首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Growth of the intracellular opportunistic bacterium Legionella pneumophila in macrophages from A/J mice is a vigorous as growth in macrophages from susceptible guinea pigs and human monocytes, whereas growth is inhibited in macrophages from other mouse strains, such as nonpermissive BALB/c mice. Permissiveness versus nonpermissiveness of macrophages from A/J versus BALB/c mice appeared to be controlled by a genetic mechanism dependent upon a single gene or a closely clustered family of genes. Susceptibility versus resistance of macrophages from F1 offspring of these two strains of mice and macrophages from backcrossed mice prepared from F1 hybrids and the original parental strain showed a segregation of permissiveness for growth of Legionella in vitro, consistent with genetic control.  相似文献   

2.
Naip5/Birc1e and susceptibility to Legionella pneumophila   总被引:6,自引:0,他引:6  
Genetic analysis in mice is a powerful approach for the identification of genes and proteins that have a key role at the interface of the host-pathogen interaction. The Lgn1 locus has been found to control the intracellular replication of Legionella pneumophila in murine macrophages. Using functional complementation in transgenic mice, the Naip5/Birc1e gene has been identified as responsible for the Lgn1 effect. The classification of Naip5/Birc1e as a member of the NLR protein family suggests that Naip5/Birc1e acts as an intracellular sensor of L. pneumophila. The nature of the signal transduced by Naip5/Birc1e in response to Legionella products is of great interest but is currently unknown. Here, several possible scenarios are presented.  相似文献   

3.
4.
We compared the intracellular survival and growth of Legionella pneumophila Philadelphia-1 in peritoneal macrophages obtained from A/J, C57BL/6, and X-linked chronic granulomatous disease (CGD) mice produced from C57BL/6 strain. The initial killing was observed in A/J and C57BL/6 macrophages at 2, 4 and 6 hr after in vitro phagocytosis, but not in the CGD macrophages. Thereafter, there was a 10-fold increase of CFU in A/J macrophages. The bacteria, however, did not proliferate in C57BL/6 and CGD macrophages at 24 or 48 hr after in vitro phagocytosis. These results suggest that effector molecules for the initial killing are a superoxide anion and its metabolites, and Lgn1 gene product inhibits the intracellular growth of L. pneumophila independently of NADPH oxidase.  相似文献   

5.
BACKGROUND: Legionella pneumophila is a gram-negative bacterial pathogen that is the cause of Legionnaires' Disease. Legionella produces disease because it can replicate inside a specialized compartment of host macrophages. Macrophages isolated from various inbred mice exhibit large differences in permissiveness for intracellular replication of Legionella. A locus affecting this host-resistance phenotype, Lgn1, has been mapped to chromosome 13, but the responsible gene has not been identified. RESULTS: Here, we report that Naip5 (also known as Birc1e) influences susceptibility to Legionella. Naip5 encodes a protein that is homologous to plant innate immunity (so-called "resistance") proteins and has been implicated in signaling pathways related to apoptosis regulation. Detailed recombination mapping and analysis of expression implicates Naip5 in the Legionella permissiveness differences among mouse strains. A bacterial artificial chromosome (BAC) transgenic line expressing a nonpermissive allele of Naip5 exhibits a reduction in macrophage Legionella permissiveness. In addition, morpholino-based antisense inhibition of Naip5 causes an increase in the Legionella permissiveness of macrophages. CONCLUSIONS: We conclude that polymorphisms in Naip5 are involved in the permissiveness differences of mouse macrophages for intracellular Legionella replication. We speculate that Naip5 is a functional mammalian homolog of plant "resistance" proteins that monitor for, and initiate host response to, the presence of secreted bacterial virulence proteins.  相似文献   

