首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aggregation in the cellular slime moldDictyostelium discoideum is due to chemotaxis. The chemoattractant, cyclic AMP, is synthesised and released periodically by the cells. Externally applied periodic pulses of cyclic AMP can also induce differentiation in this organism. The present work examines the role of periodicityper se in cyclic AMP-mediated stimulation of cell differentiation. For this purpose we use Agip53, aDictyostelium mutant which does not develop beyond the vegetative state but can be made to aggregate and differentiate by reiterated applications of cyclic AMP. Importantly, Agip53 cells do not make or release any cyclic AMP themselves even in response to an increase in extracellular cyclic AMP. A comparison of the relative efficiencies of periodic and aperiodic stimulation shows that whereas the two patterns of stimulation are equally effective in inducing the formation of EDTA-stable cell contacts, periodic stimuli are significantly superior for inducing terminal differentiation. This suggests that there must be molecular pathways which can only function when stimulation occurs at regular intervals.  相似文献   

2.
M. Maniak 《Protoplasma》1999,210(1-2):25-30
Summary The cells ofDictyostelium discoideum are soil amoebae with a simple endocytic pathway: Particles or fluid are taken up at the plasma membrane in a process dependent on the actin cytoskeleton. After rapid acidification and subsequent neutralisation of the food vacuoles during which breakdown of the contents occurs, indigestible remnants are exocytosed. This tight coupling between endocytosis and exocytosis is thought to maintain membrane homeostasis. In spite of the apparent overall difference between the endocytic pathways of mammalian cells andD. discoideum, conserved proteins are involved in individual steps of endocytic transport, possibly indicating that in mammalian cells it is only the routing of marker that has evolved from a simple transit to a complex, branched pathway.  相似文献   

3.
Incubation ofDictyostelium discoideum cells with selenate is known to inhibit vegetative growth. In this paper we show that in the presence of selenate macromolecules accumulate which can be converted to sulphated products once the selenate is removed. The presence of cycloheximide, an inhibitor of protein synthesis, during the subsequent incubation does not prevent this conversion but tunicamycin, an inhibitor of glycosylation does. It is concluded that, in the presence of selenate, precursors accumulate as unglycosylated proteins, suggesting that feedback inhibition of glycosylation may be operated.  相似文献   

4.
N. Iijima  A. Amagai  Y. Maeda 《Protoplasma》1991,160(2-3):72-76
Summary Dictyostelium mucoroides-7 (Dm 7) and a mutant MF 1 derived from it exhibit two developmental pathways: sorocarp formation occurs during the asexual process, and macrocyst formation during the sexual cycle. The two developmental pathways are mainly regulated by two chemical substances: 3,5-cyclic adenosine monophosphate (cAMP) and ethylene. Recently, we have demonstrated that cytoplasmic pH (pHi) has a critical role for the choice of developmental pathways, higher pHi being favourable to macrocyst formation. Thereupon, attention was riveted to the relation of pHi to biosynthesis of cAMP and ethylene. Effect of pHi on the production and release of ethylene, a potent inducer of macrocyst formation, was examined, using the two facing culture method. The result showed that lowered pHi inhibits ethylene production, thus resulting in a failure of cells to form macrocysts. The accumulation of cAMP, an inhibitor of macrocyst formation, was found to vary depending on extracellular pH (pHo), but diethylstilbestrol (DES) that is a proton pump inhibitor and also an inhibitor of macrocyst formation had no significant effect on the accumulation. Taken together these results indicate that higher pHi may induce macrocyst formation through enhancement of ethylene production rather than inhibition of cAMP synthesis.Abbreviations cAMP 3,5-cyclic adenosine monophosphate - pHi cytoplasmic pH - pHo extracellular pH - ACC 1-1-aminocyclopropane-1-carboxylic acid  相似文献   

