首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A regular, well defined spermatogenic cycle was found in the Japanese quail by examining thin sections of isolated lengths of seminiferous tubules embedded in epoxy resin to resolve the structure of developing spermatids. The stages of the cycle initially were identified in studies using a preparatory method for fixation which separated adjacent cellular associations. The cycle was divided into 10 stages with relative frequencies (%) of Stages I to X respectively of: 11.9, 14.8, 24.1, 10.3, 8.2, 6.4, 9.4, 5.5, 3.8 and 5.4. The duration of one cycle was 2.69 +/- 0.08 days (mean +/- s.e.m.) as determined by intraventricular injection of [3H]thymidine and autoradiographic examination of the testes 1-4 days later. It was estimated that lifespans were 2.01 days for type B spermatogonia, 3.86 days for primary spermatocytes, 0.15 days for secondary spermatocytes, and 4.54 days for spermatids. The results suggest that the kinetics of spermatogenesis in the quail are fundamentally similar to the pattern in mammals.  相似文献   

2.
This is the first report in literature showing the length of the seminiferous epithelium cycle in goats. In the present study, the duration of spermatogenesis was estimated using intratesticular injections of tritiated thymidine. Animals were castrated at 4 h, 7 days, and 11 days after injections. The duration of each spermatogenic cycle in goats is 10.6 +/- 0.5 days (SEM). Considering that the total duration of spermatogenesis takes about 4.5 cycles of seminiferous epithelium, spermatogenesis was estimated to last 47.7 days. The approximate primary spermatocytes life span is 14.1 days, while spermiogenesis in goats lasts 14.9 days. Staging in goats was based on the tubular morphology, where 8 stages of the cycle are yielded for all species. The relative stage frequencies in goats, based on 400 seminiferous tubule cross sections for each animal were as follows: stage 1: 15.8 +/- 1.0%; stage 2: 12.8 +/- 0.5%; stage 3: 20.5 +/- 0.9%; stage 4: 10.7 +/- 0.7%; stage 5: 11.6 +/- 0.6%; stage 6: 9.3 +/- 1.1%; stage 7: 7.6 +/- 0.4%; stage 8: 11.7 +/- 0.6%. The pre-meiotic, meiotic and post-meiotic phases' relative frequencies were 49.1%, 10.7% and 40.2%, respectively. The duration of spermatogenesis in goats is very similar to that found in rams.  相似文献   

3.
Stage specific effect of single oral dose (500 mg/kg body wt) of ethylene glycol monomethyl ether (EGME) was characterised during one cycle of seminiferous epithelium in rats. Maximum peritubular membrane damage and germinal epithelial distortion were observed at stages IX-XII. Cell death occurred during conversion of zygotene to pachytene spermatocytes (stage XIII) and between dividing spermatocytes and step I spermatids (stage late XIII-XIV). Profound effect was noted during first meiotic division than during second meiotic division. Presence of multinucleated secondary spermatocytes indicated cytokinesis arrest. The spermatogenesis was delayed and consequently frequency of tubules at stages I-VIII was reduced by day 10. Many of the tubules were devoid of round spermatids on day 12. Possibly, EGME (or it's metabolite) distorted the barrier system at stages IX-XIV and damaged the cells mostly at stages XII-early XIV.  相似文献   

4.
Although capybara is the largest rodent in the world and largely distributed in Central and South America, there is no report in the literature concerning the cycle of seminiferous epithelium in this species. In the present study, the length of spermatogenic cycle was estimated using intratesticular injections of tritiated thymidine. Animals were sacrificed at 1 h, 8 days, and 17 days after injections. The duration of one spermatogenic cycle in capybaras is 11.9 +/- 0.1 days (SEM). Spermatogenesis was estimated to last 53.6 days, when considering that the total duration of spermatogenesis takes about 4.5 cycles of seminiferous epithelium. The approximate life span of primary spermatocytes is 19.1 days, while spermiogenesis lasts 16.7 days. Staging in capybaras was based on the spermatid nuclei shape and location of spermatids, named tubular morphology method, which consists of 8 stages in all species. The relative stage frequencies in capybaras, based on the analysis of approximately 200 cross sections of seminiferous tubule for each of the ten animals were as follow: stage 1: 14.0 +/- 1.5%; stage 2: 15.1 +/- 1.0%; stage 3: 15.7 +/- 1.1%; stage 4: 14.6 +/- 1.1%; stage 5: 8.7 +/- 0.7%; stage 6: 7.0 +/- 0.7%; stage 7: 9.4 +/- 0.9%; stage 8: 15.5 +/- 1.0%. The pre-meiotic, meiotic and post-meiotic phases relative frequencies were 44.8%, 14.6% and 40.6%, respectively. Compared to most rodents investigated so far, the duration of spermatogenesis in capybaras is relatively long.  相似文献   

