首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Acetate kinase, a member of the acetate and sugar kinase-Hsp70-actin (ASKHA) enzyme superfamily1-5, is responsible for the reversible phosphorylation of acetate to acetyl phosphate utilizing ATP as a substrate. Acetate kinases are ubiquitous in the Bacteria, found in one genus of Archaea, and are also present in microbes of the Eukarya6. The most well characterized acetate kinase is that from the methane-producing archaeon Methanosarcina thermophila7-14. An acetate kinase which can only utilize PPi but not ATP in the acetyl phosphate-forming direction has been isolated from Entamoeba histolytica, the causative agent of amoebic dysentery, and has thus far only been found in this genus15,16.In the direction of acetyl phosphate formation, acetate kinase activity is typically measured using the hydroxamate assay, first described by Lipmann17-20, a coupled assay in which conversion of ATP to ADP is coupled to oxidation of NADH to NAD+ by the enzymes pyruvate kinase and lactate dehydrogenase21,22, or an assay measuring release of inorganic phosphate after reaction of the acetyl phosphate product with hydroxylamine23. Activity in the opposite, acetate-forming direction is measured by coupling ATP formation from ADP to the reduction of NADP+ to NADPH by the enzymes hexokinase and glucose 6-phosphate dehydrogenase24.Here we describe a method for the detection of acetate kinase activity in the direction of acetate formation that does not require coupling enzymes, but is instead based on direct determination of acetyl phosphate consumption. After the enzymatic reaction, remaining acetyl phosphate is converted to a ferric hydroxamate complex that can be measured spectrophotometrically, as for the hydroxamate assay. Thus, unlike the standard coupled assay for this direction that is dependent on the production of ATP from ADP, this direct assay can be used for acetate kinases that produce ATP or PPi.  相似文献   

2.
Acetate kinase (ACK) catalyzes the reversible synthesis of acetyl phosphate by transfer of the γ-phosphate of ATP to acetate. Here we report the first biochemical and kinetic characterization of a eukaryotic ACK, that from the protist Entamoeba histolytica. Our characterization revealed that this protist ACK is the only known member of the ASKHA structural superfamily, which includes acetate kinase, hexokinase, and other sugar kinases, to utilize inorganic pyrophosphate (PPi)/inorganic phosphate (Pi) as the sole phosphoryl donor/acceptor. Detection of ACK activity in E. histolytica cell extracts in the direction of acetate/PPi formation but not in the direction of acetyl phosphate/Pi formation suggests that the physiological direction of the reaction is toward acetate/PPi production. Kinetic parameters determined for each direction of the reaction are consistent with this observation. The E. histolytica PPi-forming ACK follows a sequential mechanism, supporting a direct in-line phosphoryl transfer mechanism as previously reported for the well-characterized Methanosarcina thermophila ATP-dependent ACK. Characterizations of enzyme variants altered in the putative acetate/acetyl phosphate binding pocket suggested that acetyl phosphate binding is not mediated solely through a hydrophobic interaction but also through the phosphoryl group, as for the M. thermophila ACK. However, there are key differences in the roles of certain active site residues between the two enzymes. The absence of known ACK partner enzymes raises the possibility that ACK is part of a novel pathway in Entamoeba.  相似文献   