5.
Summary Guanosine di- and triphosphates specifically decrease the affinity of chemotactic cAMP receptors in isolatedDictyostelium discoideum membranes. The K0.5 was increased from 50 nM to 150 nM. Receptors were shown to be heterogeneous in dissociation kinetics. In the absence of guanine nucleotides three dissociation processes could be resolved, having first order rate constants of 8.7 x 10−4, 1.3 X 10−2, and higher than 0.1 s−1. Guanine nucleotides decreased the affinity for cAMP by transforming the slowest dissociating receptor form (KD is 8 nM) to forms dissociating more rapidly. Our data indicate that a guanine nucleotide binding protein (G-protein) is involved in the transduction of the cAMP signal inD. discoideum.  相似文献   

6.
Macrocyst formation in the cellular slime moulds is a sexual process induced under dark and humid conditions. Normal development life cycle in these organisms involves proliferation by cell division and, upon starvation, formation of multicellular aggregates and fruiting bodies, consisting of spores and stalk cells. Macrocyst formation, cell division by binary fission and spore formation are thus three alternative modes of reproduction, for which it is of interest to understand how a choice is made. The genetic basis of asexual development and fruiting body formation is well known, by contrast information on the genetic control of sexual reproduction during macrocyst formation is scarce. In Dictyostelium discoideum, the most widely used species, several cell-surface proteins relevant to sexual cell fusion have been identified using cell fusion-blocking antibodies, but isolation of the relevant genes has been unsuccessful. Analysis of sexually deficient mutants, some of which are normal for asexual development, has shown that sexual reproduction is regulated by both specific genes and genes that are also involved in asexual development. Reverse genetic analysis of 24 genes highly enriched in a gamete-specific subtraction library has revealed four genes involved in the regulation of sexual cell interactions. One of them was found to be a novel regulator of the cAMP signalling pathway specific to sexual development. Studies on the molecular genetic control of the sexual cycle will be reviewed and their contribution to our understanding of the organization and function of the D. discoideum genome as a whole discussed.  相似文献   

7.
Free-living amoebae of the cellular slime mouldDictyostelium discoideum aggregate when starved and give rise to a long and thin multicellular structure, the slug. The slug resembles a metazoan embryo, and as with other embryos it is possible to specify a fate map. In the case ofDictyostelium discoideum the map is especially simple: cells in the anterior fifth of the slug die and form a stalk while the majority of those in the posterior differentiate into spores. The genesis of this anterior-posterior distinction is the subject of our review. In particular, we ask: what are the relative roles of individual pre-aggregative predispositions and post-aggregative position in determining cell fate? We review the literature on the subject and conclude that both factors are important. Variations in nutritional status, or in cell cycle phase at starvation, can bias the probability that an amoeba differentiates into a stalk cell or a spore. On the other hand, isolates, or slug fragments, consisting of only prestalk cells or only prespore cells can regulate so as to result in a normal range of both cell types. We identify three levels of control, each being responsible for guiding patterning in normal development: (i) ‘coin tossing’, whereby a cell autonomously exhibits a preference for developing along either the stalk or the spore pathway with relative probabilities that can be influenced by the environment; (ii) ‘chemical kinetics’, whereby prestalk and prespore cells originate from undifferentiated amoebae on a probabilistic basis but, having originated, interact (e.g. via positive and negative feedbacks), and the interaction influences the possibility of conversion of one cell type into the other; and (iii) ‘positional information’, in which the spatial distribution of morphogens in the slug influences the pathway of differentiation. In the case of possibilities (i) and (ii), sorting out of like cell types leads to the final spatial pattern. In the case of possibility (iii), the pattern arisesin situ  相似文献   

