首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Casein micelles are a major component of milk proteins. It is well known that casein micelles show chaperone-like activity such as inhibition of protein aggregation and stabilization of proteins. In this study, it was revealed that casein micelles also possess a high refolding activity for denatured proteins. A buffer containing caseins exhibited higher refolding activity for denatured bovine carbonic anhydrase than buffers including other proteins. In particular, a buffer containing α-casein showed about a twofold higher refolding activity compared with absence of α-casein. Casein properties of surface hydrophobicity, a flexible structure and assembly formation are thought to contribute to this high refolding activity. Our results indicate that casein micelles stabilize milk proteins by both chaperone-like activity and refolding properties.  相似文献   

2.
We describe a method for selective removal of caseins from milk. The method was developed as a model for transgenic milk processing. Raw cow milk spiked with nonmilk proteins was chosen as the model to resemble transgenic animal milk containing recombinant proteins. The most important elements of the process are (1) "deconstruction" of casein micelles in milk by destroying their Ca(2+) core using a chelating agent (EDTA), thus freeing any protein that might be entrapped in casein aggregates, and (2) "reconstruction" of micelles by providing them with a new Ca(2+) core, thus precipitating them away from the whey proteins, and the protein of interest. Calcium phosphate particles (CAP) were used to reform the disrupted casein micelles. The crystal clear supernatant fraction generated by this method provided >90% recovery and 6- to 13-fold concentration of the desired protein. Product-rich supernatant contained no detectable casein residues, as silver-stained SDS-PAGE and Western blot analyses demonstrated.  相似文献   

3.
Caseins are among cardinal proteins that evolved in the lineage leading to mammals. In milk, caseins and calcium phosphate (CaP) form a huge complex called casein micelle. By forming the micelle, milk maintains high CaP concentrations, which help altricial mammalian neonates to grow bone and teeth. Two types of caseins are known. Ca-sensitive caseins (α(s)- and β-caseins) bind Ca but precipitate at high Ca concentrations, whereas Ca-insensitive casein (κ-casein) does not usually interact with Ca but instead stabilizes the micelle. Thus, it is thought that these two types of caseins are both necessary for stable micelle formation. Both types of caseins show high substitution rates, which make it difficult to elucidate the evolution of caseins. Yet, recent studies have revealed that all casein genes belong to the secretory calcium-binding phosphoprotein (SCPP) gene family that arose by gene duplication. In the present study, we investigated exon-intron structures and phylogenetic distributions of casein and other SCPP genes, particularly the odontogenic ameloblast-associated (ODAM) gene, the SCPP-Pro-Gln-rich 1 (SCPPPQ1) gene, and the follicular dendritic cell secreted peptide (FDCSP) gene. The results suggest that contemporary Ca-sensitive casein genes arose from a putative common ancestor, which we refer to as CSN1/2. The six putative exons comprising CSN1/2 are all found in SCPPPQ1, although ODAM also shares four of these exons. By contrast, the five exons of the Ca-insensitive casein gene are all reminiscent of FDCSP. The phylogenetic distribution of these genes suggests that both SCPPPQ1 and FDCSP arose from ODAM. We thus argue that all casein genes evolved from ODAM via two different pathways; Ca-sensitive casein genes likely originated directly from SCPPPQ1, whereas the Ca-insensitive casein genes directly differentiated from FDCSP. Further, expression of ODAM, SCPPPQ1, and FDCSP was detected in dental tissues, supporting the idea that both types of caseins evolved as Ca-binding proteins. Based on these findings, we propose two alternative hypotheses for micelle formation in primitive milk. The conserved biochemical characteristics in caseins and their immediate ancestors also suggest that many slight genetic modifications have created modern caseins, proteins vital to the sustained success of mammals.  相似文献   

4.