5.
R. K. Rastogi    L. Iela    M. Di  Meglio  L. Di  Matteo  S. Minucci    I. Izzo-Vitiello   《Journal of Zoology》1983,201(4):515-525
Spermatogenesis in Rana esculenta is initiated during metamorphic climax and mature spermatozoa are present in froglets 45 days old. Cytological analysis of cell populations shows that some of the primary spermatogonia may lie dormant for brief intervals of time. Timing analysis of the process of spermatogenesis, in adults and in developing Frog larvae maintained at approximately 18°C, was investigated by different methods. The results are remarkably similar. Although perfect synchrony of the developing cells within a single germinal cyst is not the rule, a uniform rate of advancement of germinal cysts of the same stage of development, in most of the seminiferous tubules of a testis is evident. The duration of the secondary spermatogonial divisions is five to six days, involving five or six mitotic cycles, each cycle lasting approximately 24 h. The premeiotic S-phase, and phases of leptotene, zygotene, pachytene, diplotene+secondary spermatocytes, and spermiogenesis each have a duration, respectively, of six, two, six, twelve, two and seven days. The duration of spermatogenesis, from a "committed" primary spermatogonium to the formation of spermatozoa is 41 days.  相似文献   

6.
Expression of mRNAs in the rat testis encoding cyclic AMP (cAMP)-dependent protein kinases (PKAs) was studied. A microdissection method was used to isolate 10 pools of seminiferous tubules representing various stages of the cycle of the seminiferous epithelium in combination with Northern blots and in situ hybridization. The results showed a differential expression of the four isoforms of the regulatory subunits (PKA-R) at various stages of the cycle. RI alpha mRNA was detected at approximately the same levels at all stages while expression of RI beta mRNA was low at stages XIII-III, started to increase at stages IV-V, and reached a maximum at stages VIII-XI. The level of RII alpha mRNA was low at stages II-VI, increased markedly at stage VIIa,b, and reached maximal levels at stages VIIc,d and VIII, followed by a reduced expression at later stages, RII beta mRNA levels increased significantly at stage VI with maximal levels at stages VII and VIII. In situ hybridization of sections from the adult rat testis revealed RI alpha mRNA in the layers of pachytene spermatocytes and round spermatids of all stages. RI beta mRNA was detected over late pachytene spermatocytes and round spermatids of stages VII-XIII. RII alpha mRNA was seen in the layers of round spermatids of stages VII-VIII and elongating spermatids of later stages while RII beta mRNA was detected only in the round spermatid region of stages VII-VIII and in some tubules of stages I-VI. These data show that mRNAs encoding PKA-R are expressed in a stage-specific manner in differentiating male germ cells with different patterns of expression for each subunit; this suggests specific roles for these protein kinases at different times of spermatogenesis.  相似文献   

7.
Studies of synchronization of spermatogenesis following vitamin A deficiency have suggested that this may provide an in vivo model for the study of stage-dependent changes in hormonal action and protein secretion within the seminiferous epithelium. However, until now, no information on the stability or durability of this condition has been available. In this study, 200 seminiferous tubules from each of 40 rats (including controls) were classified according to their spermatogenic stage after withdrawal and replenishment of vitamin A. Following 15 wk withdrawal and subsequent replenishment of vitamin A, spermatogenesis was initiated in a synchronous fashion. This synchrony remained stable for more than 10 cycles of the seminiferous epithelium (2.5 spermatogenic cycles). In association with the extended period of vitamin A deficiency, a proportion of tubules (30%) showed morphological characteristics of either Sertoli cells only or Sertoli cells plus spermatogonia with occasional pachytene spermatocytes. During the 11-wk period of observation in this study, no significant change in proportions of damaged tubules were observed. Testicular testosterone concentrations, although elevated with respect to controls, showed no correlation with the stage of the cycle of the seminiferous epithelium observed, whereas pituitary and serum follicle-stimulating hormone levels were elevated, probably due to the number of damaged tubules observed. The persistence of synchrony in spermatogenesis following vitamin A treatment suggests that this model is applicable for studies of paracrine actions within the testis. However, the decreased ratio of synchrony observed with time may provide evidence that duration of the individual stages of the cycle of the seminiferous epithelium might be subject to temporal variation, leading to a progressive desynchronization of spermatogenesis in this model system.  相似文献   