8.
Summary Although it is known that actin polymerizes rapidly at the plasma membrane during the ingestion phase of phagocytosis, not yet fully understood are the mechanisms by which actin is recruited to form a phagoeytic cup and subsequently is dissociated from the phagosome. The aim of this study was to identify actin-binding proteins that mediated actin filament dynamics during phagosome formation and processing. We report that profilins I and II, which promote filament assembly, and cofilin, which stimulates filament disassembly, were constituents of phagosomes isolated fromDictyostelium discoideum fed latex beads, and associated with actin. Biochemical analyses detected one isoform only of cofilin, which bound actin in unstimulated cells as well as in cells engaged in phagocytosis, subjected to various stress treatments, and through development. At membranes of young phagosomes, profilins I and II colocalized with monomeric actin labeled with fluorescent DNase I, and cofilin colocalized with filamentous actin labeled with rhodamine phalloidin. Both immunocytochemical and quantitative immunoblotting data indicated that the kinetic loss of profilins I, II, and cofilin of maturing phagosomes closely followed the falling levels of actin associated with the vesicles. As evidence of vesicle processing,D. discoideum crystal protein (an esterase) was recruited rapidly to phagosomes and its levels increased while those of actin, profilins I, II, and cofilin jointly decreased. The localization data and concurrent losses of profilins and cofilin with actin from phagosomes are consistent with the roles of these actin-binding proteins in filament dynamics and indicated that they were involved in regulating the assembly and disassembly of the actin coat of phagosomes.Abbreviations DNase deoxyribonuclease - FITC fluorescein isothiocyanate - NEpHGE nonequilibrium pH gradient gel electrophoresis - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis  相似文献   

9.
10.
A. Amagai  Y. Maeda 《Protoplasma》1992,167(3-4):159-168
Summary The cellular slime moldDictyostelium mucoroides-7 (Dm 7) and its mutant (MF 1) exhibit sexual or asexual development depending upon culture conditions. During the sexual cycle macrocyst formation occurs, whereas sorocarps containing spores and stalk cells are asexually formed. As previously reported, the macrocyst formation is marked by the emergence of true zygotes, and is induced by a potent plant hormone, ethylene. The concentration of ethylene required for macrocyst induction was determined to establish the similarity of ethylene action between this organism and higher plants. Macrocysts are induced by low (1 l/l) exogenous concentrations of ethylene. Higher concentrations (10–1,000 ul/l) also gave essentially the same inductive activity. Ethionine, an analogue of methionine, was found to inhibit zygote formation during sexual development through its interference with ethylene production by Dm 7 and MF 1 cells. In fact, the inhibitory effect of ethionine was mostly nullified by the application of ethylene, S-adenosyl-L-methionine, or 1-aminocyclopropane-1-carboxylic acid. Taken together these results suggest that both the effective concentration of ethylene and the pathway of ethylene biosynthesis inD. mucoroides may be similar to those in higher plants. Ethylene was also found to be produced in various species and strains of cellular slime molds, even during the asexual process. The possible functions of ethylene in the asexual development are discussed in relation to cell aggregation and differentiation.Abbreviations SAM S-adenosyl-L-methionine - ACC 1-aminocyclopropane-1-carboxylic acid - AOA (aminooxy) acetic acid - BSS Bonner's salt solution - DAPI 4,6-diamidino-2-phenylindole  相似文献   

11.
DNA topoisomerase II ofDictyostelium discoideum (TopA), the gene (topA) encoding which we cloned, was shown to have an additional N-terminal region which contains a putative mitochondrial targeting signal presequence. We constructed overexpression mutants which expressed the wild-type or the N-terminally deleted enzyme, and examined its localization by immunofluorescence microscopy and proteinase K digestion experiment. These experiments revealed that the enzyme is located in the mitochondria by virtue of the additional N-terminal region. Furthermore, in the cell extract depleted the enzyme by immunoprecipitation, nuclear DNA topoisomerase II activity was not decreased. These results confirmed that TopA is located in the mitochondria, even through its amino acid sequence is highly similar to those of nuclear type topoisomerase II of other organisms. Thus, this report is the first to establish the location of the mitochondrial targeting signal presequence in DNA topoisomerase II and in proteins ofD. discoideum directly by analyzing deletion mutants. Tsukuba Advanced Research Alliance (TARA researcher for the Sakabe project)  相似文献   

