首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Production of l(+)-lactic acid by Rhizopus oryzae NRRL 395 was studied in solid medium on sugar-cane bagasse impregnated with a nutrient solution containing glucose and CaCO3. A comparative study was undertaken in submerged and solid-state cultures. The optimal concentrations in glucose were 120 g/l in liquid culture and 180 g/l in solid-state fermentation corresponding to production of l(+)-lactic acid of 93.8 and 137.0 g/l, respectively. The productivity was 1.38 g/l per hour in liquid medium and 1.43 g/l per hour in solid medium. However, the fermentation yield was about 77% whatever the medium. These figures are significant for l(+)-lactic acid production.  相似文献   

2.
Interest in producing biofuels from renewable sources has escalated due to energy and environmental concerns. Recently, the production of higher chain alcohols from 2-keto acid pathways has shown significant progress. In this paper, we demonstrate a mutagenesis approach in developing a strain of Escherichia coli for the production of 3-methyl-1-butanol by leveraging selective pressure toward l-leucine biosynthesis and screening for increased alcohol production. Random mutagenesis and selection with 4-aza-d,l-leucine, a structural analogue to l-leucine, resulted in the development of a new strain of E. coli able to produce 4.4 g/L of 3-methyl-1-butanol. Investigation of the host’s sensitivity to 3-methyl-1-butanol directed development of a two-phase fermentation process in which titers reached 9.5 g/L of 3-methyl-1-butanol with a yield of 0.11 g/g glucose after 60 h.  相似文献   

3.
In liquid culture conditions, the yeast-like fungus Tremella mesenterica occurs in the yeast state and synthesizes an exopolysaccharide (EPS) capsule, which is eventually released into the culture fluid. It is composed of an α-1,3-D-mannan backbone, to which β-1,2 side chains are attached, consisting of D-xylose and D-glucuronic acid. Potato dextrose broth (PDB) seemed to be an excellent medium for both growth of the yeast cells and synthesis of the EPS. This medium is composed solely of an extract of potatoes to which glucose was added. Yet an important disadvantage of this production medium is the presence of starch in the potato extract, since Tremella cells are not capable of metabolizing this component; furthermore, it coprecipitates upon isolation of the polymer [3]. In this respect, it was essential to remove the starch in order to achieve high polysaccharide production and recovery. A good method was the removal of starch through ultrafiltration of the PDB medium before inoculation of the strain. This resulted in an excellent starch-free medium in which other components essential for polysaccharide production were still present [3]. Through implementation of single and cyclic fed-batch fermentations with glucose feed, 1.6- and 2.2-fold increases in EPS yield were obtained, respectively. Lowering the carbon source level by using a cyclic fed-batch technique might decrease the osmotic effect of glucose or any catabolite regulation possibly exerted by this sugar on enzymes involved in EPS synthesis. Journal of Industrial Microbiology & Biotechnology (2002) 29, 181–184 doi:10.1038/sj.jim.7000276 Received 18 March 2002/ Accepted in revised form 20 May 2002  相似文献   

4.
Growth ofSelenomonas ruminantium HD4 in medium that contained 21mm d-lactate was stimulated to varying degrees by 10mm l-malate, 10mm fumarate, and 2% (v/v)Aspergillus oryzae fermentation extract (Amaferm). Amaferm treatment caused the greatest growth stimulation. Initial uptake rates (30s) and long-term uptake rates (30 min) ofd-lactate by whole cells ofS. ruminantium were increased in the presence of 10mm l-malate. Amaferm (25 l/ml) also stimulated long-term uptake rates ofd-lactate, whereas fumarate had no effect. Initial uptake ofd-lactate was depressed in the presence of fumarate or Amaferm. When eitherl-malate, fumarate, or Amaferm was included in thed-lactate growth medium, a homosuccinate fermentation resulted and an inverse relationship was observed between growth (protein synthesis) and succinate production. Recent research demonstrated that Amaferm containsl-malate, and this dicarboxylic acid may be involved in stimulatingd-lactate utilization byS. ruminantium.  相似文献   

