首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The CD28 ligands CD80 and CD86 are expressed on APC, and both provide costimulatory function. However, the reason for the expression of two separate CD28 ligands remains unclear. We have previously shown that blockade of CD80 costimulation by Y100F-Ig, a CTL-associated Ag-4 (CTLA4)-Ig mutant that does not bind CD86, inhibits the development of lung inflammatory immune responses, but does not affect blood eosinophilia or Ab production. Each of those responses was inhibited by treatment with CTLA4-Ig, which binds both CD80 and CD86. To clarify the mechanism underlying these observations we have developed a model of lung inflammation using adoptively transferred CD4(+) T cells expressing a Valpha11(+)Vbeta3(+) transgenic TCR specific for I-E(k) and moth cytochrome c. Treatment with Y100F-Ig inhibited the induction of lung eosinophilia in adoptively transferred mice. However, Y100F-Ig did not detectably affect the accumulation of Ag-specific T cells at the site of peptide deposit or in the draining lymphoid tissues. Acquisition of an activated phenotype and expression of adhesion molecules required for migration into the lung were modestly affected. Importantly, treatment with Y100F-Ig diminished the ability of T cells to produce the cytokines IL-4 and IL-5 following intranasal challenge with Ag. All the responses examined were severely inhibited by treatment with CTLA4-Ig. We conclude that T cells require CD80 costimulation for the optimal production of IL-5 following intranasal administration of Ag. Decreased IL-5 production is the most likely explanation for the diminished airway eosinophilia observed.  相似文献   

2.
Hypersensitivity pneumonitis (HP) is characterized by an influx of activated T cells in the lungs. The CD28/B7 system provides costimulatory signals essential for complete T cell activation and differentiation. We have previously demonstrated that alveolar macrophages from patients with HP have an up-regulated expression of B7 molecules. In the present study, we investigated the effect of i. p. administration of CTLA4-Ig, a CD28/B7 antagonist, on the lung inflammation of mice inoculated with Saccharoplyspora rectivirgula (SR), a major causative agent of HP. Five groups of C57BL/6 mice were intranasally instilled with SR or saline for 3 consecutive days per wk during 3 wk. CTLA4-Ig was administered starting either after 1 wk of SR challenge or 6 h before the first antigenic exposure and continued during the whole period of sensitization. A control-IgG was given similarly during the 3 wk of SR exposure. The groups included: 1, saline; 2, SR; 3, SR + control-Ig; 4, SR + CTLA4-Ig for the last 2 wk; and 5, SR + CTLA4-Ig for 3 wk. CTLA4-Ig treatment markedly decreased lung inflammation as shown by significantly fewer inflammatory cells in the bronchoalveolar lavage and in lung tissue and reduced SR-specific serum and bronchoalveolar lavage Ig levels. Production of IL-4, IL-10, and IFN-gamma by IL-2-stimulated pulmonary T cells was also decreased by CTLA4-Ig. Administration of CTLA4-Ig did not affect the SR-induced up-regulation of B7-2 expression. These results show that blockade of CD28/B7 interactions by CTLA4-Ig inhibits SR-induced lung inflammation and immune response to SR Ag in mice and may provide a novel approach in the treatment of HP.  相似文献   

3.
The effect of blocking the CD28/B7 costimulatory pathway on intestinal allograft rejection was examined in mice. Murine CTLA4Ig failed to prevent the rejection of allografts transplanted into wild-type or CD4 knockout (KO) mice but did inhibit allograft rejection by CD8 KO recipients. This effect was associated with decreased intragraft mRNA for IFN-gamma and TNF-alpha and increased mRNA for IL-4 and IL-5. This altered pattern of cytokine production was not observed in allografts from murine CTLA4Ig-treated CD4 KO mice. These data demonstrate that blockade of the CD28/B7 pathway has different effects on intestinal allograft rejection mediated by CD4+ and CD8+ T cells and suggest that these T cell subsets have different costimulatory requirements in vivo. The results also suggest that the inhibition of CD4+ T cell-mediated allograft rejection by CTLA4Ig may be related to down-regulation of Th1 cytokines and/or up-regulation of Th2 cytokines.  相似文献   

