共查询到20条相似文献,搜索用时 171 毫秒
1.
H2 metabolism in the photosynthetic bacterium Rhodopseudomonas capsulata: H2 production by growing cultures. 总被引:26,自引:18,他引:8
下载免费PDF全文

Purple photosynthetic bacteria produce H2 from organic compounds by an anaerobic light-dependent electron transfer process in which nitrogenase functions as the terminal catalyst. It has been established that the H2-evolving function of nitrogenase is inhibited by N2 and ammonium salts, and is maximally expressed in cells growing photoheterotrophically with certain amino acids as sources of nitrogen. In the present studies with Rhodopseudomonas capsulata, nutritional factors affecting the rate and magnitude of H2 photoproduction in cultures growing with amino acid nitrogen sources were examined. The highest H2 yields and rates of formation were observed with the organic acids: lactate, pyruvate, malate, and succinate in media containing glutamate as the N source; under optimal conditions with excess lactate, H2 was produced at rates of ca. 130 ml/h per g(dry weight) of cells. Hydrogen production is significantly influenced by the N/C ratio in the growth substrates; when this ratio exceeds a critical value, free ammonia appears in the medium and H2 is not evolved. In the "standard" lactate + glutamate system, both H2 production and growth are "saturated" at a light intesity of ca. 600 ft-c (6,500 lux). Evolution of H2, however, occurs during growth at lithe intensities as low as 50 to 100 ft-c (540 to 1,080 lux), i.e., under conditions of energy limitation. In circumstances in which energy conversion rate and supplies of reducing power exceed the capacity of the biosynthetic machinery, energy-dependent H2 production presumably represents a regulatory device that facilitates "energy-idling." It appears that even when light intensity (energy) is limiting, a significant fraction of the available reducing power and adenosine 5'-triphosphate is diverted to nitrogenase, resulting in H2 formation and a bioenergetic burden to the cell. 相似文献
2.
Inorganic nitrogen assimilation by the photosynthetic bacterium Rhodopseudomonas capsulata. 总被引:2,自引:13,他引:2
下载免费PDF全文

The photosynthetic bacterium Rhodopseudomonas capsulata lacks glutamate dehydrogenase and normally uses the glutamine synthetase/glutamate synthase sequence of reactions for assimilation of N2 and ammonia. The glutamine synthetase in cell-free extracts of the organism is completely sedimented by centrifugation at 140,000 X g for 2 h, is inhibited by L-alanine but not by adenosine 5'-monophosphate, and exhibits two apparent Km values for ammonia (ca. 13 muM and 1 mM). 相似文献
3.
Growth of the photosynthetic bacterium Rhodopseudomonas capsulata chemoautotrophically in darkness with H2 as the energy source. 总被引:7,自引:5,他引:2
下载免费PDF全文

The phototrophic bacterium Rhodopseudomonas capsulata was found to be capable of growing chemoautotrophically under aerobic conditions in darkness. Growth was strictly dependent on the presence of H2 as the source of energy and reducing power, O2 as the terminal electron acceptor for energy transduction, and CO2 as the sole carbon source; under optimal conditions the generation time was about 6 h. Chemoautotrophically grown cells showed a relatively high content of bacteriochlorophyll a and intracytoplasmic membranes (chromatophores). Experiments with various mutants of R. capsulata, affected in electron transport, indicate that either of the two terminal oxidases of this bacterium can participate in the energy-yielding oxidation of H2. The ability of R. capsulata to multiply in at least five different physiological growth modes suggests that it is one of the most metabolically versatile procaryotes known. 相似文献
4.
5.
Membrane vesicles (heavy chromatophores) prepared from the photosynthetic bacteria Rhodopseudomonas capsulata catalyze photophosphorylation of exogenous ADP and also take up [3H]ADP from the external medium. The rate of uptake depends on the concentration of external ADP reaching half-maximal velocity at 2.7 mm. The rate increases also with the increase in the concentration of internal ADP. Vesicles, preloaded with [3H]ADP release the radioactive nucleotide when ADP is included in the external medium. Regular chromatophores, which are inside-out membrane vesicles also take up [3H]ADP from the external medium when preloaded with ADP. These results are interpreted to indicate the existence of nucleotide transport across the cytoplasmic membrane of these bacteria which is catalyzed by an ADP exchange carrier. 相似文献
6.