3.
Acetate kinase catalyzes the reversible phosphorylation of acetate (CH3COO + ATPCH3CO2PO32− + ADP). A mechanism which involves a covalent phosphoryl-enzyme intermediate has been proposed, and chemical modification studies of the enzyme from Escherichia coli indicate an unspecified glutamate residue is phosphorylated (J. A. Todhunter and D. L. Purich, Biochem. Biophys. Res. Commun. 60:273–280, 1974). Alignment of the amino acid sequences for the acetate kinases from E. coli (Bacteria domain), Methanosarcina thermophila (Archaea domain), and four other phylogenetically divergent microbes revealed high identity which included five glutamates. These glutamates were replaced in the M. thermophila enzyme to determine if any are essential for catalysis. The histidine-tagged altered enzymes were produced in E. coli and purified to electrophoretic homogeneity by metal affinity chromatography. Replacements of E384 resulted in either undetectable or extremely low kinase activity, suggesting E384 is essential for catalysis which supports the proposed mechanism. Replacement of E385 influenced the Km values for acetate and ATP with only moderate decreases in kcat, which suggests that this residue is involved in substrate binding but not catalysis. The unaltered acetate kinase was not inactivated by N-ethylmaleimide; however, replacement of E385 with cysteine conferred sensitivity to N-ethylmaleimide which was prevented by preincubation with acetate, acetyl phosphate, ATP, or ADP, suggesting that E385 is located near the active site. Replacement of E97 decreased the Km value for acetate but not ATP, suggesting this residue is involved in binding acetate. Replacement of either E32 or E334 had no significant effects on the kinetic constants, which indicates that neither residue is essential for catalysis or significantly influences the binding of acetate or ATP.  相似文献   

4.
Acetate kinase catalyzes the reversible magnesium-dependent phosphoryl transfer from ATP to acetate to form acetyl phosphate and ADP. Here, we report functional and some structural properties of cold-adapted psychrotrophic enzyme; acetate kinase with those from mesophilic counterpart in Escherichia coli K-12. Recombinant acetate kinase from Shewanella sp. AS-11 (SAK) and E. coli K-12 (EAK) were purified to homogeneity following affinity chromatography and followed by Super Q column chromatography as reported before [44]. Both purified enzymes are shared some of the common properties such as (similar molecular mass, amino acid sequence and similar optimum pH), but characterized shift in the apparent optimum temperature of specific activity to lower temperature as well as by a lower thermal stability compared with EAK. The functional comparisons reveal that SAK is a cold adapted enzyme, having a higher affinity to acetate than EAK. In the acetyl phosphate and ADP-forming direction, the catalytic efficiency (k cat/K m) for acetate was 8.0 times higher for SAK than EAK at 10 °C. The activity ratio of SAK to EAK was increased with decreasing temperature in both of the forward and backward reactions. Furthermore, the activation energy, enthalpy and entropy in both reaction directions that catalyzed by SAK were lower than those catalyzed by EAK. The model structure of SAK showed the significantly reduced numbers of salt bridges and cation-pi interactions as compared with EAK. These results suggest that weakening of intramolecular electrostatic interactions of SAK is involved in a more flexible structure which is likely to be responsible for its cold adaptation.  相似文献   

5.
An enzyme from Entamoeba histolytica catalyzes the formation of acetyl phosphate and orthophosphate from acetate and inorganic pyrophosphate (PPi), but it displays much greater activity in the direction of acetate formation. It has been purified 40-fold and separated from interfering enzyme activities by chromatography. Its reaction products have been quantitatively established. ATP cannot replace PPi as phosphoryl donor in the direction of acetyl phosphate formation nor will any common nucleoside diphosphate replace orthophosphate as phosphoryl acceptor in the direction of acetate formation. The trivial name proposed for the new enzyme is acetate kinase (PPi).  相似文献   

6.
Acetate kinases (ACKs) are members of the acetate and sugar kinase/hsp70/actin (ASKHA) superfamily and catalyze the reversible phosphorylation of acetate, with ADP/ATP the most common phosphoryl acceptor/donor. While prokaryotic ACKs have been the subject of extensive biochemical and structural characterization, there is a comparative paucity of information on eukaryotic ACKs, and prior to this report, no structure of an ACK of eukaryotic origin was available. We determined the structures of ACKs from the eukaryotic pathogens Entamoeba histolytica and Cryptococcus neoformans. Each active site is located at an interdomain interface, and the acetate and phosphate binding pockets display sequence and structural conservation with their prokaryotic counterparts. Interestingly, the E. histolytica ACK has previously been shown to be pyrophosphate (PPi)-dependent, and is the first ACK demonstrated to have this property. Examination of its structure demonstrates how subtle amino acid substitutions within the active site have converted cosubstrate specificity from ATP to PPi while retaining a similar backbone conformation. Differences in the angle between domains surrounding the active site suggest that interdomain movement may accompany catalysis. Taken together, these structures are consistent with the eukaryotic ACKs following a similar reaction mechanism as is proposed for the prokaryotic homologs.  相似文献   

