首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
1. Muscle buffering capacity (beta m) and dipeptide content were measured in locomotory muscles of the Thoroughbred horse, Greyhound dog and Man. 2. Beta m and carnosine contents were highest in the horse. Anserine was only found in dog muscle. 3. The higher beta m in horse and dog muscle, compared with man, appears to be predominantly due to higher muscle contents of histidine containing dipeptides in these species.  相似文献   

2.
The combined solid-phase extraction (Isolute PRS columns) and reversed-phase gradient HPLC method presented provides a sensitive, reproducible and selective quantification of carnosine, anserine, balenine, homocarnosine, histidine, 1-methylhistidine and 3-methylhistidine in equine and camel muscle and individual muscle fibres. Recoveries were 91–115%. Lower limits of detection were 0.005–0.010 mmol kg dry muscle. The compounds were isolated from other physiological amino acids and small peptides and resolved within a single chromatographic run of 55 min. Concentrations of these compounds in equine myocardium, diaphragm, skeletal muscle, camel muscle and individual muscle fibres of both species are presented for the first time.  相似文献   

3.
Carnosine, a beta-alanyl-L-histidine dipeptide with antioxidant properties is present at high concentrations in skeletal muscle tissue. In this study, we report on the antioxidant activity of carnosine on muscle lipid and protein stability from both in vitro and in vivo experiments. Carnosine inhibited lipid peroxidation and oxidative modification of protein in muscle tissue prepared from rat hind limb homogenates exposed to in vitro Fenton reactant (Fe2+, H2O2)-generated free radicals. The minimum effective concentrations of carnosine for lipid and protein oxidation were 2.5 and 1 mM, respectively. Histidine and beta-alanine, active components of carnosine, showed no individual effect towards inhibiting either lipid or protein oxidation. Skeletal muscle of rats fed a histidine supplemented diet for 13 days exhibited a marked increase in carnosine content with a concomitant reduction in muscle lipid peroxidation and protein carbonyl content in skeletal muscle caused by subjecting rats to a Fe-nitrilotriacetate administration treatment. This significant in vitro result confirms the in vivo antioxidant activity of carnosine for both lipid and protein constituents of muscle under physiological conditions.  相似文献   

4.
The intracellular non-bicarbonate buffering capacity of vertebrate muscle is mainly supported by the imidazole groups of histidine residues in proteins, free L-histidine in some fish species, and histidine-containing dipeptides such as carnosine, anserine, and balenine (ophidine). The proton buffering capacity markedly differs between muscle types and animal species depending on the ability for anaerobic exercise. The capacity is typically high in fast-twitch glycolytic muscles of vertebrates adapted for anaerobic performance such as burst swimming in fishes, prolonged anoxic diving in marine mammals, flight in birds, sprint running in mammalian sprinters, and hopping locomotion in some terrestrial mammals. A high correlation between buffering capacity, concentration of histidine-related compounds in muscle, and percentage of fast-twitch fibers in all vertebrates adapted for intense anaerobic performance clearly supports the idea that proton buffering is the main physiological function of histidine-related compounds.  相似文献   

5.
6.
Summary. β-Alanine in blood-plasma when administered as A) histidine dipeptides (equivalent to 40 mg · kg−1 bwt of β-alanine) in chicken broth, or B) 10, C) 20 and D) 40 mg · kg−1 bwt β-alanine (CarnoSyn™, NAI, USA), peaked at 428 ± SE 66, 47 ± 13, 374 ± 68 and 833 ± 43 μM. Concentrations regained baseline at 2 h. Carnosine was not detected in plasma with A) although traces of this and anserine were found in urine. Loss of β-alanine in urine with B) to D) was <5%. Plasma taurine was increased by β-alanine ingestion but this did not result in any increased loss via urine. Pharmacodynamics were further investigated with 3 × B) per day given for 15 d. Dietary supplementation with I) 3.2 and II) 6.4 g · d−1 β-alanine (as multiple doses of 400 or 800 mg) or III) L-carnosine (isomolar to II) for 4 w resulted in significant increases in muscle carnosine estimated at 42.1, 64.2 and 65.8%.  相似文献   

7.
Carnosine synthetase was purified about 500-fold from mouse olfactory bulb to a specific activity of approx 25 nmol/min/mg. This is an increase of 800-fold over that previously reported for this enzyme from rat brain and 11 times higher than the most highly purified enzyme from chicken pectoral muscle. ATP was essential for activity and could not be replaced by ADP. NAD had no effect on the synthesis of carnosine. Of the β-alanine analogues tested, the purified mouse enzyme incorporated only γ-aminobutyric acid and β-amino-n-butyric acid into peptide linkage with histidine. Synthesis of carnosine by the mouse olfactory bulb enzyme was competitively inhibited by the histidine analogues, 1-methyl histidine and 3-methyl histidine, with Ki values which were at least 40 times the Km value for histidine (16 μM). Ornithine and lysine were more efficient β-alanine acceptors than 1-methyl histidine for the mouse enzyme. Enzyme from olfactory epithelium and leg skeletal muscle of mice also showed higher Ki values for 1–methyl histidine than the Km value for histidine. In contrast, carnosine-anserine synthetase from chicken pectoral muscle gave Km values for histidine, 1-methyl histidine and 3-methyl histidine, which were all in the range of 4–12 μM. The differences in substrate specificity between the enzyme from mouse and chicken implies alternate routes of anserine synthesis in these species and predicts the occurrence of certain novel peptides in mouse brain.  相似文献   