4.
Despite increasing use of swine in transplantation research, the ability to block costimulation of allogeneic T cell responses has not been demonstrated in swine, and the effects of costimulatory blockade on xenogeneic human anti-porcine T cell responses are also not clear. We have compared the in vitro effects of anti-human CD154 mAb and human CTLA4IgG4 on allogeneic pig T cell responses and xenogeneic human anti-pig T cell responses. Both anti-CD154 mAb and CTLA4IgG4 cross-reacted on pig cells. While anti-CD154 mAb and CTLA4IgG4 both inhibited the primary allogeneic pig MLRs, CTLA4IgG4 (7.88 microg/ml) was considerably more inhibitory than anti-CD154 mAb (100 microg/ml) at optimal doses. Anti-CD154 mAb inhibited the production of IFN-gamma by 75%, but did not inhibit IL-10 production, while CTLA4IgG4 completely inhibited the production of both IFN-gamma and IL-10. In secondary allogeneic pig MLRs, CTLA4IgG4, but not anti-CD154 mAb, induced Ag-specific T cell anergy. CTLAIgG4 completely blocked the indirect pathway of allorecognition, while anti-CD154 mAb blocked the indirect response by approximately 50%. The generation of porcine CTLs was inhibited by CTLA4IgG4, but not by anti-CD154 mAb. Human anti-porcine xenogeneic MLRs were blocked by CTLA4IgG4, but only minimally by anti-CD154 mAb. Finally, CTLA4IgG4 prevented secondary xenogeneic human anti-porcine T cell responses. These data indicate that blockade of the B7-CD28 pathway was more effective than blockade of the CD40-CD154 pathway in inhibiting allogeneic pig T cell responses and xenogeneic human anti-pig T cell responses in vitro. These findings have implications for inhibiting cell-mediated immune responses in pig-to-human xenotransplantation.  相似文献   

5.
T cell-mediated immunity is critical in resistance against Leishmania parasites, and T cell activation requires signals provided by costimulatory molecules. Herein we evaluated the role of costimulatory molecules on cytokine production and T cell surface molecule expression by peripheral blood mononuclear cells (PBMC) from cutaneous leishmaniasis (CL) patients. PBMC from CL patients were stimulated with soluble Leishmania antigen (SLA, 10 microg/ml), in the presence or absence of soluble CTLA4-Ig to block CD28-B7 interaction or in the presence or absence of anti-human CD40L to block CD40-CD40L interaction. Supernatants were harvested to evaluate tumor necrosis factor alpha (TNF-alpha), interleukin 10 (IL-10), transforming growth factor beta (TGF-beta) and interferon gamma (IFN-gamma) production by ELISA. Cells were harvested after 48 h of culture, stained for specific activation markers and analyzed by flow cytometry. Results show that the blockade of CD28-B7 interaction by CTLA4-Ig downmodulated IFN-gamma, IL-10, and TNF-alpha secretion by PBMC from CL patients. No alteration was detected on either TGF-beta production or the expression of CTLA44 or CD25 on CD4+ and CD8+ T cells. When the CD40-CD40L interaction was blockade using anti-CD40L, we did not observe changes in cytokine production or in surface molecule expression. The blockade of the CD28-B7 interactions by CTLA4-Ig also did not alter cytokine production in volunteers immunized against tetanus toxoid (TT). Taken together, these data suggest that the interaction of CTLA4 and CD28-B7 is a TGF-beta-independent mechanism that specifically downmodulates the immune response in cutaneous leishmaniasis patients.  相似文献   

6.
Optimal T cell activation requires engagement of CD28 with its counterligands B7-1 and B7-2. Inducible costimulator (ICOS) is the third member of the CD28/CTLA4 family that binds a B7-like protein, B7RP-1. Administration of ICOS-Ig attenuates T cell expansion following superantigen (SAg) administration, but fails to regulate either peripheral deletion or anergy induction. ICOS-Ig, but not CTLA4-Ig, uniquely regulates SAg-induced TNF-alpha production, whereas IL-2 secretion is modulated by CTLA4-Ig, but not ICOS-Ig. In contrast, both ICOS and CD28 are required for complete attenuation of IL-4 production. Our data suggest that ICOS and CD28 regulate T cell expansion and that ligation of either CD28 or ICOS can either uniquely regulate cytokine production (IL-2/TNF-alpha) or synergize for optimal cytokine production (IL-4) after SAg administration.  相似文献   