5.
A stable and fast l-tryptophan producer, AGX1757, was isolated from Escherichia coli W3110 trpAE1 trpR tnaA, which carried pSC101-trpI15·14. Cells of AGX1757 did not lose the composite plasmid during fermentation. Whenever a fed-batch culture of AGX1757 attained an l-tryptophan concentration of about 30 g/l, indole began to appear in the broth. The emergence of indole was caused by inhibition of tryptophan synthase due to accumulated l-tryptophan. Hence, the production rate of l-tryptophan sharply decreased. A higher solubility of l-tryptophan in the supernatant of culture broth (about 32 g/l) than that in the initial medium (about 22 g/l) was attributed to some unknown interaction between l-tryptophan and certain macromolecular material(s) coming from the bacterial cells. An addition of non-ionic detergents into the supernatant was effective for decreasing the solubility of l-tryptophan, hence causing crystallization of l-tryptophan. Pluronic L-61 was supplied from outside to an extent of 0.5% in terms of wt% concentration at around 45 h of fermentation when the l-tryptophan accumulated reached about 25 g/l. This addition actually caused crystallization of l-tryptophan and, as a result, the inhibitory effect of tryptophan synthase by l-tryptophan accumulated in the broth could be alleviated. Thus far, further fermentation became possible. l-Tryptophan of more than 50 g/l was finally produced by feeding solutions of both glucose and anthranilic acid. Correspondence to: H. Tsunekawa  相似文献   

6.
The study describes the use of the chelating agent 2,2′-dipyridyl in conjunction with lysine to increase the production of the siderophore desferrioxamine E by a previously described actinobacterium 23F. Desferrioxamine E is a type of siderophore known to be produced by Streptomycete species. Lysine is a precursor of the siderophore and its presence in the culture medium is known to promote desferrioxamine E synthesis. The further addition of 2,2′-dipyridyl was found to enhance production of the siderophore in the presence of lysine (5 g l?1) nearly twofold when incorporated at a concentration of 200 μM. Increasing the concentration of the chelating agent above 200 μM resulted in a decrease in siderophore production. The role of the chelating agent was thought to be in creating iron-limiting conditions in the culture medium and so promoting the induction of the desferrioxamine E biosynthetic pathway. This medium is likely to be a useful tool in the screening for producers of desferrioxamine E.  相似文献   

7.
Effective utilisation of cellulosic biomasses for economical lactic acid production requires a microorganism with potential ability to utilise efficiently its major components, glucose and cellobiose. Amongst 631 strains isolated from different environmental samples, strain QU 25 produced high yields of l-(+)-lactic acid of high optical purity from cellobiose. The QU 25 strain was identified as Enterococcus mundtii based on its sugar fermentation pattern and 16S rDNA sequence. The production of lactate by fermentation was optimised for the E. mundtii QU25 strain. The optimal pH and temperature for batch culturing were found to be 7.0°C and 43°C, respectively. E. mundtii QU 25 was able to metabolise a mixture of glucose and cellobiose simultaneously without apparent carbon catabolite repression. Moreover, under the optimised culture conditions, production of optically pure l-lactic acid (99.9%) increased with increasing cellobiose concentrations. This indicates that E. mundtii QU 25 is a potential candidate for effective lactic acid production from cellulosic hydrolysate materials.  相似文献   

8.
Summary The growth rate, sugar consumption rate, and production rate of an l-lysine producing Brevibacterium lactofermentum mutant were stimulated by addition of exogenous glycine betaine. Glycine betaine stimulated the growth rate especially in media of inhibitory osmotic stress, and the stimulation was independent of any specific solute. Therefore growth stimulation by glycine betaine was considered to be an osmoprotective effect. A strong enhancement of the sugar consumption rate and the l-lysine production rate was observed even with resting cells under osmotic stress as well as in a fermentation with growing cells. These data indicated that the osmoprotective effects of glycine betaine on l-lysine production can be independent of protein synthesis. Offprint requests to: Yoshio Kawahara  相似文献   