7.
Acetate kinase (ACK) converts acetyl phosphate to acetate along with the generation of ATP in the pathway for mixed-acid fermentation in Lactococcus lactis. The reverse reaction yields acetyl phosphate for assimilation purposes. Remarkably, L. lactis has two ACK isozymes, and the corresponding genes are present in an operon. We purified both enzymes (AckA1 and AckA2) from L. lactis MG1363 and determined their oligomeric state, specific activities, and allosteric regulation. Both proteins form homodimeric complexes, as shown by size exclusion chromatography and static light-scattering measurements. The turnover number of AckA1 is about an order of magnitude higher than that of AckA2 for the reaction in either direction. The Km values for acetyl phosphate, ATP, and ADP are similar for both enzymes. However, AckA2 has a higher affinity for acetate than does AckA1, suggesting an important role under acetate-limiting conditions despite the lower activity. Fructose-1,6-bisphosphate, glyceraldehyde-3-phosphate, and phospho-enol-pyruvate inhibit the activities of AckA1 and AckA2 to different extents. The allosteric regulation of AckA1 and AckA2 and the pool sizes of the glycolytic intermediates are consistent with a switch from homolactic to mixed-acid fermentation upon slowing of the growth rate.  相似文献   

8.
The anaerobic hyperthermophilic archaea Desulfurococcus amylolyticus, Hyperthermus butylicus, Thermococcus celer, Pyrococcus woesei, the hyperthermophilic bacteria Thermotoga maritima and Clostridium thermohydrosulfuricum and the aerobic mesophilic archaeon Halobacterium saccharovorum were grown either on complex media, on sugars or on pyruvate as carbon and energy sources. During growth acetate was formed as fermentation product by all organisms. The enzymes involved in acetyl-CoA formation from pyruvate and in acetate formation from acetyl-CoA were investigated:
  1. Cell extracts of all species, both archaea and bacteria, catalyzed the coenzyme A-dependent oxidative decarboxylation of pyruvate with viologen dyes or with Clostridium pasteurianum ferredoxin as electron acceptors indicating a pyruvate: ferredoxin oxidoreductase to be operative in acetyl-CoA formation from pyruvate.
  2. Cell extracts of all archaeal species, both hyperthermophiles (D. amylolyticus, H. butylicus, T. celer, P. woesei) and the mesophile H. saccharovorum, contained an acetyl-CoA synthetase (ADP forming), which catalyzes both acetate formation from acetyl-CoA and ATP synthesis from ADP and phosphate (Pi): Acetyl-CoA+ADP+Pi?Acetate + ATP+CoA. Phosphate acetyltransferase and acetate kinase could not be detected.
  3. Cell extracts of the hyperthermophilic (eu)bacteria T. maritima and C. thermohydrosulfuricum contained phosphate acetyltransferase and acetate kinase rather than acetyl-CoA synthetase (ADP forming).
These data indicate that acetyl-CoA synthetase (ADP forming) represents a typical archaeal property rather than an enzyme specific for hyperthermophiles. It is proposed that in all acetate forming archaea the formation of acetate and of ATP from acetyl-CoA, ADP and Pi are catalyzed by acetyl-CoA synthetase (ADP forming), whereas in all acetate forming (eu)bacteria these reactions are catalyzed by two enzymes, phosphate acetyltransferase and acetate kinase.  相似文献   