7.
Control of memory CD4 T cell recall by the CD28/B7 costimulatory pathway   总被引:2,自引:0,他引:2  
The CD28/B7 costimulatory pathway is generally considered dispensable for memory T cell responses, largely based on in vitro studies demonstrating memory T cell activation in the absence of CD28 engagement by B7 ligands. However, the susceptibility of memory CD4 T cells, including central (CD62L(high)) and effector memory (T(EM); CD62L(low)) subsets, to inhibition of CD28-derived costimulation has not been closely examined. In this study, we demonstrate that inhibition of CD28/B7 costimulation with the B7-binding fusion molecule CTLA4Ig has profound and specific effects on secondary responses mediated by memory CD4 T cells generated by priming with Ag or infection with influenza virus. In vitro, CTLA4Ig substantially inhibits IL-2, but not IFN-gamma production from heterogeneous memory CD4 T cells specific for influenza hemagglutinin or OVA in response to peptide challenge. Moreover, IL-2 production from polyclonal influenza-specific memory CD4 T cells in response to virus challenge was completely abrogated by CTLA4Ig with IFN-gamma production partially inhibited. When administered in vivo, CTLA4Ig significantly blocks Ag-driven memory CD4 T cell proliferation and expansion, without affecting early recall and activation. Importantly, CTLA4Ig treatment in vivo induced a striking shift in the phenotype of the responding population from predominantly T(EM) in control-treated mice to predominantly central memory T cells in CTLA4Ig-treated mice, suggesting biased effects of CTLA4Ig on T(EM) responses. Our results identify a novel role for CD28/B7 as a regulator of memory T cell responses, and have important clinical implications for using CTLA4Ig to abrogate the pathologic consequences of T(EM) cells in autoimmunity and chronic disease.  相似文献   

8.
The CD28 costimulatory pathway is critical to T cell activation. Blockade of the interaction of CD28 with its ligands CD80 and CD86 using CTLA4-Ig has been proposed as a therapy for a number of immune-based disorders. We have used a murine model of influenza virus infection to study the role of CD28-dependent costimulation in the development of antiviral immune responses. In vivo treatment with CTLA4-Ig to block the interaction of CD28 with CD80 and CD86 reduced virus-specific cytotoxicity and IFN-gamma production by bronchoalveolar lavage fluid CD8+ T lymphocytes in vitro. It also resulted in decreased numbers of virus-specific CD8+ T lymphocytes in the bronchoalveolar lavage fluid, lung, and spleen and lowered virus-specific Ab titers. Mice treated with CTLA4-Ig were able to control and clear the virus infection, but this was delayed compared with controls. Treatment with Y100F-Ig, a mutant form of CTLA4-Ig which selectively binds to CD80 and blocks the CD28-CD80 interaction leaving CD28-CD86 binding intact, did not affect Ab production, spleen cytotoxic precursors, or clearance of virus. However, Y100F-Ig treatment had a clear effect on lung effector cell function. Secretion of IFN-gamma by bronchoalveolar lavage fluid CD8+ T lymphocytes in vitro was decreased, and the number of virus-specific CD8+ T lymphocytes in the bronchoalveolar lavage fluid and lungs of infected mice was reduced. These results indicate that CD28-dependent costimulation is important in the antiviral immune response to an influenza virus infection. The individual CD28 ligand, CD80, is important for some lung immune responses and cannot always be compensated for by CD86.  相似文献   

9.
The CTLA4 receptor (CD152) on activated T lymphocytes binds B7 molecules (CD80 and CD86) on APC and delivers a signal that inhibits T cell proliferation. Several regions involved in binding to B7 are known, but the relative importance of these is not clear. We have cloned porcine CTLA4 (pCTLA4). Although highly homologous to human CTLA4 (hCTLA4), the predicted protein sequence contains a leucine for methionine substitution at position 97 in the MYPPPY sequence. A fusion protein constructed from the extracellular regions of pCTLA4 and the constant regions of human IgG1 (pCTLA4-Ig) bound porcine CD86 with equivalent affinity to that of hCTLA4-Ig. However, pCTLA4-Ig bound poorly to human CD80 and CD86 expressed on transfectants and EBV-transformed human B cells. In functional assays with MHC class II-expressing porcine endothelial cells and human B cells, pCTLA4-Ig blocked human CD4+ T cell responses to pig but not human cells, whereas control hCTLA4-Ig inhibited responses to both. Comparison between mouse, human, and porcine CTLA4-Ig suggests that the selective binding of pCTLA4-Ig to porcine CD86 molecules is due to the L for M substitution at position 97. Our results indicate that pCTLA4-Ig may be a useful reagent to define the precise nature of the interaction between B7 and CTLA4. By failing to inhibit the delivery of costimulatory signals provided by human B7, it may also prove to be a relatively specific inhibitor of the direct human T cell response to immunogenic pig tissue.  相似文献   