Background  

Caseins, the main milk proteins, aggregate in the secretory pathway of mammary epithelial cells into large supramolecular structures, casein micelles. The role of individual caseins in this process and the mesostructure of the casein micelle are poorly known.  相似文献   

5.
An intrinsically unstructured human myelin basic protein (hMBP) was expressed in the milk of transgenic cows (TGmilk) and found exclusively associated with the casein micellar phase. The interaction between the recombinant protein and milk caseins was investigated using surface plasmon resonance (SPR). An anti‐human myelin basic protein antibody was covalently immobilized to the surface of the sensor chip. Subsequently the interaction between the recombinant protein (captured by this antibody) and caseins was studied in comparison to that noted with its human counterpart. Results showed a calcium‐mediated interaction between the recombinant protein and caseins. The order of magnitude of this interaction was in agreement with the number of phosphorylated residues carried by each type of casein (αs‐ > β‐ > κ‐casein). This selective interaction was not noted between the human protein and milk caseins indicating that the recombinant protein was phosphorylated to a higher extent than the human protein. The obtained results indicated that the co‐expression of the recombinant protein and caseins by the mammary gland along with the recombinant protein's ability to form calcium bridges played a key role in the association of the recombinant human myelin basic protein (rhMBP) with the casein micelles of milk. Despite this association between the recombinant protein and milk caseins, light scattering investigations using diffusing wave spectroscopy (DWS) showed no significant differences between the milks of the transgenic and the non‐transgenic control cows, with respect to both the average micelle size and surface charges. This was attributed to the low expression levels of the recombinant protein in milk. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
Milk protein of farm animals is difficult to isolate because of the presence of casein micelles, which are hard to separate from whey by using centrifugation or filtration. Insoluble casein micelles also create an obstacle for purification instruments to operate efficiently. The conventional method, to precipitate caseins by lowering pH to 4.6 and then recover the whey fraction for further purification using chromatography techniques, is not applicable to proteins having an isoelectric point similar to caseins. In addition, the acid condition used for casein removal usually leads to significantly poor yields and reduced biological activities. In this study, a novel method of precipitating caseins under neutral or weak acidic conditions is presented. The method employs a phosphate salt and a freeze–thaw procedure to obtain a casein-free whey protein fraction. This fraction contains more than 90% yield with little loss of bioactivity of the target protein, and is readily available for further chromatographic purification. This method was successfully applied to purify recombinant human factor IX and recombinant hirudin from the milk of transgenic pigs in the presented study. It is an efficient pretreatment approach prior to chromatographic purification of milk protein from farm animals and particularly of great value to collect those recombinants secreted from transgenic livestock.  相似文献   

7.
Casein micelles destabilized in milk under frozen storage was compared with stable casein micelles before frozen storage by means of analytical ultracentrifugation.

The stable micelles disaggregated with urea-containing buffer showed a single homogeneous peak of ~0.9S, while a fast sedimenting subpeak, in addition to the major peak of ~0.9 S, appeared in the destabilized micelles. However, any difference was not found between the stable and destabilized caseins when they were analyzed after removal of calcium. It is suggested that a new type of association is formed, possibly through salt linkages, in the casein system destabilized under frozen storage. Sedimentation pattern of calcium paracaseinate phosphate complex in urea-containing buffer suggests that the destabilization of the micelles by rennin does not involve the change of salt linkages.  相似文献   

8.
Casein micelles have been separated from skim milk by chromatography on CPG-10 3000 glass beads. Fractionation of the micelles according to size has been demonstrated. Polyacrylamide gel electrophoresis of urea treated micelles reveals that different relative amounts of the major casein components occur in the various micelle fractions. No discernible dissociation of the micelles into monomeric caseins has been observed.  相似文献   