9.
Acetate kinase (ATP: acetate phosphotransferase EC 2.7.2.1) has been purified from Clostridium thermoaceticum. The enzyme of a specific activity of 282 μmoles min-1 mg-1 appeared homogeneous as judged from Sephadex chromatography and sedimentation velocity. Polyacrylamide gel electrophoretic patterns at pH 9.0 and 9.5 showed heterogeneity. Velocity curves obtained with varying amount of acetate were of the Michaelis-Menten type with an apparent K m of 0.135 M. With varying amounts of ATP sigmoidal kinetic was observed (S0.5=1.64 mM), suggesting cooperative binding of this substrate. The enzyme had only moderate thermal stability with a temperature optimum of about 60°C and exhibited a broken line in an Arrhenius graph. From gel filtration a molecular weight of about 60 000 daltons was estimated for the enzyme. The S20w value was 6.0 S.  相似文献   

10.
11.
An accurate and rapid method for the assay of pyridoxine kinase in human erythrocytes has been developed. The procedure involves the separation of the radioactive product from the substrate with Dowex 50 resin in a test tube. Using the assay designed, we found that human red blood cells have a pyridoxine kinase activity of 1.381 nmole/min/g of hemoglobin (n = 25, SE = 0.051), and the enzyme has a Km of approximately 1.72 × 10?6m for pyridoxine. Pyridoxine phosphate was identified as the main product of the assay reaction catalyzed by human erythrocyte pyridoxine kinase in crude hemolysates.  相似文献   

12.
Summary The mechanism of activation by inorganic phosphate and ATP of cardiac muscle pyruvate kinase was studied with the aid of steady-state kinetics. The enzyme was purified to homogeneity to a final specific activity of 400 units/ mg (phosphate buffer, pH 7.6, 25 °C). At pH 7.6 the enzyme displays Michaelis-Menten kinetics with respect to both its substrates, phosphoenolpyruvate and ADP. Substrate kinetic constants are: app.Km(phosphoenolpyruvate) –0.04 mM, app.Km(ADP) =0.22 mM. Under the conditions used in the standard assay the specific activity is greatly enhanced by inorganic phosphate (50 mM) or ATP (2.5 mM). Each of these modifiers, acting separately, increases the Vmax without seriously affecting Michaelis constants and Hill coefficients. In the presence of both Pi and ATP, only a decrease in Vmax was observed.The kinetics of activation by inorganic phosphate of pyruvate kinase was examined. Studying the effect of varying concentrations of Pi on the initial rate we obtained a hyperbolic saturation curve with the app. Km(Pi) = 20 mM and Vmax = 167 units/ mg. The evidence is presented that inorganic phosphate is a substrate for a side reaction catalyzed by cardiac pyruvate kinase. It is shown that in the presence of pyruvate, inorganic phosphate and ATP in the assay system, Pi is incorporated into acid-labile products of this reaction, inorganic pyrophosphate being one of them.These findings indicate the existence of an alternative reaction catalyzed by pyruvate kinase by which energy may be stored in the form of inorganic pyrophosphate.Abbreviations PEP phosphoenolpyruvate - Pi inorganic phosphate - TEA triethanolamine - EDTA ethylenediaminetetraacetate  相似文献   

13.
Acetate kinase was isolated in highly purified form from Veillonella alcalescens through a combination of ammonium sulfate fractionation, DEAE-Sephadex column chromatography, and gel filtration. It had a specific activity about 60-fold that of crude extracts. Purity of the enzyme preparation was estimated to be 90% as judged by polyacrylamide gel electrophoresis. The molecular weights of the enzyme as determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis and by gel filtration were 43,000 and 66,000, respectively. Succinate was unnecessary for the activity of this enzyme. This result is markedly different from that reported previously (Bowman, C. M. et al., 1976, J. Biol. Chem. 251, 3117–3121). This may, however, be due to the difference in bacterial strains used. The enzyme reaction with propionate was equal to about two-thirds that of its reaction with acetate. Apparent Km values for ATP, acetate, ADP, and acetylphosphate were about 2, 30,0.3, and 1.2 mm, respectively. Phosphate donors, ATP, and acetylphosphate exhibited cooperativity while phosphate acceptors, ADP, acetate, and propionate did not. The enzyme had a broad pH optimum from 7.2 to 10, and required magnesium ions, whose optimal molar ratio to ATP was 1:1. The activity was inhibited by several SH-inhibitors, but not stimulated by free SH groups.  相似文献   