8.
The mule (Equus mulus mulus) is a sterile hybrid domestic animal that results from the breeding of a male donkey (Equus asinus) to a female horse (Equus caballus). Usually, spermatogenesis in mules does not advance beyond spermatocytes. In the present study, we performed a comparative and more accurate morphometric and functional investigation of the testis in donkeys and mules. Due to the smaller testis size, lower seminiferous tubule volume density, and fewer germ cells, the total length of seminiferous tubules in mules was significantly smaller than in donkeys. However, the percentage of seminiferous tubules containing germ cells (spermatogonia and spermatocytes) in mules was approximately 95%. The total number of Sertoli cells per testis observed in donkeys and mules was very similar. However, the total number of Leydig cells in mules was approximately 70% lower than in donkeys. At least in part, this difference was probably related to the lower number of germ cells present in mule seminiferous tubules. Although spermatogenesis in mules did not advance beyond secondary spermatocytes/newly formed round spermatids, germ cell associations in the seminiferous epithelium and pachytene spermatocytes nuclear volume in donkeys and mules were similar. The duration of spermatogenesis was estimated using intratesticular injections of tritiated thymidine. Each spermatogenic cycle in donkeys lasted 10.5 days. A similar value was found in mules ( approximately 10.1 days). Considering that the entire spermatogenic process takes approximately 4.5 cycles to be completed, its total duration in donkeys was estimated to last 47.2 days. The results found for mules suggest that the mechanisms involved in the determination of testis structure and function are probably originated from donkeys. Also, the data found for mules suggest that their seminiferous tubules are able to sustain complete spermatogenesis. In this regard, this species is a potential model for transplants of germ cells originated from donkeys and horses or other large animals.  相似文献   

9.
The present study investigates the relationship between the annual cycle of testicular development and external environment and the rate of spermatogenesis in the mosquitofish Gambusia affinis based on histological observations of testes. The annual reproductive cycle of the mosquitofish was divided into two periods, i.e., the spermatogenic period (May–October) and resting period (October–April). In the spermatogenic period, the transition from spermatogonia to spermatocytes begins and meiosis actively progresses. In the resting period, the transition from spermatogonia to spermatocytes ceases, meiosis of spermatocytes that already shifted by this period gradually progresses, and a considerable number of sperm balls are produced. Onset of spermatogenesis seems to be related to both a rise in water temperature and a prolonged photoperiod. 5-bromo-2-deoxyuridine (BrdU) was a useful in vivo marker of DNA synthesizing spermatogenic cells. The results of immunohistochemical detection of injected BrdU indicated that 5 days are needed for the conversion of spermatocytes to spermatids, 5 days for spermatids to spermatozoa, and 10 days for spermatozoa to sperm balls.  相似文献   

10.
The effect of vitamin A deficiency and vitamin A replacement on spermatogenesis was studied in mice. Breeding pairs of Cpb-N mice were given a vitamin A-deficient diet for at least 4 wk. The born male mice received the same diet and developed signs of vitamin A deficiency at the age of 14-16 wk. At that time, only Sertoli cells and A spermatogonia were present in the seminiferous epithelium. These spermatogonia were topographically arranged as single and paired cells and as clones of 4, 8 and more cells. A few mitoses of single, paired, and clones of 4 A spermatogonia were found, which were randomly distributed over the seminiferous epithelium. When vitamin A-deficient mice were treated with retinol-acetate combined with a normal vitamin A-containing diet, spermatogenesis restarted again synchronously. Only a few successive stages of the cycle of the seminiferous epithelium were present up to at least 43 days after vitamin A replacement. After 20 days, 98.3% of the seminiferous tubules were synchronized, showing pachytene spermatocytes as the most advanced cell type, mostly being in epithelium stages IX-XII. After 35 and 43 days, spermatogenesis was complete in 99.6% of the tubular cross sections, and most tubular cross sections were in stages IV-VII of the cycle of the seminiferous epithelium. The degree of synchronization was comparable or even higher than found in rats. The rate of development of the spermatogenic cells between 8 and 43 days after vitamin A replacement seemed to be similar to that in normal mice. Assuming that the rate of development of the spermatogenic cells is also normal during the first 8 days after vitamin A replacement, it can be deduced that the preleptotene spermatocytes, present after 8 days, were A spermatogonia in the beginning of stage VIII at the moment of vitamin A replacement. These results indicate that the mouse can be used as a model to study epithelial stage-dependent processes in the testis.  相似文献   

