首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the process of regeneration the crab secretes an outer three-layered fibrous exoskeleton, consisting of outer thin parenchymatous vacuolated layer, an elastin layer, and a collagen layer. The origin and synthesis of these layers have been discussed. Similarly a two-layered inner cuticle is also secreted during the process of regeneration. Together with this, tissue differentiation takes place inside the growing limb bud. The rôles of the cells responsible for the secretion of the outer and inner cuticular layers have been discussed. Various histochemical tests have been employed to study the chemical nature of the cuticular layers, connective tissue cells, tegumental glands, and haemocytes. Two types of connective tissue cells and four types of haemocytes were identified. The rôles of the haemocytes, tegumental glands, and connective tissue cells in tissue differentiation are also discussed.  相似文献   

2.
The ovipositor of striped bitterling Acheilognathus yamatsutae was subjected to ultrastructure and histochemical analysis during spawning season using light and electron microscopy. Although the ovipositor of A. yamatsutae is a long cylindrical tube with smooth external surface, it was possible to confirm the presence of well-developed fingerprint structure using scanning electron microscopy. Internal aspect analysis of ovipositor revealed formation of 5–8 longitudinal folds. Cross section analysis revealed that the ovipositor is composed of an outer epithelial layer, a mid connective tissue layer, and an inner epithelial layer. The outer epithelial layer contains 7–9 cell layers composed mainly of epithelial and mucous cells. Result of AB–PAS (pH 2.5) and AF–AB reaction showed that mucous cells contained mainly acidic carboxylated mucosubstances. The connective tissue layer was loose and made mainly of collagen fibers and some muscle fibers, along with blood vessels and a small number of chromatophores. The inner epithelial layer, which is a single layer, is composed of columnar epithelia. Observation under transmission electron microscope enabled distinction of the outer epithelial layer into superficial, intermediate and basal layers. Although the types of cells in the superficial tissue layer were diverse, they all shared the development of glycocalyx covered microridges. The majority of epithelial cells in the intermediate layer were cuboidal shaped, while those in the basal layer were columnar. Two types (A and B) of secretory cells were observed in the outer epithelial layer. The connective tissue layer had two types of chromatophores including xantophore and melanophore, in addition to a well-developed nerve fiber bundles. Columnar epithelial cells, mitochondria-rich cells and rodlet cells were observed in the inner epithelial layer. Microvilli were well developed on the free surface of columnar epithelial cells.  相似文献   

3.
Serially stained uncalcified sections of young dog mandibles were examined to study the structure of the periodontal ligament of the erupting first right molar. The periodontal ligament around tooth crown presents three zones. The first, near the dental follicle, is a tick layer of parallel collagen bundles with numerous flattened fibroblasts. The second, intermediate, contains a blood vessels network, particularly veins and capillaries. The third, outer, is occupied by a continuous layer of osteoclasts and osteoblasts. Also the periodontal ligament around the tooth presents three layers, the outer and the intermediate rich of cells more than the inner. Particularly, the outer layer shows numerous osteoblasts surrounding the developing trabeculae of the alveolar bone and the collagen fiber bundles of the periodontal ligament. These penetrate into the trabeculae and appear similar to the osteoid layer. These results indicate that the alveolar bone increases by ossification of the connective tissue of the periodontal ligament.  相似文献   

4.
The four paired gill arches of the South American lungfish Lepidosiren paradoxa contain single branchial arteries directly connecting dorsal and ventral arteries. In gill arches 3 and 4 the branchial arteries also supply looped arlerioles and capillaries to much-reduced gill filaments. Regulation of blood between these routes is thought to be by alteration of vascular resistance. Within the filaments, extensive subepithelial capillary networks and numerous small pumps connect lymphatic vessels in the central connective tissue compartment with venules which, in turn, drain to paired branchial veins.
The features of the endothelium of many of the filament blood vessels suggest extensive transporting, haematolytic and granulopoeitic functions. Large numbers of macrophages pack the connective tissue. Many contain extensive quantities of haemosiderin.  相似文献   