14.
Acetate kinase of Veillonella alcalescens has been shown to be highly regulated enzyme exhibiting two levels of control: the requirement for succinate as a heterotropic allosteric effector, and cooperative binding at the substrate level. Succinate addition was necessary for enzymatic activity in both the direction of acyl phosphate synthesis and that of ATP synthesis. Control at the substrate level was apparent in the cooperative binding (Hill coefficients of 2) of acetyl phosphate, ATP, and ADP. Typical Michaelis kinetic data were observed for succinate (Ka = 20 mM for acetyl phosphate synthesis, 0.4 mM for ATP synthesis), acetate, and propionate. The primary effect of succinate was to increase the apparent Vmax of the enzymatic reaction for the variable substrates, ATP, ADP, and acetyl phosphate. The results are interpreted as evidence that, as a heterotropic effector of the acetate kinase reaction, succinate may regulate levels of propionyl-CoA (produced from propionyl phosphate by action of phosphotransacetylase), a compound required for the conversion of succinate to propionate. Acetase kinase has been shown to be a probable dimeric protein composed of two subunits of molecular weight 44,000 each.  相似文献   

15.
Methods for coenzyme-linked spectrophotometric assays of activities of several enzymes associated with the energy-yielding metabolism of the predatory polychaete, Glycera alba (Müller), have been examined with respect to effects of methods of collection, preservation, and extraction of material, and the composition of assay reaction media on enzyme activities estimated on crude extracts of individual worms. Liquid nitrogen and Drikold (solid CO2) were equally effective for the preservation of specimens prior to the enzyme assays, and phosphate buffer (0.1 M, pH 7.5) was a generally useful extractant. Effects of reaction conditions on phosphofructokinase activities are detailed. This enzyme had an optimum pH of 8.25 and was inhibited by ATP at pH 6.9 but not at the pH optimum.Activities of phosphofructokinase, pyruvate kinase, malate dehydrogenase, α-glycerophosphate dehydrogenase, lactate dehydrogenase, phosphoenolpyruvate carboxykinase, citrate synthase, and glutamate dehydrogenase have been assayed in crude extracts of G. alba from four sampling stations at various distances from the source of discharge of organic effluent from a seaweed factory into Loch Creran in the west of Scotland. Mean phosphofructokinase activity and to a lesser extent, mean pyruvate kinase activity, were lowest in the group of G. alba collected from the location most affected by the organic input.The results are discussed in relation to the reliability of the enzyme assays, the enzyme activity profile of G. alba with respect to its ecology, and the development of a biochemical index of effects of organic pollution on this representative of the “pollution-sensitive” macrobenthic invertebrate species found in unpolluted or “moderately” polluted areas of the marine environment.  相似文献   

16.
We investigated the relationship between Escherichia coli flagellar expression and the regulation of acetyl phosphate synthesis and degradation. Using cells either wild type for acetyl phosphate metabolism or defective for phosphotransacetylase or acetate kinase, or both, we measured flagellar expression and the intracellular concentration of acetyl phosphate relative to growth phase and temperature. Under the conditions tested, we found that elevated levels of acetyl phosphate corresponded to inhibition of flagellar synthesis. To extend these observations, we measured the intracellular concentration of acetyl-CoA, the level of expression from the pta and ackA promoters, and the activities of phosphotransacetylase and acetate kinase derived from cell lysates. Relative to increasing culture density, acetyl-CoA levels and expression from both the pta and ackA promoters decreased. Relative to Increasing temperature, expression from the ackA promoter decreased and phosphotransacetylase activity increased. In contrast, temperature had little or no effect on either acetate kinase activity or expression from the pta promoter. We propose that cells regulate intracellular acetyl phosphate concentrations relative to growth phase and temperature by modulating the availability of acetyl-CoA, the expression of ackA, and the activity of phosphotransacetylase.  相似文献   