9.
The caseins are major components of milk for most mammals and are secreted as large colloidal aggregates termed micelles. They have less ordered secondary and tertiary structures in comparison with typical globular proteins. In this work, beta-casein, a member of the casein family, has been demonstrated to exhibit chaperone-like activity, being able to suppress the thermal and chemical aggregation of such substrate proteins as insulin, lysozyme, alcohol dehydrogenase, and catalase by forming stable complexes with the denaturing substrate proteins. Meanwhile, beta-casein was found to not only prevent aggregation of the substrate proteins, but also solubilize the protein aggregates already formed. Data also show that beta-casein exhibits a higher chaperone-like activity than alpha-casein, likely due to the difference in the number of proline residues present and/or in the extent of exposed hydrophobic surfaces. The implications for their in vivo functions of the caseins, based on their exhibiting such in vitro chaperone-like activities, are discussed.  相似文献   

10.
11.
The amount of casein found in the milk of the tammar wallaby increases as lactation progresses. The increase is due to increasing amounts of β-casein; the α-casein remains largely constant. The α-casein is the more highly phosphorylated; the most abundant form is the 10-P, throughout lactation. The level of phosphorylation of β-casein shifts to lower average values in late lactation, possibly indicating the enzymatic reaction is overloaded by the increasing amounts of β-casein. Unlike bovine casein micelles, the wallaby micelles are not completely disrupted at pH 7.0 by sequestration of their calcium content with ethylene diamine tetraacetic acid (EDTA). Complete disruption only follows the addition of sodium dodecyl sulphate, indicating considerably greater importance for hydrophobic bonds in maintaining their integrity. This micellar behaviour indicates that, despite the evolutionary divergence of marsupials millennia ago, the caseins of wallaby milk assemble into micelles in much the same fashion as in bovine milk.  相似文献   

12.
13.
The effect of depletion of Ca2+ on the composition and size distribution of casein micelles in milk has been examined using chemical analysis, size exclusion chromatography, fast protein liquid chromatography, turbidimetry and photon correlation spectroscopy. Partial removal of Ca2+ by EDTA and subsequent dialysis resulted in disaggregation of some of the casein micelles; as the EDTA concentration increased, the proportions of Ca2+ and phosphate relative to protein in the micelles remaining intact decreased. However, the composition of the intact micelles, with respect to the different caseins, and the number-frequency size distribution were essentially unchanged.  相似文献   

14.
Anema SG  de Kruif CG 《Biomacromolecules》2011,12(11):3970-3976
On addition of lactoferrin (LF) to skim milk, the turbidity decreases. The basic protein binds to the caseins in the casein micelles, which is then followed by a (partial) disintegration of the casein micelles. The amount of LF initially binding to casein micelles follows a Langmuir adsorption isotherm. The kinetics of the binding of LF could be described by first-order kinetics and similarly the disintegration kinetics. The disintegration was, however, about 10 times slower than the initial adsorption, which allowed investigating both phenomena. Kinetic data were also obtained from turbidity measurements, and all data could be described with one equation. The disintegration of the casein micelles was further characterized by an activation energy of 52 kJ/mol. The initial increase in hydrodynamic size of the casein micelles could be accounted for by assuming that it would go as the cube root of the mass using the adsorption and disintegration kinetics as determined from gel electrophoresis. The results show that LF binds to casein micelles and that subsequently the casein micelles partly disintegrate. All micelles behave in a similar manner as average particle size decreases. Lysozyme also bound to the casein micelles, and this binding followed a Langmuir adsorption isotherm. However, lysozyme did not cause the disintegration of the casein micelles.  相似文献   

15.
Acid casein and kappa-casein were purified from different species of animal's milk, such as cow, sheep, goat, and water buffalo. These caseins were used as substrates for commercially available subtilisin and trypsin. It was established that, when acid caseins were used as a substrate for subtilisin, cow acid casein was found to be a better substrate for the enzymes, compared to other animals' milk casein. It was suggested that this acid casein has significantly more aromatic amino acids, as compared to arginine and lysine. K(M) and Vmax values, which were obtained for cow kappa-casein, showed that cow kappa-casein was a better susbstrate for trypsin than the others, suggesting that cow kappa-casein has a rich content of lysine, arginine, and aromatic amino acids by comparison with the others. The calculated C/N ratio also supports this suggestion.  相似文献   