5.
Locomotory aspects of squid mantle structure   总被引:1,自引:0,他引:1  
Morphological aspects of squid ( Loligo, Lolliguncula ) mantle relevant to locomotory function were studied. Methods used included polarized light microscopy of frozen sections of untreated tissue taken from animals immediately after death and electron microscopy.
The mantle consists of circular and radial muscles arranged in alternating rings along the whole length of the mantle. The muscle is obliquely striated. Connective tissue fibres are found in the body of the muscle and in the outer and inner tunics. The outer tunic consists of layers of large collagenous fibres. The fibres run in superimposed right- and left-handed helical courses that lie at an angle of 27° to the long axis of the animal. The tunics and the intramuscular connective fibres are thought to resist length changes in the mantle while permitting the changes in girth required for the jet power stroke. Both the intramuscular and the tunic fibre systems may provide elastic energy for the return phase of the jet cycle. Tunic fibres appear to be a geodesic tensile reinforcing system ensuring smooth shape changes in the mantle.  相似文献   

6.
The hemomicrocirculatory bed in the canine pericardium is presented by arterioles, precapillaries, capillaries, postcapillaries and venules situating in various connective tissue layers of the pericardium. Certain morphological peculiarities of the structure of the hemomicrocirculatory bed links are revealed in various parts of the pericardium. As demonstrate morphometry data, the diameter of all the vessels of the hemomicrocirculatory bed in various parts of the pericardium has no precise differences. There are some fluctuations in the number of the capillaries per 1 mm2 in various parts of the pericardium. Their number is comparatively greater in the area of the vascular porta (transitional fold), in the left lateral, in the ventral and dorsal parts of the pericardium. In these parts of the pericardium the density of the capillaries is increased, the network is especially dense in the area where the pericardial transitional fold passes into the epicardium. In the pericardial microcirculatory blood bed adaptive mechanisms (glomeruli, arteriolo-venular anastomoses, microsphincters) performing regulation of the organ's blood stream, are widely presented.  相似文献   

7.
In swordfish (Xiphias gladius), the dorsal rectus muscle of the eye (M. rectus dorsalis) is partly differentiated for heat production similar to brown adipocytes. Other parts of the dorsal rectus show a typical muscular structure. This modified muscle and its anatomical relationships to neighboring organs were investigated using macroscopic dissections, light and transmission electron microscopy, nuclear magnetic resonance tomography, and scanning electron microscopy of vascular corrosion casts. The ophthalmic artery off the efferent pseudobranchial artery supplies the dorsal rectus muscle. The ophthalmic artery branches in a brush-like manner as it enters the origin of the muscle. In this region, numerous arterioles and venules are arranged in parallel, suggesting a countercurrent heat exchange mechanism. Thermogenic cells, morphologically similar to brown adipocytes, surround small vascular branches in the middle of the muscle. Muscular cells also extend into this area. The vessels then divide into a tree-like pattern, forming an extensively capillarized area near the surface of the muscle at the basisphenoid bone. The basisphenoid is reduced to a thin connective tissue layer in this area, hence facilitating thermal transfer between the blood in the muscle and the brain base. The Tela lymph-adiposa surrounds the brain with large masses of fat. Additionally, voluminous masses of periocular fat provide thermal insulation lateral to the lateral rectus muscle of the eye. It is suggested that this system for raising the temperature of areas of the brain a few degrees above ambient temperature allows an optically oriented predator such as the swordfish to respond to optical input in cold water more efficiently. J. Morphol. 234:89–96, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

8.
The sudden exposure of veins to arterial pressures during coronary venous retroperfusion may cause rupture of small venules. Our rationale is to first occlude the coronary vein, which will cause an increase in pressure intermediate to arterial and venous values, and hence lead to remodeling and increased wall thickness of the veins prior to retroperfusion. To accomplish this objective, five pigs were subjected to left anterior descending (LAD) vein ligation while six pigs served as sham. Myocardial tissue samples were obtained from the area adjacent to the LAD vein at four transmural locations of the left ventricular free wall: epicardial surface, subepicardium, midmyocardium, and endocardium. Arterioles and venules from the experimental and sham control groups were photographed, and the following measurements were made: inner and outer circumferences, inner and outer areas, major and minor diameters, and intima-media thickness. Each vessel was categorized in four different orders according to lumen diameter. Our results show that intima-media thickness was larger in the experimental group in all four regions of the heart and in all four orders of the vessels, although venules from the epicardial region showed the largest increase in thickness. The intima-media thickness-to-radius ratio was also larger in the experimental group and decreased from epicardial to endocardial region of the heart and from order 1 to order 4 of the vessels. The present study provides a rationale for the development of coronary retroperfusion strategy that avoids vessel rupture and hemorrhage in the postcapillary venules.  相似文献   