12.
Six monoclonal antibodies were isolated which react with common antigens shared by multiple glycoconjugate species in the cellular slime mold Dictyostelium discoideum. Based on competition of antibody binding by glycopeptides and simple sugars, and inhibition of antibody binding by antigen pretreatment with Na periodate, it is argued that at least five of the six antibodies recognize epitopes which contain carbohydrate. These epitopes are consequently referred to as glycoantigens (GAs).Three of the GAs are expressed during growth and throughout the developmental cycle, but are eventually enriched in prestalk and stalk cells. The remaining three are expressed only during and/or after aggregation and are exclusively expressed or highly enriched in prespore cells and spores. These conclusions are derived from Western blot immunoanalysis of purified cell types, immunofluorescence, and EM immunocytochemistry.The two GAs found only in prespore cells appear to be exclusively enclosed within prespore vesicles. The third GA of this type, which is only enriched in prespore cells compared to prestalk cells, is also found in other vesicle types as well as on the cell surface.Two of the GAs enriched in prestalk cells are initially found in all cells of the slug. They are undetectable in spores and prominent in stalk cells. The third GA, though found in the interiors of both prestalk and prespore cells, is enriched on the cell surface of prestalk cells.The chief characteristics of expression of four of these GAs are conserved in the related species D. mucoroides. This species is characterized by continuous trans differentiation of prespore cells into prestalk cells. This shows that the prespore cells maintain specific mechanisms for turning over their cell type specific GAs and that prestalk cells express a specific mechanism for inducing at least one of their cell-type specific GAs.These observations identify specific carbohydrate structures (as GAs) whose synthesis, subsequent localization and turnover are developmentally regulated. The exclusive association of two GAs with prespore vesicles identifies these GAs as markers for this organelle and raises questions regarding the functional significance of this association. The restricted cell surface localization of the other four GAs, together with data from cell adhesion studies, suggest the possibility of a potential role for these GAs in intercellular recognition leading to cell sorting.This paper is dedicated to the memory of the late Daniel McMahon.  相似文献   

13.
In recent years, the myosin superfamily has kept expanding at an explosive rate, but the understanding of their complex functions has been lagging. Therefore,Dictyostelium discoideum, a genetically and biochemically tractable eukaryotic amoeba, appears as a powerful model organism to investigate the involvement of the actomyosin cytoskeleton in a variety of cellular tasks. Because of the relatively high degree of functional redundancy, such studies would be greatly facilitated by the prior knowledge of the whole myosin repertoire in this organism. Here, we present a strategy based on PCR amplification using degenerate primers and followed by negative hybridization screening which led to the potentially exhaustive identification of members of the myosin family inD. discoideum. Two novel myosins were identified and their genetic loci mapped by hybridization to an ordered YAC library. Preliminary inspection ofmyoK andmyoM sequences revealed that, despite carrying most of the hallmarks of myosin motors, both molecules harbor features surprisingly divergent from most known myosins.  相似文献   

14.
Ribonuclease P (RNase P) is a key enzyme involved in tRNA biosynthesis. It catalyses the endonucleolytic cleavage of nearly all tRNA precursors to produce 5-end matured tRNA. RNase P activity has been found in all organisms examined, from bacteria to mammals. Eubacterial RNase P RNA is the only known RNA enzyme which functionsin trans in nature. Similar behaviour has not been demonstrated in RNase P enzymes examined from archaebacteria or eukaryotes. Characterisation of RNase P enzymes from more diverse eukaryotic species, including the slime moldDictyostelium discoideum, is useful for comparative analysis of the structure and function of eukaryotic RNase P.Abbreviations RNase P ribonuclease P - MN micrococcal nuclease  相似文献   

15.
Using a plasmid pBsr2 which carries a blasticidin S-resistant gene, we have improved the method of REMI (restriction enzyme-mediated integration) provided for insertional mutagenesis inDictyostelium discoideum (bsr-REMI). To confirm usefulness of thebsr-REMI, transformation efficiency, copy number of integrated DNA, and randomness of integration into genome were examined.  相似文献   