10.
In addition to TCR-derived signals, costimulatory signals derived from stimulation of the CD28 molecule by its natural ligand, B7, have been shown to be required for CD4+8- T cell activation. We investigate the ability of B7 to provide costimulatory signals necessary to drive proliferation and differentiation of virgin CD4-8+ T-cells that express a transgenic TCR specific for the male (H-Y) Ag presented by H-2Db class I MHC molecules. Virgin male-specific CD4-8+ T cells can be activated either with B7 transfected chinese hamster ovary (CHO) cells and T3.70, a mAb specific for the transgenic TCR-alpha chain that is associated with male-reactivity, or by male dendritic cells (DC). Activated CD4-8+ T cells proliferated in the absence of exogenously added IL-2. IL-2 activity was detected in supernatants of CD4-8+T3.70+ cells that were stimulated with T3.70 and B7+CHO cells. The response of CD4-8+T3.70+ cells to T3.70/B7+CHO or to male DC stimulation were inhibited by CTLA4Ig, a fusion protein comprising the extracellular portion of CTLA4 and human IgG C gamma 1. It has been previously shown that CTLA4Ig binds B7 with high affinity. Staining with CTLA4Ig revealed that DC express about 50 times more B7 than CD4-8+ T cells. CTLA4Ig also specifically blocked the proliferation of male-reactive cells in vivo. We have also used an in vitro deletion assay whereby immature CD4+8+ thymocytes expressing the transgenic male-specific TCR are deleted by overnight incubation with either immobilized T3.70 or male DC to investigate the participation of the CD28/B7 pathway in the negative selection of immature thymocytes. Staining with B7Ig established that both immature murine CD4+8+ and mature CD4-8+ thymocytes express a high level of CD28. However, despite the high expression of CD28 on CD4+8+ thymocytes, it was found that deletion of CD4+8+ thymocytes expressing the male-specific TCR by the T3.70 mAb was not inhibited by B7+CHO cells. Furthermore, the deletion of these thymocytes by DC also was not inhibited by CTLA4Ig. These findings provide evidence that although signaling through CD28 can costimulate a primary anti-male response in mature CD4-8+ T cells, the CD28/B7 pathway does not appear to participate in the negative selection of immature CD4+8+ thymocytes.  相似文献   

11.
The use of mAbs to abrogate costimulatory interactions has attracted much attention with regard to prevention and modulation of adverse (auto)immune-like reactions. However, the role of costimulatory molecules and possible therapeutic use of Ab-treatment in drug-induced immunostimulation is poorly elucidated. In the present studies, we show that CD28/CTLA-4-CD80/CD86 costimulatory interactions differently regulate drug-induced type 1 and type 2 responses to an identical bystander Ag, TNP-OVA, in BALB/c mice using the reporter Ag popliteal lymph node assay. The antirheumatic drug D-Penicillamine, which may induce lupus-like side-effects, stimulated type 2 responses against TNP-OVA, characterized by the production of IL-4 and TNP-specific IgG1 and IgE. These responses were abrogated in CD80/CD86-deficient mice and in wild-type mice that were treated with anti-CD80 and anti-CD86, or CTLA-4-Ig. Anti-CTLA-4 intensively enhanced the D-Penicillamine-induced effects. In contrast, the type 1 response (IFN-gamma, TNF-alpha, IgG2a) to TNP-OVA induced by the diabetogen streptozotocin still developed in the absence of CD80/CD86 costimulatory signaling. In addition, it was demonstrated that coadministration of anti-CD80 and anti-CD86 mAbs slightly enhanced streptozotocin-induced type 1 responses, whereas the CTLA-4-Ig fusion protein completely abrogated this response. In conclusion, different drugs may stimulate distinct types of immune responses against an identical bystander Ag, which are completely dependent on (type 2) or independent of (type 1) the CD28/CTLA-4-CD80/CD86 pathway. Importantly, the effects of treatment with anti-CD80/CD86 mAbs and CTLA-4-Ig may be considerably different in responses induced by distinct drugs.  相似文献   