9.
 Applying a genetic algorithm for the optimization of trace element composition in the medium for L-isoleucine production from glucose and DL-α-hydroxybutyric acid with Corynebacterium glutamicum resulted in a reduction of the byproduct L-valine. High L-isoleucine broth concentrations of 20 g/l within 72 h at an L-isoleucine/DL-α-hydroxy butyric acid yield of 70% (w/w) and an L-isoleucine/L-valine ratio of 100 were achieved, if closed-loop control of glucose and of DL-α-hydroxybutyric acid was applied. For the isolation of L-isoleucine from fermentation broth a specific downstream processing was developed and optimized up to semitechnical scale (ultrafiltration, reverse osmosis, first crystallization, active-carbon adsorption, electrodialysis, second crystallization). The economic model of this downstream processing, which was identified by coupling the mass balance and energy balance with the semi-empirical models of the unit operations, was used to quantify the isolation costs as a function of L-isoleucine concentration and L-isoleucine/L-valine ratio in the fermentation broth. A cost reduction for downstream processing from DM 55 to DM 25 (kg L-isoleucine)-1 and an improvement of the L-isoleucine yield in downstream processing from 48% to 80% was achieved using this economic model as the objective function to be minimized by the fermentation process (scenario: production of 70 tonnes L-isoleucine/year). Received: 8 January 1996/Received revision: 22 April 1996/Accepted: 29 April 1996  相似文献   

10.
Microbial production of d-hexosaminate was examined by means of oxidative fermentation with acetic acid bacteria. In most strains of acetic acid bacteria, membrane-bound d-glucosamine dehydrogenase (synonymous with an alternative d-glucose dehydrogenase distinct from quinoprotein d-glucose dehydrogenase) oxidized d-hexosamines to the corresponding d-hexosaminates in a stoichiometric manner. Conversion of d-hexosamines to the corresponding d-hexosaminates was observed with growing cells of acetic acid bacteria, and d-hexosaminate was stably accumulated in the culture medium even though d-hexosamine was exhausted. Since the enzyme responsible is located on the outer surface of the cytoplasmic membrane, and the enzyme activity is linked to the respiratory chain of the organisms, resting cells, dried cells, and immobilized cells of acetic acid bacteria were effective catalysts for d-hexosaminate production. d-Mannosaminate and d-galactosaminate were also prepared for the first time by means of oxidative fermentation, and three different d-hexosaminates were isolated from unreacted substrate by a chromatographic separation. In this paper, d-hexosaminate production by oxidative fermentation carried out mainly with Gluconobacter frateurii IFO 3264 is exemplified as a typical example.  相似文献   

11.
Based on the report that the introduction of the biosynthetic precursor of lincomycin, propylproline, could increase the production of lincomycin (Bruce et al. in US Patent 3,753,859, 1973), a mutant strain pro10–20, with resistance of feedback suppression of proline (an analog of propylproline) was thus selected and lincomycin production increased by 10%. The addition of three amino acids (l-proline, l-tyrosine, l-alanine) which are the precursors of propylproline to the fermentation medium was found to enhance the accumulation of l-dopa through different pathways and was favorable to lincomycin biosynthesis. The production of lincomycin was increased by 23, 10, 13%, respectively, with the addition of 0.05 g L−1 l-proline at 60 h, 0.005 g L−1 l-tyrosine and 0.1 g L−1 l-alanine directly in the medium.  相似文献   

12.
During L-lactic acid fermentation by Rhizopus oryzae, increasing the phosphate level in the fermentation medium from 0.1 g l–1 to 0.6 g l–1 KH2PO4 reduced the maximal concentration of L-lactic acid and fumaric acid from 85 g l–1 to 71 g l–1 and from 1.36 g l–1 to 0.18 g l–1, respectively; and it decreased the fermentation time from 72 h to 52 h. Phosphate at 0.40 g l–1 KH2PO4 was suitable for both minimizing fumaric acid accumulation and benefiting L-lactic acid production.  相似文献   