9.
L Somer  T Somer 《Acta anatomica》1983,116(3):234-244
A histological analysis of the structure of intact knee joint menisci was carried out in adult dogs. By means of specific histochemical methods for the connective tissue and cartilage, it was found that the meniscus as a whole does not have a unique structure. The anterior and posterior horns are populated by round chondroid cells encircled by abundant interstitial substance and branched wavy connective fibers; blood vessels are present. The outer third of the meniscus is constituted of cross bundles of connective fibers, fibrocytes and spindle-like areas of loose connective tissue with blood vessels. The inner avascular two thirds of the meniscus are filled with parallel circumferentially oriented fascicles of connective fibers, ovally elongated chondroid cells, and a small quantity of chondroid interstitial substance. In some menisci, in the inner two thirds of the body, there are isles of typical cartilage, which show metachromasia of the beta type and rarely of the gamma type. The occurrence and way of the manifestation of cartilage are of an individual character. The structural duality of the knee meniscus is accounted for by its functional duality manifested in offering resistance to the forces of traction and pressure, the latter ones favoring the process of evolution of tissue from connective, through chondroid, to cartilaginous.  相似文献   

10.
The adrenal gland of the camel consists of an outer cortex and an inner medulla. The general disposition of the cortex and medulla, however, differs occasionally from that of other mammals. Extensions of medulla could reach as far as the periphery of the cortex. Islet of medullary tissue may be found in sections of the cortex and cortical tissue consisting of all zones of the cortex may occur around arteries or nerves in the medulla. The medulla may be separated from the cortex by connective tissue especially in old camels. The arrangement of noradrenaline-secreting cells is different from that in other ruminants; they are found in groups scattered between the adrenaline-secreting cells. Bundles of smooth muscle occur in venules at the corticomedullary interface. Accessory adrenal glands are found embedded in the renal fat. They are similar in structure to the adrenal gland. The adrenal cortex forms 74% of the volume of the gland and the ratio of the cortex to medulla is 4:1. The zona glomerulosa, fasciculata and reticularis constitute about 13%, 53%, and 29% by volume of the cortex, respectively.  相似文献   

11.
After completion of gastrulation, typical vertebrate embryos consist of three cell sheets, called germ layers. The outer layer, the ectoderm, which produces the cells of the epidermis and the nervous system; the inner layer, the endoderm, producing the lining of the digestive tube and its associated organs (pancreas, liver, lungs etc.) and the middle layer, the mesoderm, which gives rise to several organs (heart, kidney, gonads), connective tissues (bone, muscles, tendons, blood vessels), and blood cells. The formation of the germ layers is one of the earliest embryonic events to subdivide multicellular embryos into a few compartments. In Xenopus laevis, the spatial domains of three germ layers are largely separated along the animal-vegetal axis even before gastrulation; ectoderm in the animal pole region; mesoderm in the equatorial region and endoderm in the vegetal pole region. In this review, we summarise the recent advances in our understanding of the formation of the germ layers in Xenopus laevis.  相似文献   

12.
Small-diameter vascular grafts are potential substitutes for damaged vessels in patients, but most biodegradable grafts available now are not strong enough. The present study examined the burst strength, radial compliance, suture retention strength for a novel biodegradable tubular scaffold and investigated its behavior in vivo. The tubular scaffold (6-mm i.d., 4 cm long) has three layers including porous polylacticglycolic- acid in both inner and outer layers, a compact polyurethanes layer in midst. Bone marrow stromal cells (bMSCs) were seeded on the scaffolds and cultured for 7 days in vitro to construct tissue engineered vascular grafts which were then implanted in canine abdominal aorta. After 1, 3, 6, 12 and 24 weeks, the grafts were retrieved and evaluated histologically, angiographically and immunohistochemically. The biodegradable tubular scaffolds showed wall thickness of 0.295 mm to 0.432 mm; radial compliance of 3.80%/100 mmHg approximately 0.57%/100 mmHg, burst strength of 160 kPa approximately 183 kPa, and suture retention strength of 1959 N/cm(2) approximately 3228N/cm(2). The implanted grafts were fully patent without any signs of dilation or obstruction after 3 months' implantation. Scanning electron microscopy revealed a confluence endothelial cell layer spreading on the inner surface of the grafts. Immunohistochemistry of the retrieved grafts showed that vWF-stainin, alphaSMA-staining were positive in the inner and medium layer respectively. Masson's trichrome staining showed that amount of collagen fibers existed in the grafts wall. Overall, these novel three-layered scaffolds exhibited favourable mechanical strength, long term patency and good remodeling in vivo.  相似文献   