12.
Valpha14 NKT cells produce large amounts of IFN-gamma and IL-4 upon recognition of their specific ligand alpha-galactosylceramide (alpha-GalCer) by their invariant TCR. We show here that NKT cells constitutively express CD28, and that blockade of CD28-CD80/CD86 interactions by anti-CD80 and anti-CD86 mAbs inhibits the alpha-GalCer-induced IFN-gamma and IL-4 production by splenic Valpha14 NKT cells. On the other, the blockade of CD40-CD154 interactions by anti-CD154 mAb inhibited alpha-GalCer-induced IFN-gamma production, but not IL-4 production. Consistent with these findings, CD28-deficient mice showed impaired IFN-gamma and IL-4 production in response to alpha-GalCer stimulation in vitro and in vivo, whereas production of IFN-gamma but not IL-4 was impaired in CD40-deficient mice. Moreover, alpha-GalCer-induced Th1-type responses, represented by enhanced cytotoxic activity of splenic or hepatic mononuclear cells and antimetastatic effect, were impaired in both CD28-deficient mice and CD40-deficient mice. In contrast, alpha-GalCer-induced Th2-type responses, represented by serum IgE and IgG1 elevation, were impaired in the absence of the CD28 costimulatory pathway but not in the absence of the CD40 costimulatory pathway. These results indicate that CD28-CD80/CD86 and CD40-CD154 costimulatory pathways differentially contribute to the regulation of Th1 and Th2 functions of Valpha14 NKT cells in vivo.  相似文献   

13.
The CTLA4-Ig fusion proteins abatacept and belatacept are clinically proven immunosuppressants used for rheumatoid arthritis and renal transplant, respectively. Given that both biologics are typically administered chronically by infusion, a need exists for a next-generation CTLA4-Ig with more convenient dosing. We used structure-based protein engineering to optimize the affinity of existing CTLA4-Ig therapeutics for the ligands CD80 and CD86, and for the neonatal Fc receptor, FcRn. From a rationally designed library, we identified four substitutions that enhanced binding to human CD80 and CD86. Coupled with two IgG1 Fc substitutions that enhanced binding to human FcRn, these changes comprise the novel CTLA4-Ig fusion protein, XPro9523. Compared with abatacept, XPro9523 demonstrated 5.9-fold, 23-fold, and 12-fold increased binding to CD80, CD86, and FcRn, respectively; compared with belatacept, CD80, CD86, and FcRn binding increased 1.5-fold, 7.7-fold, and 11-fold, respectively. XPro9523 and belatacept suppressed human T cell proliferation and IL-2 production more potently than abatacept. XPro9523 also suppressed inflammation in the mouse collagen-induced arthritis model. In cynomolgus monkeys, XPro9523 saturated CD80 and CD86 more effectively than abatacept and belatacept, potently inhibited IgM and IgG immunization responses, and demonstrated longer half-life. Pharmacokinetic modeling of its increased potency and persistence suggests that, in humans, XPro9523 may demonstrate superior efficacy and dosing convenience compared with abatacept and belatacept.  相似文献   

14.
Antiviral immune responses in CTLA4 transgenic mice.   总被引:3,自引:2,他引:1       下载免费PDF全文
The role of B7 binding CD28 in the regulation of T- and B-cell responses against viral antigens was assessed in transgenic mice expressing soluble CTLA4-Hgamma1 (CTLA4-Ig tg mice) that blocks B7-CD28 interactions. The results indicate that transgenic soluble CTLA4 does not significantly alter cytotoxic T-cell responses against replicating lymphocytic choriomeningitis virus (LCMV) or vaccinia virus but drastically impairs the induction of cytotoxic T-cell responses against abortively replicating vesicular stomatitis virus (VSV). While the T-independent neutralizing immunoglobulin M (IgM) responses were within normal ranges, the switch to IgG was reduced 4- to 16-fold after immunization with abortively replicating VSV and more than 30-fold after immunization with an inert VSV glycoprotein antigen in transgenic mice. IgG antibody responses to LCMV, as detected by enzyme-linked immunosorbent assay and by neutralizing action, were reduced about 3- to 20-fold and more than 50-fold, respectively. These results suggest that responses in CTLA4-Ig tg mice are mounted according to their independence of T help. While immune responses to nonreplicating or poorly replicating antigens are in general most dependent on T help and B7-CD28 interactions, they are most impaired in CTLA4-Ig tg mice. The results of the present experiments also indicate that highly replicating viruses, because of greater quantities of available antigens and by inducing as-yet-undefined factors and/or cell surface changes, are capable of compensating for the decrease in T help caused by the blocking effects of soluble CTLA4.  相似文献   