16.
The localization of fluorescent substance was observed microscopically in livingDictyostelium discoideum cells. The fluorescence was localized in the vacuoles of the vegetative cells. The fluorescent vacuoles were not observed in the dead cells. The fluorescent vacuoles in the cytoplasm were lost in starved cells which are able to form an aggregate and to differentiate. The fluorescent vacuoles were not lost but decreased slightly in the cytoplasm of full grown cells and of cells grown in liquid nutrient medium for an extended period of time (stationary phase cells). On a solid substratum, fluorescent vacuoles were also lost from the cells, where the vegetative cells aggregate and form a slug-shaped mass of cells. The whole slug showed homogeneous fluorescence. In a finally constructed fruiting body, the spore mass showed fluorescence. In a spore mass, the fluorescence was not observed in the spores but in the interspore space of the spore mass. It is suggested that vegetative cells secrete fluorescent substance into the inter-cellular space in the mass of cells during development.  相似文献   

17.
Summary NADP-dependent glutamate dehydrogenase from Dictyostelium discoideum was purified 9300 fold with a yield of 4.6%. The enzyme is a hexamer of apparent molecular weight 294 kDa on Sephacryl S400 and a subunit molecular weight of 52 kDa as determined by SDS gel electrophoresis. The apparent KmS for -ketoglutarate, NADPH and NH inf4 sup+ are 1.2 mM, 9.7 µM and 2.2 mM respectively, and the purified enzyme has a broad pH optimum with a peak at pH 7.75. GTP has a slight stimulatory effect (22% at 83 µM) as does ADP (11% at 1 mM), and AMP is slightly inhibitory (9% at 1 mM) whereas adenosine, ATP and cAMP have little or no effect. Neither the Zn2+ chelating compound 1,10-phenanthroline nor EDTA have any effect on the enzyme while p-hydroxymercuribenzoic acid inhibits enzyme activity (50% at 80 µM) yet N-ethylmaleimide does not.In addition, the NADP-GDH activity varies little during the various stages of morphogenesis.Abbreviations EDTA Ethylenediamine Tetraacetic Acid - Tris Tris(hydroxymethyl)aminomethane - Bis-tris bis(2-hydroxyethyl)imino-tris(hydroxymethyl)methane - TRITON X-100 iso-octylphenoxypoly-ethoxyethanol - pHMB p-Hydroxymercuribenzoic acid  相似文献   

18.
Two cDNA fragments induced in developing zygotes ofDictyostelium discoideum were isolated by mRNA differential display. the relevant genes were also found to be expressed during asexual development, suggesting that sexual and asexual development share common molecular mechanisms inD. discoideum.  相似文献   

19.
Tomoaki Abe  Yasuo Maeda 《Protoplasma》1989,151(2-3):175-178
Summary Intracellular free calcium ion concentrations ([Ca2+]i) in the anterior prestalk and posterior prespore cells of theDictyostelium discoideum slug were determined, using the highly selective Ca2+ indicators, quin-2/AM and fura-2/AM. Temporal changes in [Ca2+]i in response to chemotactic stimulation with cAMP were also monitored at the single-cell level and compared between the two types of cells. The results obtained showed that resting [Ca2+]i in the prestalk cells is considerably higher than that in the prespore cells. Moreover, transient increase in [Ca2+]i upon stimulation with a low concentration of cAMP (20 nM) was noticed only in the prestalk cells, but not in the prespore cells. These facts are discussed in relation to the polarized movement and cellular differentiation in the migrating slug.Abbreviations cAMP 3,5-cyclic adenosine monophosphate - DIF differentiation-inducing factors - IP3 inositol 1,4,5-triphosphate  相似文献   

20.
Summary During development and differentiation of the cellular slime mould Dictyostelium discoideum there appears to be a relationship between the cell cycle and cell fate: amoebae halted in G2 phase during early development differentiate into spores whereas stalk cells are formed from amoebae halted in GI phase. It is proposed that this is because a major effect of the cell cycle is to generate heterogeneity in the cell surface properties of the developing amoebae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号