11.
Testis structure and spermatogenetic activity were studied in two Antarctic teleostean species, Chionodraco hamatus and Trematomus bernacchii, captured during the austral summer in the Ross Sea. The specimens of C. hamatus showed full reproductive activity but, the spermatogenetic cycle being over, only spermatogonia and Sertoli cells were present in the seminiferous tubules whereas the lumina were full of sperm. By contrast, the specimens of T. bernacchii were in the stage of spermatogenetical recrudescence, having not yet entered the reproductive period. In this species, the seminiferous tubules were devoid of lumen and full of spermatogonial cysts, showing some mitoses. Many tubules contained cysts of meiotic spermatocytes I and, in one case only, small cysts of spermatocytes II. The final stages of spermatogenesis were lacking, presumably occurring later, in autumn/winter. The immunocytochemical tests aimed at identifying bFGF and FGFR1 revealed a positive reaction both in Sertoli cells and spermatogonia in the C. hamatus specimens, indicating that this species was ready to start a new spermatogenetic cycle. The weak reaction in the specimens of T. bernacchii suggests that, in this species, the stage of cell division was over and that of meiosis and differentiation was starting. These data indicate that Antarctic fish have an opportunistic spermatogenetic cycle. Accepted: 24 October 1999  相似文献   

12.
Testis xenografting is both a promising tool to study spermatogenesis and a means to preserve the genetic information and reproductive potential of prepubertal male animals. The present study was conducted to evaluate this technique using testis tissue from domestic ferrets, an important biomedical model and a model for the conservation of small carnivore species. Fresh testis tissue from 8-wk-old ferrets was implanted ectopically under the skin on the backs of castrated nude mice and subsequently evaluated for testosterone production and establishment of spermatogenesis at 10, 20, 25, and 30 wk after xenografting. A total of 40% of fresh ferret xenografts were harvested. Seminal vesicles were collected from the recipient mice and weighed as an assay for bioactive testosterone. The weights of seminal vesicles from the mice showed no significant difference from those of uncastrated, control nude mice, indicating that the xenografts were producing physiologically relevant amounts of testosterone. The ferret testis xenografts produced differentiating germ cells and sperm at the same time as did testis from age-matched control ferrets. These data demonstrate the ability of Mustelidae testicular tissue to establish spermatogenesis in nude mice after testis xenografting.  相似文献   

13.
DNA replication occurs during S-phase in spermatogonia and preleptotene spermatocytes during spermatogenesis. 5-Bromo-2’-deoxyuridine (BrdU) is incorporated into synthesized DNA and is detectable in the nucleus by immunohistochemistry (IHC). To identify BrdU-labeled spermatogenic cells, the spermatogenic stages must be determined by visualizing acrosomes and detecting cell type-specific marker molecules in the seminiferous tubules. However, the antibody reaction with BrdU routinely requires denaturation of the DNA, which is achieved by pretreating tissue sections with hydrochloric acid; however, this commonly interferes with further histochemical approaches. Therefore, we examined optimal methods for pretreating paraffin sections of the mouse testis to detect incorporated BrdU by an antibody and, at the same time, visualize acrosomes with peanut agglutinin (PNA) or detect several marker molecules with antibodies. We found that the use of heat-induced antigen retrieval (HIAR), which consisted of heating at 95C in 20 mM Tris-HCl buffer (pH 9.0) for 15 min, was superior to the use of 2 N hydrochloric acid for 90 min at room temperature in terms of the quality of subsequent PNA-lectin histochemistry with double IHC for BrdU and an appropriate stage marker protein. With this method, we identified BrdU-labeled spermatogenic cells during mouse spermatogenesis as A1 spermatogonia through to preleptotene spermatocytes.  相似文献   