16.
Characterization of a heterogeneous camel milk whey non-casein protein   总被引:1,自引:0,他引:1  
A milk protein, occurring in the whey fraction, has been characterized from camel milk. Determination of the primary structure reveals the existence of two related types of chain with residue differences in at least the N-terminal region. A fragment representing an N-terminal part of the protein was also recovered (heterogeneous at the same positions). The absence of cysteine residues in the protein shows that no disulphide bridges are present. The pattern of fragments and a parent protein resembles that for casein and its fragments, showing that fragments and a multiplicity of forms may be typical for different milk proteins.  相似文献   

17.
The process of complex formation of casein from skimmed milk and purified casein with chitosan of different molecular weights was studied. It was shown that at pH 6.3 casein micelles and parts of whey proteins coagulated with positively charged chitosan molecules with molecular weights of 45.3, 25.4, 7.7 and 1.5 kDa. As a result of ionic interaction of chitosan with skimmed milk proteins the yield of target product reached 90–92%. It consisted of all forms of casein: α-casein, β-casein, κ-casein and small amount of whey proteins.  相似文献   

18.
Casein micelles are ~200 nm electronegative particles that constitute 80 wt% of the milk proteins. During synthesis in the lactating mammary cells, caseins are thought to interact in the form of ~20 nm assemblies, directly with the biological membranes of the endoplasmic reticulum and/or the Golgi apparatus. However, conditions that drive this interaction are not yet known. Atomic force microscopy imaging and force spectroscopy were used to directly observe the adsorption of casein particles on supported phospholipid bilayers with controlled compositions to vary their phase state and surface charge density, as verified by X-ray diffraction and zetametry. At pH 6.7, the casein particles adsorbed onto bilayer phases with zwitterionic and liquid-disordered phospholipid molecules, but not on phases with anionic or ordered phospholipids. Furthermore, the presence of adsorbed caseins altered the stability of the yet exposed bilayer. Considering their respective compositions and symmetry/asymmetry, these results cast light on the possible interactions of casein assemblies with the organelles' membranes of the lactating mammary cells.  相似文献   

19.
Caseins were separated from whey proteins by acid precipitation of skimmed rabbit milk. Whole casein was resolved by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis into three major bands with apparent relative molecular masses (Mr of 31 000, 29 000 and 25 000. On agarose/urea-gel electrophoresis whole casein gave three bands with electrophoretic mobilities alpha, beta and gamma. The three components were purified by DEAE-cellulose chromatography under denaturing and reducing conditions. Each was shown to have a different amino acid, hexose and phosphorus content, as well as non-identical peptide fragments after proteinase digestion. The 31 000 Da (dalton) protein, of alpha-electrophoretic mobility, had a high phosphorus content (4.38%, w/w); the 29 000 Da peptide, of gamma-mobility, had the highest hexose content (2.2%, w/w), contained 0.8 cysteine residue per 100 amino acid residues and was susceptible to chymosin digestion corresponding thus to kappa-casein; the 25 000 Da protein migrated to the beta-position. The rabbit casein complex is composed of at least three caseins, two of which (alpha- and kappa-caseins) are analogous to the caseins from ruminants. Although caseins are poor immunogens, specific antibodies were raised against total and purified polypeptides. The antiserum directed against whole casein recognized each polypeptide, each casein corresponding to a distinct precipitation line. The antisera directed against each casein polypeptide reacted exclusively with the corresponding casein and no antiserum cross-reaction occurred between the three polypeptides. From whey, several proteins were isolated, characterized and used as antigens to raise specific antibodies. An iron-binding protein with an apparent Mr of 80 000 was shown to be immunologically and structurally identical with serum transferrin.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号