Regulation of nitrogenase in the photosynthetic bacterium Rhodopseudomonas capsulata as studied by two-dimensional gel electrophoresis. 总被引:1,自引:5,他引:1
By using two-dimensional electrophoresis, five putative soluble nif gene products were identified, and the regulation of nif gene expression in Rhodopseudomonas capsulata was investigated. Expression of nif was repressed by ammonia and atmospheric concentrations of oxygen. Deprivation of molybdenum caused an interesting pattern of partial repression of nif gene expression that was not relieved by tungsten. These results are discussed in relation to the better understood system of nif regulation in Klebsiella pneumoniae. 相似文献
7.
Purification and characterization of a catalase-peroxidase from the photosynthetic bacterium Rhodopseudomonas capsulata 总被引:6,自引:0,他引:6
Catalase-peroxidase was isolated from aerobically grown Rhodopseudomonas capsulata. The enzyme resembles typical catalases in some of its physicochemical properties. It has an apparent molecular weight of 236,000 and is composed of four identical subunits. It shows a typical high spin ferric heme spectrum with absorption maxima at 403 and 635 nm and shoulders at 503 and 535 nm. Upon binding of cyanide, the enzyme is converted to the low spin state, as shown by the shift of the Soret maximum to 418 nm and the band at 532 nm. It has an isoelectric point at pH 4.5. The enzyme differs from typical catalases in also having a strong peroxidatic activity with dianisidine, pyrogallol, and diaminobenzidine as electron donors. Both the catalatic and the peroxidatic activities are similarly inactivated by treatment with 1 mM H2O2, heating to 50 degrees C, exposure to ethanol/chloroform, and photooxidative conditions. In contrast to typical catalases, but similarly to peroxidases, the enzyme is reduced by sodium dithionite. The pH optimum of the peroxidatic activity is 5-5.3 (in contrast to 6-6.5 of the catalatic activity). 50% of the apparent maximal activities are reached at 0.3 and 4.2 mM H2O2 for the peroxidatic and catalatic activities, respectively. Both enzymic activities are equally inhibited by cyanide, 50% inhibition being achieved with 2.2 X 10(-5) M KCN. Contrarily, the two activities differ in their response to hydroxylamine and azide. 50% inhibition of the catalatic activity is obtained with 1.5 X 10(-4) M azide or 2.15 X 10(-6) M hydroxylamine; 50% inhibition of the peroxidatic activity requires 7.3 X 10(-4) M azide or 7.8 X 10(-5) M hydroxylamine. The activation energies of the catalatic and the peroxidatic activities are 1.9 and 1.7 kcal/mol, respectively. 相似文献
8.
By freeze-fracture electron microscopy, particles have been observed on the protoplasmic leaflet (PF face) of cytoplasmic and intracytoplasmic membranes of the photosynthetic bacterium Rhodopseudomonas capsulata. The particles are present under all culture conditions of chemotrophically and phototrophically grown cells. However, the number of particles per microM2 increased significantly when the formation of the photosynthetic apparatus in the membrane is induced. Intracytoplasmic membranes, where the bulk of photosynthetic activity is localized, always have a higher density of particles than cytoplasmic membranes. Under all conditions particles with a diameter of 9.5 nm dominate. The frequency of particles with diameters greater or smaller than 9.5 nm changed with culture conditions. A comparison of biochemical and electron microscopic data have lead us to the conclusion that the particles, formed under conditions which allow the synthesis of the photosynthetic apparatus, are composed of photochemical reaction centers and antenna light-harvesting bacteriochlorophyll I (B 875)-protein complexes. The total molecular weight of these particles is calculated to be 500,000. 相似文献
9.
10.
The glycerol-catabolizing enzymes of a mutant of Rhodopseudomonas capsulata were found to be constitutive and modulated coordinately, although apparently not functional in the presence of malate. No difference in glycerol permeation was found between the mutant and wild type. 相似文献
11.
Hydrogen production by Rhodopseudomonas capsulata cells entrapped in carrageenan beads 总被引:2,自引:0,他引:2
Summary The photosynthetic bacteria Rhodopseudomonas capsulata strain B10 were immobilized in agar or in carrageenan beads (Ø = 1–3 mm). Beads containing 5.8 mg cell dry weight/mL of gel produced hydrogen from lactate at a rate of 54 mL/h.g dry weight; the efficiency of H2 production by immobilized cells was comparable to that of free cells and was 60 to 65% that of the theoretical maximum from lactate. Carrageenan-entrapped cells produced H2 steadily over a 16-day period. 相似文献
12.