6.
Legionella pneumophila is a strict intracellular pathogen that replicates in the professional phagocytes of the human and guinea pig host. Although murine macrophages from most inbred strains are non-permissive to intracellular replication of L. pneumophila, inflammatory macrophages from the mouse strain A/J are completely permissive to intracellular replication of this bacterium. This genetic difference is controlled by the expression of a single autosomal gene designated Lgn1, with non-permissiveness behaving as completely dominant over permissiveness. We have used a total of 25 AXB/BXA recombinant inbred mouse strains and 182 (A/JxC57BL/6J)xA/J segregating backcross progeny (A/J, permissive; C57BL/6J, non-permissive) to map the Lgn1 gene. Animals were individually type for tolerance to intracellular replication by in vitro infection of their inflammatory macrophages with L. pneumophila. All animals segregated into two non-overlapping groups. Examination of the strain distribution pattern of the AXB/BXA strains for Lgn1 initially identified linkage to Chromosome (Chr) 13 markers. Genotyping of the 25 AXB/BXA strains and the 182 backcross progeny for 11 Chr 13 markers established that Lgn1 mapped to Chr 13, with the gene order and intergene distance D13Mit231-(5.5±1.5)-D13Mit193-(2.2±0.9)-D13Mit194-(1.1±0.6)-D13Mit128-(2.6±1.0)-Lgn1-(2.2±0.9)-D13Mit70-(3.9±1.3)-D13Mit73-(7.2±1.7)-D13Mit53-(0.7±0.5)-D13Mit32-(0.7±0.5)-D13Mit77-(0.7±0.5)-D13Mit78. This portion of Chr 13 is homologous to the distal portion of human Chr 5, 5q11–5q13, suggesting a possible location of a human LGN1 homolog. Understanding the molecular basis of the high permissiveness of A/J macrophage to L. pneumophila may shed light on the survival strategy of this bacterium in highly permissive human phagocytes. This may be achieved by positional cloning of Lgn1, and the identification of the Lgn1 subchromosomal region reported here is a first step towards that goal.  相似文献   

7.
Macrophages from A/J mice are permissive for growth of Legionella pneumophila, an intracellular opportunistic pathogen that grows preferentially in macrophages. Macrophages from other mouse strains are highly resistant to growth of Legionella. In the present study, it was found that macrophages from A/J mice are readily activated by pretreatment with lipopolysaccharide (LPS), so that the cells do not permit Legionella to replicate in vitro, as occurs when untreated macrophages from A/J mice are cultured with these organisms for 48 hr. The augmentation of Legionella growth inhibition by LPS-activated macrophages from nonpermissive BDF1 mice also occurred. After in vitro infection, there was a 1000-fold increase in the number of Legionella in A/J macrophages and approximately a 10-fold increase in BDF1 macrophages, but LPS treatment of macrophages from either strain resulted in marked growth restrictions. This suppression was both dose dependent as well as dependent upon the time of addition of the LPS to the macrophages. Furthermore, the lipid A component of LPS was found to be as effective as the intact LPS in activating macrophages to inhibit the intracellular growth of Legionella. Further studies concerning the mechanisms involved are clearly warranted and in progress.  相似文献   

8.
9.
Similar to guinea pig macrophages and human monocytes, macrophages from the peritoneal cavity of thioglycolate pretreated A/J mice are permissive for growth of Legionella pneumophila. In contrast, macrophages from BDF1 mice are not permissive for L. pneumophila. Lymphocytes from A/J and BDF1 mice proliferated in response to Legionella Ag but guinea pig lymphocytes did not. Also, splenocyte cultures from A/J mice treated with either Con A or Legionella vaccine produced supernatants which induced A/J macrophages to restrict Legionella growth, but guinea pig splenocyte culture supernatants obtained after stimulation with L. pneumophila vaccine did not induce Legionella growth restriction activity by guinea pig macrophages. Murine rIFN-gamma but not rIFN-alpha markedly inhibited growth of Legionella in A/J mouse macrophages and monoclonal anti-IFN-gamma antibody neutralized the anti-Legionella activity of culture supernatants from A/J mouse splenocytes responding to Legionella Ag. From these data, IFN-gamma appears to be an important factor in anti-Legionella activity of Ag-activated mouse splenocyte culture supernatants. Cyclosporin A, when given to either A/J or BDF1 mice, reduced the proliferation responses of splenocytes to T cell mitogens and also decreased the IFN production of A/J spleen cells to Legionella Ag. In addition, drug treatment decreased the resistance of A/J mice to Legionella infection as shown by an increase in the number of viable bacteria in the liver. However, injection of drug treated mice with lymphokine-rich splenocyte culture supernatant reconstituted the resistance of these animals. These results suggest an important role for lymphocyte activation and lymphokine production in the resistance of A/J mice to Legionella infection. The greater resistance of BDF1 mice, however, may result from nonpermissive macrophages and responsive lymphocytes. In the case of guinea pigs, susceptibility to Legionella infections may result from both the permissive nature of the macrophages and the relatively unresponsive nature of the lymphocytes in these animals.  相似文献   

