insulin to cultured rat liver parenchymal cells resulted in an increased influx of alpha-aminoisobutyric acid which was reflected in a higher initial rate of alpha-aminoisobutyric acid transport as well as an increased accumulation of alpha-aminoisobutyric acid at later time points. Cycloheximide effectively blocked the increase while results with actinomycin D were equivocal. Insulin at concentrations as low as 50 pM was effective in stimulating alpha-aminoisobutyric acid transport while the maximal response was observed at 80 nM.  相似文献   

20.
K Y Tserng  S J Jin  C L Hoppel 《Biochemistry》1991,30(44):10755-10760
To study the structure-activity relationship between pentanoic acid analogues and the inhibition of fatty acid oxidation, a number of 4-pentenoic and methylenecyclopropaneacetic acid derivatives were prepared. All compounds inhibited palmitoylcarnitine oxidation in rat liver mitochondria, with 50% inhibition occurring at a concentration between 6 and 100 microM. However, only methylenecyclopropaneacetic acid (MCPA) and spiropentaneacetic acid (SPA) showed in vivo inhibitory activity in rats as indicated by the occurrence of dicarboxylic aciduria. Rats treated with SPA excreted metabolites derived only from fatty acid oxidation whereas MCPA-treated rats also excreted metabolites derived from branch-chained amino acid and lysine metabolism. SPA is a specific inhibitor of fatty acid oxidation without affecting amino acid metabolism. The site of inhibition is medium-chain acyl-CoA dehydrogenase (MCAD). In contrast, MCPA inhibited both MCAD and short-chain acyl-CoA dehydrogenase with a stronger inhibition toward the latter. The inhibition of fatty acid oxidation by both inhibitors was partially reversible by glycine or l-carnitine. Since SPA does not form a ring-opened nucleophile such as that proposed for MCPA in the inhibition of FAD prosthetic group in acyl-CoA dehydrogenases, we propose that the irreversible inhibition by SPA occurs by a tight complex without forming a covalent bond to the isoalloxazine ring in FAD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号