14.
The physiological apoptosis that occurs in immature testis appears to be necessary for the maturation of this tissue. Thus, inhibition of the early apoptotic wave associated with the first round of spermatogenesis is followed by accumulation of spermatogonia and infertility later in life. To identify the cell types undergoing apoptosis in immature rat testis and to characterize the relationship between this apoptosis and progression of the first wave of spermatogenesis, sequential viable segments of seminiferous tubules from 8-, 18-, and 26-day-old rats were examined under a phase-contrast microscope. One novel observation was the existence of pronounced stage-specificity during the peak of apoptosis at the very early postnatal ages of 18 and 26 days. Increased apoptosis of pachytene spermatocytes in stages VII-VIII was the major feature that distinguished immature spermatogenesis from the corresponding adult process. The frequency of apoptosis among type A spermatogonia in immature stages IX-I was also elevated in comparison to the corresponding mature stages. The age-related peak of apoptosis was mediated by caspase 3; furthermore, stage-dependent expression of Bax in midpachytene spermatocytes was observed in the 18- and 26-day-old testis. These observations suggest that this Bax-regulated, caspase 3-mediated, increased apoptosis of midpachytene spermatocytes during the first wave of immature spermatogenesis represents a major difference in comparison to apoptosis occurring in the mature testis, and it may play an important regulatory role in establishing spermatogenesis in the rat testis.  相似文献   

15.
After 20-day-old rats are placed on a vitamin-A-deficient diet (VAD) for a period of 10 weeks, the seminiferous tubules are found to contain only Sertoli cells and a small number of spermatogonia and spermatocytes. Retinol administration to VAD rats reinitiates spermatogenesis, but a stage-synchronization of the seminiferous epithelium throughout the testis of these rats is observed. In order to determine which cell type is responsible for this synchronization, the germ cell population has been analyzed in whole mounts of seminiferous tubules dissected from the testes of rats submitted to the following treatments. Twenty-day-old rats received a VAD diet for 10 weeks and then were divided into three groups of six rats. In group 1, all animals were sacrificed immediately; in group 2, the rats were injected once with retinol and sacrificed 3 hr later; in group 3, the rats were injected once with retinol, placed on a retinol-containing diet for 7 days and 3 hr, and then sacrificed. Three rats from each group had one testis injected with 3H-thymidine 3 hr (groups 1 and 2) or 7 days and 3 hr (group 3) before sacrifice. Three normal adult rats (approximately 100 days old) served as controls. Labeled and unlabeled germinal cells were mapped and scored in isolated seminiferous tubules. In group 1, type A1 and type A0 spermatogonia as well as some preleptotene spermatocytes were present; type A2, A3, A4, In, and B spermatogonia were completely eliminated from the testis. Neither type A1 mitotic figures nor 3H-thymidine-labeled-type A1 nuclei were seen.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
17.
Administration (ip) of FSH (10 IU/0.1 ml distilled water (dw)/lizard/alternate days/30 days) to adult male lizards, Mabuya carinata, during the early recrudescence phase of the reproductive cycle caused activation of spermatogenic and steroidogenic activity of the testis, as shown by a significant increase in mean number of spermatogonia, primary spermatocytes and spermatids, and serum levels of testosterone, as compared to initial controls. In addition, there were abundant spermatozoa in the lumen of the seminiferous tubules. Interestingly, administration of a similar dosage of FSH to lizards exposed to stressors (handling, chasing, and noise randomly applied, five times a day for 30 days) resulted in a significant increase in mean number of spermatogonia and primary spermatocytes over initial control values, whereas the number of secondary spermatocytes and spermatids and serum levels of testosterone did not significantly differ from those of initial controls, and were significantly lower than FSH treated normal lizards. Further, spermatozoa were infrequently found in the seminiferous tubules of these lizards. Treatment controls (receiving 0.1 ml dw/lizard/alternate days for 30 days) did not show significant variation in mean number of spermatogonia, spermatocytes and spermatids, and serum levels of testosterone from initial controls. Another group of lizards was exposed to stressors and did not receive FSH. These lizards showed a significant decrease in mean number of secondary spermatocytes compared to treatment controls and all other parameters did not significantly differ from those of both control groups. The results reveal that gonadotrophin-induced spermatogonial proliferation occurs under stressful conditions, whereas progress of spermatogenesis beyond primary spermatocyte stage is impaired due to inhibition (under stress) of gonadotrophin induced steroidogenic activity in M. carinata.  相似文献   