13.
Anaerobic and aerobic metabolism of diverse aromatic compounds by the photosynthetic bacterium Rhodopseudomonas palustris. 总被引:11,自引:7,他引:11
下载免费PDF全文

The purple nonsulfur photosynthetic bacterium Rhodopseudomonas palustris used diverse aromatic compounds for growth under anaerobic and aerobic conditions. Many phenolic, dihydroxylated, and methoxylated aromatic acids, as well as aromatic aldehydes and hydroaromatic acids, supported growth of strain CGA001 in both the presence and absence of oxygen. Some compounds were metabolized under only aerobic or under only anaerobic conditions. Two other strains, CGC023 and CGD052, had similar anaerobic substrate utilization patterns, but CGD052 was able to use a slightly larger number of compounds for growth. These results show that R. palustris is far more versatile in terms of aromatic degradation than had been previously demonstrated. A mutant (CGA033) blocked in aerobic aromatic metabolism remained wild type with respect to anaerobic degradative abilities, indicating that separate metabolic pathways mediate aerobic and anaerobic breakdown of diverse aromatics. Another mutant (CGA047) was unable to grow anaerobically on either benzoate or 4-hydroxybenzoate, and these compounds accumulated in growth media when cells were grown on more complex aromatic compounds. This indicates that R. palustris has two major anaerobic routes for aromatic ring fission, one that passes through benzoate and one that passes through 4-hydroxybenzoate. 相似文献
14.
Measurements of pronase-induced shifts of the absorption spectrum and of the isobestic point of the light-induced difference spectrum of the carotenoids show that the pool responsible for the light-induced absorption changes in Rhodopseudomonas capsulata wild type is more sensitive to pronase treatment than the bulk carotenoids. The most likely explanation for this, in the context of the work of Kakitani et al. (Kakitani, T., Honig, B. and Crofts, A.R. (1982) Biophys. J. 39, 57–63), is that the field indicating carotenoids, or at least that part of the molecules which determines their spectral characteristics, are imbedded in the LHC II pigment-protein complexes, close to the membrane surface. The importance of the location of the carotenoids for the measurement of the electrical potential differences is briefly discussed. 相似文献
15.
16.
17.
Oxidative degradation of purines by the faculative phototrophic bacterium Rhodopseudomonas capsulata
The mechanism of purine degradation was studied in the facultative phototrophic bacterium Rhodopseudomonas capsulata. Using tungstate as an inhibitor of synthesis of an active xanthine dehydrogenase it could be shown in growth experiments that purine compounds are transformed to uric acid as central purine intermediate prior to ring cleavage. Because of its rapid degradation, the mechanism of uric acid conversion was investigated using 1-methyluric acid as substrate. The analogue was partially degraded by whole cells yielding 3-methylallantoin and methylurea. This implicated an oxidative degradation of 1-methyluric acid analogous to oxidation of uric acid to allantoin suggesting uric acid degradation via allantoin. In cell-free extracts, allantoinase, allantoicase, ureidoglycolase and urease activities degrading allantoin to NH3, CO2 and glyoxylic acid were detected. Apparently, purine degradation in R. capsulata proceeds in a manner similar to many aerobic microorganisms. It is peculiar to this bacterium, however, that the pathway evidently operates also under anaerobic conditions. In cell extracts, oxidation of uric acid was observed which could be increased by addition of cytochrome c. The basis of this stimulation is still unknown. 相似文献
18.
19.
J P Jacquot B Maudinas P Gadal 《Biochemical and biophysical research communications》1979,91(4):1371-1376
Thioredoxin capable of activating NADP-Malate dehydrogenase from Spinach has been isolated from a cell free extract of Rhodopseudomonas capsulata. These activating factors, approximately 12,000 Daltons in molecular weight, were partially purified after thermal treatment by using gel filtration, ion-exchange and adsorption chromatographic techniques. The occurence of thioredoxin f activity, though more difficult to obtain, was also evidenced in these bacteria. The present results have been tentatively discussed by a comparison between the thioredoxinspresent in higher plants and bacterial fields. 相似文献