13.
Summary The smooth muscle of rabbit portal vein was studied by electron microscopy with particular emphasis on the mechanical linkage between the muscle cells and on the distribution of connective tissue.The media of this vein is composed of inner circular and outer longitudinal muscle layers which are orientated almost perpendicularly to each other. The muscle of the inner circular layer shows very irregular contours with much branching and anastomosing of the cytoplasmic processes, which often make membrane contacts with neighbouring cells to form an extensive network of cytoplasmic processes. The muscle cells of the outer longitudinal layer are arranged in densely packed bundles and are spindle-shaped, with no branching processes. Opposing dense areas from neighbouring cells, with variable gap distances (30–100 nm) and close membrane contacts (intermediate junctions) with a gap of 11 nm were observed in both circular and longitudinal muscle layers.In the terminal regions of muscle cells in both circular and longitudinal layers a specialized anchoring structure was present which was closely related to extracellular elastic tissue. Muscle cells in the longitudinal layer showed the most elaborate structure, the tapering end of the muscle cell showing a honeycomb-like structure penetrated by columns of connective tissue compounds. The functional implications of these structures are discussed.  相似文献   

14.
Six longitudinal ridges span the length of the intestine in the crayfish Procambarus clarkii. A simple columnar epithelium with tetralaminar cuticle lines the lumen. Folds of the epithelium overlie a dense irregular connective tissue packed with mixed acinar (alveolar) glands. Mucous secretions are probably involved with formation and lubrication of faecal strings; neither the nature nor the role of the serous secretions is immediately apparent. Aggregations of cells with large cytoplasmic vacuoles, called bladder cells, appear in the subepithelial connective tissue near the tops of the intestinal ridges. The bladder cells are suitably positioned to bolster the integrity of the ridges. Striated muscle of the intestine occurs in inner longitudinal and outer circular layers. The inner longitudinal layer consists of six strips, with one strip associated with the base of each intestinal ridge. The outer circular layer is essentially complete, but there are periodic apertures in this layer on the left and right sides of the intestine, providing nerves and haemolymph vessels with access to the interior of the gut. Based on histological features, and consistent with reports on other crayfish, we conclude that the intestine of P. clarkii has a proctodeal (ectodermal) origin.  相似文献   

15.
The physiological processes involved in tissue development and regeneration also include the parallel formation of blood and lymphatic vessel circulations which involves their growth, maturation and remodelling. Both vascular systems are also frequently involved in the development and progression of pathological conditions in tissues and organs. The blood vascular system circulates oxygenated blood and nutrients at appropriate physiological levels for tissue survival, and efficiently removes all waste products including carbon dioxide. This continuous network consists of the heart, aorta, arteries, arterioles, capillaries, post-capillary venules, venules, veins and vena cava. This system exists in an interstitial environment together with the lymphatic vascular system, including lymph nodes, which aids maintenance of body fluid balance and immune surveillance. To understand the process of vascular development, vascular network stability, remodelling and/or regression in any research model under any experimental conditions, it is necessary to clearly and unequivocally identify and quantify all elements of the vascular network. By utilising stereological methods in combination with cellular markers for different vascular cell components, it is possible to estimate parameters such as surface density and surface area of blood vessels, length density and length of blood vessels as well as absolute vascular volume. This review examines the current strategies used to visualise blood vessels and lymphatic vessels in two- and three-dimensions and the basic principles of vascular stereology used to quantify vascular network parameters.  相似文献   

16.
The aims of our studies were to compare the ultrastructure of the boundary tissue of seminiferous tubules of various mammals (rat, mouse, hamster, guinea pig, rabbit, ram, bull and man). Visual analysis of electron micrographs revealed the similarity of structure of all layers at investigated animals. The boundary tissue consists of 4 layers: 1) amorphous inner lamina, 2) cellular inner lamina, 3) amorphous outer lamina, 4) cellular outer lamina. The outer lamina of boundary tissue of rat, mouse and hamster revealed in histochemical reactions meshes resembling honey-combs. The wall of seminiferous canalicules of bull and ram consists of more bigger and different structure than one at the other laboratory animals. The most different structure of boundary tissue in man was observed. The capillary vessels penetrate in the myofibroblastic layer, when comparted to that found in other mammals on the surface of the wall.  相似文献   