10.
Legionella pneumophila is a facultative intracellular pathogen which readily grows in human and guinea pig macrophages and in peritoneal exudate macrophages from A/J mice. Macrophage cultures capable of supporting the growth of Legionella can be used to test the potency of biologically active substances suspected of modulating host mechanisms of resistance to infection. Accordingly, this model was used to evaluate the influence of delta-9-tetrahydro-cannabinol (THC) on macrophage resistance to infection with an intracellular pathogen. Pretreatment of the macrophages with THC in the concentration range of 2.5 micrograms/ml (8 microM) to 5.0 micrograms/ml (16 microM) had little if any effect on the ability of the macrophages to either ingest or support the replication of Legionella. However, THC treatment of cells following Legionella infection resulted in increased numbers of bacteria recoverable from the macrophage cultures. Stimulation of the macrophage cultures with the activating agent lipopolysaccharide (LPS) was effective in reducing the ability of Legionella to grow in the cells. However, treatment of the LPS activated macrophages with THC resulted in greater growth of the Legionella in the cultures, indicating that the drug abolished the LPS induced enhanced resistance. These results demonstrate that THC treatment of macrophages following infection rather than before infection with Legionella promotes the replication of the bacteria within the macrophages. In addition, drug treatment suppresses the growth restricting potential of macrophages activated by LPS.  相似文献   

11.
NAIP and Ipaf control Legionella pneumophila replication in human cells   总被引:2,自引:0,他引:2  
In mice, different alleles of the mNAIP5 (murine neuronal apoptosis inhibitory protein-5)/mBirc1e gene determine whether macrophages restrict or support intracellular replication of Legionella pneumophila, and whether a mouse is resistant or (moderately) susceptible to Legionella infection. In the resistant mice strains, the nucleotide-binding oligomerization domain (Nod)-like receptor (NLR) family member mNAIP5/mBirc1e, as well as the NLR protein mIpaf (murine ICE protease-activating factor), are involved in recognition of Legionella flagellin and in restriction of bacterial replication. Human macrophages and lung epithelial cells support L. pneumophila growth, and humans can develop severe pneumonia (Legionnaires disease) after Legionella infection. The role of human orthologs to mNAIP5/mBirc1e and mIpaf in this bacterial infection has not been elucidated. Herein we demonstrate that flagellin-deficient L. pneumophila replicate more efficiently in human THP-1 macrophages, primary monocyte-derived macrophages, and alveolar macrophages, and in A549 lung epithelial cells compared with wild-type bacteria. Additionally, we note expression of the mNAIP5 ortholog hNAIP in all cell types examined, and expression of hIpaf in human macrophages. Gene silencing of hNAIP or hIpaf in macrophages or of hNAIP in lung epithelial cells leads to an enhanced bacterial growth, and overexpression of both molecules strongly reduces Legionella replication. In contrast to experiments with wild-type L. pneumophila, hNAIP or hIpaf knock-down affects the (enhanced) replication of flagellin-deficient Legionella only marginally. In conclusion, hNAIP and hIpaf mediate innate intracellular defense against flagellated Legionella in human cells.  相似文献   

12.
We examined the potential of two bacterial immunomodulators, trehalose dimycolate (TDM) and lipopolysaccharide (LPS), to stimulate the capacity of mouse peritoneal macrophages to control the growth of the intracellular bacterium, Mycobacterium tuberculosis BCG. Macrophages were obtained from mice innately susceptible (Bcgs) or resistant (Bcgr) to BCG infection. In all mouse strains tested (Bcgr and Bcgs), with the exception of BALB/c (Bcgs), TDM was sufficient to elicit macrophages with strong antimycobacterial activity in vitro. In BALB/c mice, the induction of anti-BCG activity required two signals, TDM and LPS, given in sequence. Our data suggest that additional gene(s), besides the Bcg locus, control macrophage resistance to BCG.  相似文献   