18.
Previous studies have established that vaccination of black-footed ferrets (Mustela nigripes) with F1-V fusion protein by subcutaneous (SC) injection protects the animals against plague upon injection of the bacterium Yersinia pestis. This study demonstrates that the F1-V antigen can also protect ferrets against plague contracted via ingestion of a Y. pestis-infected mouse, a probable route for natural infection. Eight black-footed ferret kits were vaccinated with F1-V protein by SC injection at approximately 60 days-of-age. A booster vaccination was administered 3 mo later via SC injection. Four additional ferret kits received placebos. The animals were challenged 6 wk after the boost by feeding each one a Y. pestis-infected mouse. All eight vaccinates survived challenge, while the four controls succumbed to plague within 3 days after exposure. To determine the duration of antibody postvaccination, 18 additional black-footed ferret kits were vaccinated and boosted with F1-V by SC injection at 60 and 120 days-of-age. High titers to both F1 and V (mean reciprocal titers of 18,552 and 99,862, respectively) were found in all vaccinates up to 2 yr postvaccination, whereas seven control animals remained antibody negative throughout the same time period.  相似文献   

19.
The ability of testicular steroids to maintain the quantitative aspects of spermatogenesis was compared with reference to their androgenic properties. Hypophysectomized rats were injected daily with 0.2 mg progesterone, 20 alpha-dihydroprogesterone, 3 beta-hydroxy-5 alpha-pregnan-20-one, testosterone or testosterone propionate for 30 days beginning 2 days after the operation. Testosterone propionate was the most potent steroid tested both in terms of its peripheral androgenic effects and its ability to prevent the post-operative decline in the weight of the testis and seminiferous tubules and the numbers of germ cells throughout their differentiation. The natural androgen, testosterone, exhibited weak gametogenic properties and only partly maintained the normal measures of spermatogenesis. Progesterone exhibited low intrinsic androgenic potency yet was significantly more effective than testosterone in maintaining spermatogenesis; it prevented the degeneration of spermatocytes during the later stages of meiotic prophase and the reduction divisions resulting in an increased yield of step 7 spermatids. Low androgenic and gametogenic properties were exhibited by 20 alpha-dihydroprogesterone and 3 beta-hydroxy-5 alpha-pregnan-20-one. These results may indicate that testosterone produced locally in the seminiferous tubules from progesterone is more effective in maintaining spermatogenesis than androgens entering from the circulation. Alternatively, progesterone may act more directly on the germ cells than previously envisaged.  相似文献   

20.
Apoptosis in testicular germ cells has been demonstrated in many mammalian species. However, little is known about the stallion (Equus caballus) and rates of apoptosis during spermatogenesis. Morphological and biochemical features of apoptosis reported in other species were used to confirm that the TdT-mediated dUTP Nick end labeling (TUNEL) assay is an acceptable method for identification and quantification of apoptotic germ cells in histological tissue sections from stallion testis. Seminiferous tubules from eight stallions with normal testis size and semen quality were evaluated according to stage of seminiferous epithelium to determine the germ cell types and stages where apoptosis most commonly occurs. Spermatogonia and spermatocytes were the most common germ cell types labeled by the TUNEL assay. A low rate of round and elongated spermatids were labeled by the TUNEL assay. Mean numbers of TUNEL-positive germ cells per 100 Sertoli cell nuclei were highest in stages IV (15.5 +/- 1.0) and V (13.5 +/- 1.1) of the seminiferous epithelial cycle (P < 0.001). An intermediate level of apoptosis was detected in stage VI (P < 0.02). These stages (IV-VI) correspond to meiotic divisions of primary spermatocytes and mitotic proliferation of B1 and B2 spermatogonia. Establishing basal levels of germ cell apoptosis is a critical step towards understanding fertility and the role of apoptosis in regulating germ cell numbers during spermatogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号