15.
Blocking the CD28/B7 and/or CD154/CD40 costimulatory pathways promotes long-term allograft survival in many transplant models where CD4(+) T cells are necessary for rejection. When CD8(+) T cells are sufficient to mediate rejection, these approaches fail, resulting in costimulation blockade-resistant rejection. To address this problem we examined the role of lymphotoxin-related molecules in CD8(+) T cell-mediated rejection of murine intestinal allografts. Targeting membrane lymphotoxin by means of a fusion protein, mAb, or genetic mutation inhibited rejection of intestinal allografts by CD8(+) T cells. This effect was associated with decreased monokine induced by IFN-gamma (Mig) and secondary lymphoid chemokine (SLC) gene expression within allografts and spleens respectively. Blocking membrane lymphotoxin did not inhibit rejection mediated by CD4(+) T cells. Combining disruption of membrane lymphotoxin and treatment with CTLA4-Ig inhibited rejection in wild-type mice. These data demonstrate that membrane lymphotoxin is an important regulatory molecule for CD8(+) T cells mediating rejection and suggest a strategy to avoid costimulation blockade-resistant rejection.  相似文献   

16.
We previously showed that CD28 is expressed on human peripheral blood neutrophils and plays an important role in CXCR-1 expression and IL-8-induced neutrophil migration. In this work we demonstrate that Leishmania major infection of macrophages results in parasite dose-dependent IL-8 secretion in vitro and in IL-8-directed neutrophil migration, as blocked by both anti-IL-8 and anti-IL-8R Abs, toward the L. major-infected macrophages. In the neutrophil-macrophage cocultures, both CTLA4-Ig, a fusion protein that blocks CD28-CD80/CD86 interaction, and a neutralizing anti-IFN-gamma Ab inhibit the anti-leishmanial function of neutrophils, suggesting that the neutrophil-macrophage interaction via CD28-CD80/CD86 plays an important role in the IFN-gamma-dependent restriction of the parasite growth. Cross-linking of neutrophil-expressed CD28 by monoclonal anti-CD28 Ab or B7.1-Ig or B7.2-Ig results in phosphatidylinositol 3-kinase association with CD28 and in wortmannin-sensitive but cyclosporin A-resistant induction and secretion of IFN-gamma. Whereas the neutrophils secrete IFN-gamma with CD28 signal alone, the T cells do not secrete the cytokine in detectable amounts with the same signal. Thus, neutrophil-expressed CD28 modulates not only the granulocyte migration but also induction and secretion of IFN-gamma at the site of infection where it migrates from the circulation.  相似文献   

17.
《Seminars in Virology》1996,7(2):103-111
Costimulation plays a pivotal role in T-cell activation, since engagement of the T-cell receptor in the absence of costimulatory signals can lead to T-cell anergy. The B7-CD28/CTLA4 costimulatory pathway can provide a potent costimulatory signal. This article focuses on the B7-CD28/CTLA4 pathway, reviewing aspects of costimulation relevant to the development of anti-viral immune responses and summarizing vaccination strategies employing costimulatory molecules. In addition, this article discusses the importance of regulated expression of costimulatory molecules and describes how viruses can modulate the expression of costimulatory molecules, which may contribute to immune dysfunction.  相似文献   