13.
Legionella pneumophila is an opportunistic intracellular pathogen that infects macrophages, both in vivo and in vitro. Tetrahydrocannabinol is a major psychoactive component of marijuana and can affect the functional activity of macrophages. In the present study, it was found that the treatment of macrophage cultures from permissive A/J mice with THC enhanced the growth of Legionella in these cells. Legionella grew much better in macrophages treated with low doses of THC, which caused no alteration in the number or viability of macrophages, as compared with growth in untreated cells. Furthermore, lipopolysaccharide-treated A/J mouse macrophages restricted the growth of Legionella, but this growth restriction was overcome by the addition of THC to LPS-treated macrophage cultures after infection. Thus, it is apparent that THC has the ability to enhance the growth of the intracellular opportunistic pathogen Legionella that grows in A/J mouse macrophages.  相似文献   

14.
Natural resistance of inbred mouse strains to infection withLegionella pneumophilais controlled by the expression of a single dominant gene on chromosome 13, designatedLgn1.The genetic difference atLgn1is phenotypically expressed as the presence or absence of intracellular replication ofL. pneumophilain host macrophages. In our effort to identify theLgn1gene by positional cloning, we have generated a high-resolution linkage map of theLgn1chromosomal region. For this, we have carried out extensive segregation analysis in a total of 1270 (A/J × C57BL/6J) × A/J informative backcross mice segregating the resistance allele of C57BL/6J and the susceptibility allele of A/J. Additional segregation analyses were carried out in three preexisting panels of C57BL/6J ×Mus spretusinterspecific backcross mice. A total of 39 DNA markers were mapped within an interval of approximately 30 cM overlapping theLgn1region. Combined pedigree analyses for the 5.4-cM segment overlappingLgn1indicated the locus order and the interlocus distances (in cM):D13Mit128–(1.4)–D13Mit194–(0.1)–D13Mit147–(0.9)–D13Mit36–(0.9)–D13Mit146–(0.2)–Lgn1/D13Mit37–(1.0)–D13Mit70.Additional genetic linkage studies of markers not informative in the A/J × C57BL/6J cross positionedD13Mit30, -72, -195,and-203, D13Gor4, D13Hun35,andMtap5in the immediate vicinity of theLgn1locus. The marker density and resolution of this genetic linkage map should allow the construction of a physical map of the region and the isolation of YAC clones overlapping the gene.  相似文献   

15.
Legionella pneumophila is an ubiquitous opportunistic intracellular pathogen that replicates readily in thioglycollate-elicited peritoneal macrophages from genetically susceptible A/J mice. Treatment of macrophage cultures in vitro with tumor necrosis factor-alpha (TNF-alpha) induced resistance of the macrophages to infection by Legionella as compared with control macrophages treated with medium alone. Addition of small amounts of monoclonal antibody to TNF-alpha restored susceptibility of the macrophages. Furthermore, antibody to the proinflammatory cytokine interleukin-1 (IL-1) alpha/beta increased resistance, but recombinant IL-1 had little effect. Such decreased susceptibility to Legionella growth in anti-IL-1 antibody-treated cultures corresponded with enhanced levels of TNF-alpha in the supernatants of the treated cells. An antibody to another proinflammatory cytokine with known immunoregulatory properties (i.e., IL-6) had little or no effect on the ability of the macrophages to be infected by Legionella and, furthermore, treatment with recombinant IL-6, similar to recombinant IL-1, did not modify the ability of the cells to be infected in vitro. These results indicate that TNF-alpha is important in controlling L. pneumophila replication, and IL-1 can regulate TNF-alpha levels, affecting susceptibility of macrophages to infection with an intracellular opportunistic pathogen like Legionella.  相似文献   