17.
Basic histological sections (with different staining methods) and scanning electron microscopy (SEM) examinations showed that there were three distinctive layers in the adipose eyelid of milkfish Chanos chanos , which is found in the cephalie region and covers the entire eye. The outer and inner layers were epithelial tissues and the middle layer was composed of connective tissue formed by type I collagen fibrils. No adipose tissue was found in any of the three layers of the so-called adipose eyelid. Examination by transmission spectrophotometer showed that the adipose tissue could filter out ambient light with a wavelength shorter than 305 nm. A photoretinoscope was used to investigate whether the adipose eyelid influenced the mechanism of eye focusing. Eye diopter values did not differ before or after eyelid removal, which indicated that the adipose eyelid did not play a role in eye focusing. In light of these findings, it is suggested that the adipose eyelid serves to block exposure of harmful ultraviolet light into eyes and may also to offer some protection against impact to the eye in the aquatic environment.  相似文献   

18.
The present study describes the age changes to the microvasculature and connective tissue interstitium of the osteons and periosteums of aged human mandibles and maxillae. The mandibles and maxillae obtained from 14 and 19 year old males, respectively, were also studied. In the nutrient canals of the aged osteons, the walls of the arterioles and venules stained intensely PAS positive, and alcian blue negative. The walls of the blood capillaries were thick and strongly PAS positive. There was a deposition of PAS positive material in the connective tissue stroma of the nutrient canals which progressed to the obliteration of the canal space. Many of the nutrient canals exhibited diffuse calcification within the connective tissue interstitium localized around the blood vessels. The lacunae and canaliculi of those osteons in which the nutrient canals were partially or completely obliterated were filled with PAS material. None of these histochemical changes were seen in the osteons of young individuals. The microvasculature of the aged periosteum showed similar changes. The periosteal tissue consisted of thick collagenous bundles and few osteogenic cells. There was a thin darkly stained amorphous calcified layer forming the bone surface.  相似文献   

19.
An ultrastructural study was made of the spore envelope during development in the microsporidan, Thelohania bracteata. The frozen-etched outer (convex) face of the relatively thin spore coat in the earliest immature stage of development has a granular structure in regular array. The inner (concave) face bears particles as well as depressions arranged in a net-like pattern. The mature spore coat has a substructure of numerous microfibers, ~8 nm in diameter, arranged in a matrix and forming thin layers which run parallel to the spore surface. The mature spore coat possesses both outer and inner limiting layers. The outer (convex) face of the outer limiting layer is granular. The convex face of inner limiting layer bears many particles as well as many long, narrow depressions. The concave face of the inner limiting layer carries many stud-like projections, ~40 nm long and 30 nm high, which are complementary to the depressions observed on the convex face. In addition, the concave face has subunits ~15 nm in diameter, apparently arranged in a hexagonal pattern with a center to center distance of ~18 nm. The change in size of these projections, depressions, and subunits presumably is related to spore maturation.  相似文献   

20.
The wall of the asymmetrical saclike lungs of the fishes Polypterus and Erpetoichthys consists of several functionally different tissue layers. Their lumen is lined by a surface epithelium composed of (1) highly attenuated cells, termed pneumocytes I; (2) pneumocytes II with lamellar bodies, presumably indicating surfactant production; (3) mucous cells; and (4) ciliated cells. Underlying the pneumocytes I is a dense capillary net. The thin continuous endothelium of this net, together with the pneumocytes I, constitute the very thin blood-air barrier. The basement membrane of epithelium and endothelium fuse in the area of the blood-air barrier (thickness 210 m?m). Secretory and ciliary cells form longitudinal rows in the epithelium. Below the zone with a gas-exchanging tissue, a layer of connective tissue containing collagen and special elastic fibers occurs. The blood vessels that give rise to or drain the superficial capillary plexus are located in this connective tissue. The outermost layer of the lung consists of muscle cells, a narrow inner zone with smooth muscle cells, and an outer, broader zone with cross-striated muscle cells. The lung is innervated by myelinated and nonmyelinated nerve fibers. The morphology of the gas-exchange tissue in the lungs of these primitive bony fish is fundamentally very similar to that of the lungs of tetrapod vertebrates. The morphologic observations are in close agreement with physiologic data, disclosing well-developed respiratory capacities. Structural simplicity can be regarded as a model from which the lungs of the higher vertebrates derived. In addition to respiratory function, the lungs seem also to have hydrostatic tasks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号