18.
T cell proliferation and cytokine production usually require stimulation via both the TCR/CD3 complex and the CD28 costimulatory receptor. Using purified human CD4+ peripheral blood T cells, we show that CD28 stimulation alone activates p38 alpha mitogen-activated protein kinase (p38 alpha). Cell proliferation induced by CD28 stimulation alone, a response attributed to CD4+CD45RO+ memory T cells, was blocked by the highly specific p38 inhibitors SB 203580 (IC50 = 10-80 nM) and RWJ 67657 (IC50 = 0.5-4 nM). In contrast, proliferation induced by anti-CD3 plus anti-CD28 mAbs was not blocked. Inhibitors of p38 also blocked CD4+ T cell production of IL-4 (SB 203580 IC50 = 20-100 nM), but not IL-2, in response to CD3 and CD28 stimulation. IL-5, TNF-alpha, and IFN-gamma production were also inhibited, but to a lesser degree than IL-4. IL-4 production was attributed to CD4+CD45RO+ T cells, and its induction was suppressed by p38 inhibitors at the mRNA level. In polarized Th1 and Th2 cell lines, SB 203580 strongly inhibited IL-4 production by Th2 cells (IC50 = 10-80 nM), but only partially inhibited IFN-gamma and IL-2 production by Th1 cells (<50% inhibition at 1 microM). In both Th1 and Th2 cells, CD28 signaling activated p38 alpha and was required for cytokine production. These results show that p38 alpha plays an important role in some, but not all, CD28-dependent cellular responses. Its preferential involvement in IL-4 production by CD4+CD45RO+ T cells and Th2 effector cells suggests that p38 alpha may be important in the generation of Th2-type responses in humans.  相似文献   

19.
Immunosuppression by UV light contributes significantly to the induction of skin cancer by suppressing the cell-mediated immune responses which control the development of carcinogenesis. The B7/CD28-CTLA-4 signaling pathway provides costimulatory signals essential for Ag-specific T cell activation. To investigate the role of this pathway in photocarcinogenesis, we utilized transgenic (Tg) mice which constitutively express CTLA-4Ig, a high-affinity CD28/CTLA-4 antagonist that binds to both B7-1 and B7-2. The transgene is driven by a skin-specific promoter yielding high levels of CTLA-4Ig in the skin and serum. Chronic UV exposure of CTLA-4Ig Tg mice resulted in significantly reduced numbers of skin tumors, when compared to control mice. In addition, Tg mice were resistant to UV-induced suppression of delayed-type hypersensitivity responses to alloantigens. Most importantly, upon stimulation with mitogens and alloantigens, T cells isolated from CTLA-4Ig Tg mice produced significantly less IL-4 but more IFN-gamma compared to control T cells, suggesting an impaired Th2 response and a relative increase of Th1-type immunity. Together, these data show that overall B7 engagement directs immune responses toward the Th2 pathway. Moreover, they point out the crucial role of Th1 immune reactions in the protection against photocarcinogenesis.  相似文献   

20.

Introduction

Cytotoxic T-lymphocyte antigen 4 (CTLA-4) is a key negative costimulatory molecule that displays a wide range of anti-inflammatory properties and is currently approved to treat rheumatoid arthritis as a recombinant fusion protein (CTLA4IgG). To better understand the role of CTLA4IgG in primary Sjögren's syndrome (pSS), we generated a recombinant adeno-associated virus vector serotype 2 (AAV2) expressing a chimera of mouse CTLA-4 fused with a human immunoglobulin (AAV2-CTLA4IgG) and observed the effect of this molecule in C57BL/6.NOD-Aec1Aec2 mice, an animal model of pSS.

Methods

A recombinant adeno-associated virus-2 (AAV-2) vector was constructed encoding a CTLA4IgG fusion protein. The AAV2-CTLA4IgG vector and an AAV2 control vector encoding beta galactosidase (LacZ) were administered by retrograde cannulation of the submandibular glands of C57BL/6.NOD-Aec1Aec2 mice. Protein expression was measured by ELISA and salivary glands were assessed for inflammation and activity.

Results

Recombinant CTLA4IgG blocked B7 expression on macrophages in vitro. In vivo, localized expression of CTLA4IgG in the salivary glands of C57BL/6.NOD-Aec1Aec2 mice inhibited the loss of salivary gland activity and decreased T and B cell infiltration as well as dendritic cells and macrophages in the glands compared with control mice. In addition a decrease in several proinflammatory cytokines and an increase in transforming growth factor beta-1 (TGF-β1) expression were also observed.

Conclusions

These data suggest expression of CTLA4IgG in the salivary gland can decrease the inflammation and improve the xerostomia reported in these mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号