13.
Summary The fermentation by Candida shehatae and Pichia stipitis of xylitol and the various sugars which are liberated upon hydrolysis of lignocellulosic biomass was investigated. Both yeasts produced ethanol from d-glucose, d-mannose, d-galactose and d-xylose. Only P. stipitis fermented d-cellobiose, producing 6.5 g·l-1 ethanol from 20 g·l-1 cellobiose within 48 h. No ethanol was produced from l-arabinose, l-rhamnose or xylitol. Diauxie was evident during the fermentation of a sugar mixture. Following the depletion of glucose, P. stipitis fermented galactose, mannose, xylose and cellobiose simultaneously with no noticeable preceding lag period. A similar fermentation pattern was observed with C. shehatae, except that it failed to utilize cellobiose even though it grew on cellobiose when supplied as the sole sugar. P. stipitis produced considerably more ethanol from the sugar mixture than C. shehatae, primarily due to its ability to ferment cellobiose. In general P. stipitis exhibited a higher volumetric rate and yield of ethanol production. This yeast fermented glucose 30–50% more rapidly than xylose, whereas the rates of ethanol production from these two sugars by C. shehatae were similar. P. stipitis had no absolute vitamin requirement for xylose fermentation, but biotin and thiamine enhanced the rate and yield of ethanol production significantly.Nomenclature max Maximum specific growth rate, h-1 - Q p Maximum volumetric rate of ethanol production, calculated from the slope of the ethanol vs. time curve, g·(l·h)-1 - q p Maximum specific rate of ethanol production, g·(g cells·h) - Y p/s Ethanol yield coefficient, g ethanol·(g substrate utilized)-1 - Y x/s Cell yield coefficient, g biomass·(g substrate utilized)-1 - E Efficiency of substrate utilization, g substrate consumed·(g initial substrate)-1·100  相似文献   

14.
l-Cysteine is an important amino acid in terms of its industrial applications. We previously found marked production of l-cysteine directly from glucose in recombinant Escherichia coli cells by the combination of enhancing biosynthetic activity and weakening the degradation pathway. Further improvements in l-cysteine production are expected to use the amino acid efflux system. Here, we identified a novel gene involved in l-cysteine export using a systematic and comprehensive collection of gene-disrupted E. coli K-12 mutants (the Keio collection). Among the 3,985 nonessential gene mutants, tolC-disrupted cells showed hypersensitivity to l-cysteine relative to wild-type cells. Gene expression analysis revealed that the tolC gene encoding the outer membrane channel is essential for l-cysteine tolerance in E. coli cells. However, l-cysteine tolerance is not mediated by TolC-dependent drug efflux systems such as AcrA and AcrB. It also appears that other outer membrane porins including OmpA and OmpF do not participate in TolC-dependent l-cysteine tolerance. When a low-copy-number plasmid carrying the tolC gene was introduced into E. coli cells with enhanced biosynthesis, weakened degradation, and improved export of l-cysteine, the transformants exhibited more l-cysteine tolerance and production than cells carrying the vector only. We concluded that TolC plays an important role in l-cysteine tolerance probably due to its export ability and that TolC overexpression is effective for l-cysteine production in E. coli. Natthawut Wiriyathanawudhiwong and Iwao Ohtsu contributed equally to this work.  相似文献   

15.
l-3,4-dihydroxyphenylalanine (l-DOPA) is an aromatic compound employed for the treatment of Parkinson's disease. Metabolic engineering was applied to generate Escherichia coli strains for the production of l-DOPA from glucose by modifying the phosphoenolpyruvate:sugar phosphotransferase system (PTS) and aromatic biosynthetic pathways. Carbon flow was directed to the biosynthesis of l-tyrosine (l-Tyr), an l-DOPA precursor, by transforming strains with compatible plasmids carrying genes encoding a feedback-inhibition resistant version of 3-deoxy-d-arabino-heptulosonate-7-phosphate synthase, transketolase, the chorismate mutase domain from chorismate mutase-prephenate dehydratase from E. coli and cyclohexadienyl dehydrogenase from Zymomonas mobilis. The effects on l-Tyr production of PTS inactivation (PTS gluc+ phenotype), as well as inactivation of the regulatory protein TyrR, were evaluated. PTS inactivation caused a threefold increase in the specific rate of l-Tyr production (q l-Tyr), whereas inactivation of TyrR caused 1.7- and 1.9-fold increases in q l-Tyr in the PTS+ and the PTS gluc+ strains, respectively. An 8.6-fold increase in l-Tyr yield from glucose was observed in the PTS gluc+ tyrR strain. Expression of hpaBC genes encoding the enzyme 4-hydroxyphenylacetate 3-hydroxylase from E. coli W in the strains modified for l-Tyr production caused the synthesis of l-DOPA. One of such strains, having the PTS gluc+ tyrR phenotype, displayed the best production parameters in minimal medium, with a specific rate of l-DOPA production of 13.6 mg/g/h, l-DOPA yield from glucose of 51.7 mg/g and a final l-DOPA titer of 320 mg/l. In a batch fermentor culture in rich medium this strain produced 1.51 g/l of l-DOPA in 50 h.  相似文献   