16.
Survival and distribution of legionellae in the environment are assumed to be associated with their multiplication in amoebae, whereas the ability to multiply in macrophages is usually regarded to correspond to pathogenicity. Since most investigations focused on Legionella pneumophila serogroup 1, we examined the intracellular multiplication of different Legionella species in Mono Mac 6 cells, which express phenotypic and functional features of mature monocytes, and in Acanthamoeba castellanii, an environmental host of Legionella spp. According to the bacterial doubling time in Mono Mac 6 cells and in A. castellanii, seven clusters of legionellae could be defined which could be split further with regard to finer differences. L. longbeachae serogroup 1, L. jordanis, and L. anisa were not able to multiply in either A. castellanii or Mono Mac 6 cells and are members of the first cluster. L. dumoffi did not multiply in Mono Mac 6 cells but showed a delayed multiplication in A. castellanii 72 h after infection and is the only member of the second cluster. L. steigerwaltii, L. gormanii, L. pneumophila serogroup 6 ATCC 33215, L. bozemanii, and L. micdadei showed a stable bacterial count in Mono Mac 6 cells after infection but a decreasing count in amoebae. They can be regarded as members of the third cluster. As the only member of the fourth cluster, L. oakridgensis was able to multiply slight in Mono Mac 6 cells but was killed within amoebae. A strain of L. pneumophila serogroup 1 Philadelphia obtained after 30 passages on SMH agar and a strain of L. pneumophila serogroup 1 Philadelphia obtained after intraperitoneal growth in guinea pigs are members of the fifth cluster, which showed multiplication in Mono Mac 6 cells but a decrease of bacterial counts in A. castellanii. The sixth cluster is characterized by intracellular multiplication in both host cell systems and consists of several strains of L. pneumophila serogroup 1 Philadelphia, a strain of L. pneumophila serogroup 2, and a fresh clinical isolate of L. pneumophila serogroup 6. Members of the seventh cluster are a strain of agar-adapted L. pneumophila serogroup 1 Bellingham and a strain of L. pneumophila serogroup 1 Bellingham which was passaged fewer than three times on BCYE alpha agar after inoculation and intraperitoneal growth in guinea pigs. In comparison to members of the sixth cluster, both strains showed a slightly enhanced multiplication in Mono Mac 6 cells but a reduced multiplication in amoebae. From our investigations, we could demonstrate a correlation between prevalence of a given Legionella species and their intracellular multiplication in Mono Mac 6 cells. Multiplication of members of the genus Legionella in A. castellanii seems to be dependent on mechanisms different from those in monocytes.  相似文献   

17.
Legionella survives intracellularly by preventing fusion with lysosomes, due to phagosome escape from the endocytic pathway at an early stage of phagosome maturation, and by creating a replicative organelle that acquires endoplasmic reticulum (ER) characteristics through sustained interactions and fusion with the ER. Intracellular replication of Legionella pneumophila in mouse macrophages is controlled by the Lgn1 locus. Functional complementation in vivo has identified the Birc1e/Naip5 gene as being responsible for the Lgn1 effect. To understand the function and temporal site of action of Birc1e/Naip5 in susceptibility to L. pneumophila, we examined the biogenesis of Legionella-containing vacuoles (LCVs) formed in permissive A/J macrophages and in their Birc1e/Naip5 transgenic non-permissive counterpart. Birc1e/Naip5 effects on acquisition of lysosomal and ER markers were evident within 1-2 h following infection. A significantly higher proportion of LCVs formed in Birc1e/Naip5 transgenic macrophages had acquired the lysosomal markers cathepsin D and Lamp1 by 2 h post infection, whereas a significantly higher proportion of LCVs formed in permissive macrophages were positively stained for the ER markers BAP31 and calnexin, 6 h post infection. Likewise, studies by electron microscopy showed acquisition of lysosomal contents (horseradish peroxidase), within the first hour following phagocytic uptake, by LCVs formed in Birc1e/Naip5 transgenic macrophages and delivery of the ER marker glucose 6-phosphatase (G6Pase) only to the lumen of LCVs formed in A/J macrophages. Finally, a larger proportion of LCVs formed in A/J macrophages were studded with ribosomes 24 h post infection, compared with LCVs formed in Birc1e/Naip5 transgenic macrophages. These results suggest that sensing of L. pneumophila products by Birc1e/Naip5 in macrophages occurs rapidly following phagocytosis, a process that antagonizes the ability of L. pneumophila to remodel its phagosome into a specialized vacuole with ER characteristics.  相似文献   