17.
Methanobacterium thermoautotrophicum growing on H2 plus CO2 as sole carbon and energy source was found to contain acetate thiokinase (Acetyl CoA synthetase; EC 6.2.1.1): Acetate+ATP+CoA Acetyl CoA+AMP+PPi. The apparent K m value for acetate was 40 M. Acetate kinase (EC 2.7.2.1) and phosphotransacetylase (EC 2.3.1.8) could not be detected. The specific activity of acetate thiokinase was high in cells grown with limited H2 and CO2 supply (approximately 100nmol/min · mg protein), it was low in exponentially grown cells (2 nmol/min·mg protein). This corresponded with the finding that cells growing linearly in the presence of acetate assimilated the monocarboxylic acid in high amounts (>10% of the cell carbon was derived from acetate), whereas exponentially growing cells did not (<1% of cell carbon was derived from acetate). These latter observations indicated that acetate thiokinase and free acetate are not involved in autotrophic CO2 fixation in M. thermoautotrophicum. The presence and some kinetic properties of succinate thiokinase (EC 6.2.1.5), adenylate kinase (EC 2.7.4.3), and inorganic pyrophosphatase (EC 3.6.1.1.) are also described.  相似文献   

18.
Nitrate reductase (NR) activity was measured in cell-free extracts from seven species of unicellular, marine algae. For most species Tris buffer was not a satisfactory assay buffer unless supplemented with phosphate. With some species (e.g. Brachiomonas submarina Bohlin, Nannochloropsis oculata Droop, Phaeodactylum tricomutum Bohlin) maximum NR activity required the addition of phosphate and flavin adenine dinucleotide (FAD) to assays; with extracts of P. tricornutum, the requirement for FAD increased after partial purification of extracts. Like phosphate, arsenate stimulated NR activity in extracts, but selenate, sulphate, and tungstate were less effective. Addition of manganese to partially purified extracts of P. tricomutum resulted in an inhibition of NR activity which was alleviated by phosphate or EDTA.  相似文献   

19.
The alternate procedures used in the tyrosine apodecarboxylase assays for pyridoxal 5'-phosphate were evaluated to determine optimal conditions. Two preparations of tyrosine apodecarboxylase from Streptococcus faecalis were used: a cell suspension and a partially purified cell-free form. The activity of the decarboxylase was measured in two different assays using [14C]tyrosine or [3H]tyrosine as substrate. The presence of serum proteins caused greater inhibition of the assay for serum pyridoxal phosphate using [14C]tyrosine as substrate than the assay with [3H]tyrosine. In contrast, addition of deproteinized serum extract did not appear to inhibit either assay. The rate of reconstitution of the apodecarboxylase in the cell suspension was at least four times slower than that of the cell-free enzyme. The rate of reconstitution of the cell-free enzyme was faster in acetate than in citrate buffer. Inorganic sulfate or phosphate, at normal plasma concentrations, did not alter either the reconstitution rate of tyrosine decarboxylase or the final activity obtained in the assays using either substrate. The tyrosine apodecarboxylase assay for pyridoxal phosphate can be optimized by using deproteinized sera or plasma and incubating the cell-free apoenzyme with the coenzyme in acetate buffer for a time sufficient to obtain maximum reconstitution.  相似文献   

20.
First-order kinetic constants under subsaturating conditions as well as Michaelis-Menten kinetic parameters have been determined with a wide range of substituted aryl phosphates hydrolyzed in the presence of acid phosphatases of bovine milk and potato. The results obtained suggest that decomposition of an enzyme-phosphate intermediate is rate controlling for both enzymatic reactions. However, while with the potato acid phosphatase no evidence of effects by the substrates on preceding steps in the reaction sequence was found, Km for the bovine milk enzyme was markedly affected by the nature of the phosphate hydrolyzed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号