16.
High frequency somatic embryogenesis of Eleutheorcoccus chiisanensis was achieved through suspension culture of embryogenic cells in hormone-free Murashige and Skoog liquid medium supplemented with 30 g sucrose l−1. Cotyledonary somatic embryos were germinated and converted into plantlets using 20 μM gibberellic acid which were then grown in a 10 l airlift bioreactor. HPLC analysis revealed the accumulation of eleutheroside B, E and E1 in the embryos and plantlets. Thus mass production of embryos and plantlets of E. chiisanensis can be achieved in liquid cultures and the biomass produced may become an alternative source of eleutherosides.  相似文献   

17.
Recombinant Escherichia coli have been constructed for the conversion of glucose as well as pentose sugars into L-lactic acid. The strains carry the lactate dehydrogenase gene from Streptococcus bovis on a low copy number plasmid for production of L-lactate. Three E. coli strains were transformed with the plasmid for producing L-lactic acid. Strains FBR9 and FBR11 were serially transferred 10 times in anaerobic cultures in sugar-limited medium containing glucose or xylose without selective antibiotic. An average of 96% of both FBR9 and FBR11 cells maintained pVALDH1 in anaerobic cultures. The fermentation performances of FBR9, FBR10, and FBR11 were compared in pH-controlled batch fermentations with medium containing 10% w/v glucose. Fermentation results were superior for FBR11, an E. coli B strain, compared to those observed for FBR9 or FBR10. FBR11 exhausted the glucose within 30 h, and the maximum lactic acid concentration (7.32% w/v) was 93% of the theoretical maximum. The other side-products detected were cell mass and succinic acid (0.5 g/l). Journal of Industrial Microbiology & Biotechnology (2001) 27, 259–264. Received 05 November 2000/ Accepted in revised form 03 July 2001  相似文献   

18.
Aspergillus niger CFTRI 30 produced 1.3 g citric acid/10 g dry coffee husk in 72 h solid-state fermentation when the substrate was moistened with 0.075 M NaOH solution. Production was increased by 17% by adding a mixture of iron, copper and zinc to the medium but enrichment of the moist solid medium with (NH4)2SO4, sucrose or any of four enzymes did not improve production. The production of about 1.5 g citric acid/10 g dry coffee husk at a conversion of 82% (based on sugar consumed) under standardized conditions demonstrates the commercial potential of using the husk in this way.The authors are with the Department of Microbiology and Bioengineering, Central Food Technological Research Institute, Mysore-570 013, India;  相似文献   

19.
The production of siderophores by four Streptomyces strains, S. ambofaciens, S. coelicolor, S. lividans, and S. viridosporus, was studied under iron-limited conditions. S. viridosporus produced two different siderophores: the linear desferrioxamine B and the cyclic desferrioxamine E. The latter was produced by the other strains and was the main siderophore of S. ambofaciens. The linear desferrioxamine G was the major form of S. coelicolor and S. lividans. The uptake rates of 55Fe-labeled ferrioxamines by S. lividans and S. viridosporus showed that the G form was incorporated less efficiently than the B and E forms.  相似文献   

20.
Summary Genes encoding a light chain and an Fd region (a variable region and a CH1 domain of a heavy chain) of a mouse-human chimeric antibody with specificity for human carcinoembryonic antigen (CEA) were fused to a DNA segment coding for the signal peptide of Escherichia coli ompF. E. coli cells harbouring an expression vector containing these genes downstream of a tac promoter were able to secrete a Fab fragment of the antibody efficiently. When the cells were cultured at 37° C and the inducer (isopropyl-\-d-thiogalactopyranoside, IPTG) concentration was 1 mm (standard conditions), production of functional Fab was very low (medium; 200 ng/l culture and periplasm; <90 ng/l culture). In order to optimize functional Fab production, we examined the influence of culture conditions (i.e. temperature and the inducer concentration) on secretion of the product. It was found that a 12.7-fold higher amount of Fab fragment could be produced at 30° C using 0.1 mm IPTG, as compared with standard conditions. Under these optimal conditions, functional Fab accumulated in the periplasm and culture medium for 10 h after induction and the total production level was found to reach approximately 4.5 mg/l culture. Correspondence to: T. Shibui  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号