18.
In the mouse, innate resistance or susceptibility to infection with a group of unrelated intracellular parasites which includes, Mycobacteria, Salmonella, and Leishmania is determined by the expression of a single dominant autosomal gene designated Bcg located on the proximal portion of chromosome 1. The gene is expressed at the level of the mature tissue macrophage and influences its capacity to restrict intracellular proliferation of the parasites. We have used restriction fragment length polymorphism analysis in segregating populations of inter- and intraspecific backcross mice and in recombinant inbred strains to position four new marker genes, transition protein 1 (Tp-1), desmin (Des), the alpha subunit of inhibin (Inha), and retinal S-antigen (Sag), in the vicinity of the host resistance locus, Bcg. The gene order for Tp-1, Des, Inha, and Sag was established in an eight-point testcross with respect to anchor loci previously assigned to that portion of mouse chromosome 1 and was found to be centromere-Fn-1-Tp-1-(Vil,Bcg)-Des-Inha-Akp-3-Acrg+ ++-Sag. Two of these new marker genes were found very tightly linked to Bcg: Des was located 0.3 +/- 0.3 cM distal from (Vil,Bcg) and 0.3 +/- 0.3 cM proximal to Inha. Tp-1 mapped 0.8 +/- 0.8 cM proximal and Sag 12.8 +/- 1.7 cM distal to (Vil,Bcg). Tp-1, Des, Inha, and Sag all fall within a large mouse chromosome 1 segment homologous with the telomeric region of the long arm of human chromosome 2 (2q). Our findings indicate that the two closest markers to the host resistance locus, Bcg, encode cytoskeleton-associated proteins which are capable of interaction with actin filaments.  相似文献   

19.
Legionella pneumophila is an intracellular bacterium that causes an acute form of pneumonia called Legionnaires' disease. After infection of human macrophages, the Legionella-containing phagosome (LCP) avoids fusion with the lysosome allowing intracellular replication of the bacterium. In macrophages derived from most mouse strains, the LCP is delivered to the lysosome resulting in Legionella degradation and restricted bacterial growth. Mouse macrophages lacking the NLR protein Ipaf or its downstream effector caspase-1 are permissive to intracellular Legionella replication. However, the mechanism by which Ipaf restricts Legionella replication is not well understood. Here we demonstrate that the presence of flagellin and a competent type IV secretion system are critical for Legionella to activate caspase-1 in macrophages. Activation of caspase-1 in response to Legionella infection also required host Ipaf, but not TLR5. In the absence of Ipaf or caspase-1 activation, the LCP acquired endoplasmic reticulum-derived vesicles, avoided fusion with the lysosome, and allowed Legionella replication. Accordingly a Legionella mutant lacking flagellin did not activate caspase-1, avoided degradation, and replicated in wild-type macrophages. The regulation of phagosome maturation by Ipaf occurred within 2 h after infection and was independent of macrophage cell death. In vivo studies confirmed that flagellin and Ipaf play an important role in the control of Legionella clearance. These results reveal that Ipaf restricts Legionella replication through the regulation of phagosome maturation, providing a novel function for NLR proteins in host defense against an intracellular bacterium.  相似文献   

20.
Legionella pneumophila is an intracellular pathogen whose replication in macrophages is mainly controlled by IFN-gamma. Freshly isolated peritoneal macrophages elicited in vivo with thioglycolate (TG) from A/J mice are highly permissive to L. pneumophila growth in vitro, while TG-elicited macrophages from CD1 mice are resistant. In this study, we show that when CD1 TG-macrophages are cultured for 7 days, they become permissive to Legionella infection. We demonstrate that treatment with type I IFN (IFN-alphabeta) totally inhibits the growth of L. pneumophila in both freshly isolated A/J and in vitro-aged CD1 TG-macrophages. IFN-alphabeta protective effect on permissive macrophages was comparable to that induced by IFN-gamma. Even low doses of either IFN-alpha or IFN-beta alone were effective in inhibiting L. pneumophila multiplication in macrophage cultures. Notably, treatment of resistant, freshly isolated CD1 TG-macrophages with Ab to mouse IFN-alphabeta significantly enhanced their susceptibility to Legionella infection in vitro, thus implying a role of endogenous IFN-alphabeta in mediating the natural resistance of macrophages to L. pneumophila infection. Finally, addition of anti-IFN-gamma-neutralizing Ab did not restore Legionella growth in IFN-alpha- or IFN-beta-treated A/J or CD1 permissive macrophages, indicating that IFN-alphabeta effect was not mediated by IFN-gamma. This observation was further confirmed by the finding that IFN-alphabeta was effective in inhibiting L. pneumophila replication in macrophages from IFN-gamma receptor-deficient mice. Taken together, our results provide the first evidence for a role of IFN-alphabeta in the control of L. pneumophila infection in mouse models of susceptible macrophages and suggest the existence of different pathways for the control of intracellular bacteria in macrophages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号