8.
The aim of this study was to understand the mechanism of action through which carnosine (beta-alanyl-L-histidine) acts as a quencher of cytotoxic alpha,beta-unsaturated aldehydes, using 4-hydroxy-trans-2,3-nonenal (HNE) as a model aldehyde. In phosphate buffer solution (pH 7.4), carnosine was 10 times more active as an HNE quencher than L-histidine and N-acetyl-carnosine while beta-alanine was totally inactive; this indicates that the two constitutive amino acids act synergistically when incorporated as a dipeptide and that the beta-alanyl residue catalyzes the addition reaction of the histidine moiety to HNE. Two reaction products of carnosine were identified, in a pH-dependent equilibrium: (a) the Michael adduct, stabilized as a 5-member cyclic hemi-acetal and (b) an imine macrocyclic derivative. The adduction chemistry of carnosine to HNE thus appears to start with the formation of a reversible alpha,beta-unsaturated imine, followed by ring closure through an intra-molecular Michael addition. The biological role of carnosine as a quencher of alpha,beta-unsaturated aldehydes was verified by detecting carnosine-HNE reaction adducts in oxidized rat skeletal muscle homogenate.  相似文献   

9.
An epithelial sheet isolated from the trout saccular macula, highly enriched in acousticolateralis receptor cells (hair cells), has been analyzed for primary amine-containing compounds. The hair cell preparation, compared to the saccular nerve, was found to contain elevated levels of the presumptive receptoneural transmitter, glutamate, as well as beta-alanine, and components eluting in the positions of the standards phosphoserine and phosphoethanolamine on cation-exchange HPLC. Saccular nerve contained a different spectrum of primary amines and was elevated specifically in carnosine/homocarnosine. Acid hydrolysis of perchlorate extracts of both hair cell and nerve fractions yielded large amounts of histidine. For the saccular nerve fraction, production of histidine by acid hydrolysis was matched by production of beta-alanine and gamma-aminobutyric acid (GABA) and disappearance of carnosine/homocarnosine. The dipeptides carnosine and homocarnosine have been chromatographically resolved by expanded HPLC and found to be present in saccular nerve in a ratio of approximately 10:1, respectively. Production of histidine in the hair cell extract was not coupled with production of beta-alanine and GABA. The hair cell histidine-containing unknown, present in millimolar concentration, has been identified as N-acetylhistidine by the hydrolysis and rechromatography of fractions from cation-exchange HPLC. The large and specific presence of N-acetylhistidine in the hair cell preparation, together with electrophysiological evidence for its facilitatory action on afferent fibers in the frog semicircular canal, is suggestive of a role for this molecule as well as glutamate in acousticolateralis receptoneural transmission.  相似文献   

10.
Carnosine has now been demonstrated by chemical analysis to be present in rat olfactory mucosa on day 16 of gestation. The tissue content of this dipeptide then increases progressively during fetal and postnatal life. Radioactive carnosine can be isolated from cultured embryonic rat olfactory mucosa incubated with [14C]beta-alanine as early as 13-14 days of gestation. The amount of incorporation also increases progressively with the initial age of the explant and with time in culture indicating in vitro maturation of the carnosine synthesis capability of olfactory tissue. To test whether the level of beta-alanine was limiting the synthesis of carnosine, we evaluated the effect of elevated beta-alanine levels on tissue carnosine content. Exogenous beta-alanine caused an increase in the tissue content of carnosine at several ages in vivo and in vitro. In adult animals this increase was observed in olfactory bulb, olfactory mucosa, and skeletal muscle. However, there was no associated alteration in carnosine synthetase activity. In addition, the different half-lives of carnosine in olfactory tissue and muscle seemed unaltered, arguing against any effect on degradative enzymes. Thus, tissue carnosine levels are regulated, at least in part, by substrate availability. The early appearance of carnosine synthetic capacity during prenatal development indicates that this enzyme activity should be a valuable aid in studying early events in olfactory neuron maturation.  相似文献   

11.
The occurrence of Nα-acetylhistidine (NAH) in skeletal muscle of 91 species of freshwater fish and 9 species of other ectothermic vertebrates was investigated, with consideration of phylogenetic relationships. Of the 91 freshwater fish species examined, 13 species (7 cichlids, 5 anabantids, and 1 catfish) contained considerable amounts (> 1 µmol/g) of NAH in their skeletal muscles. The highest level (10.37 µmol/g) of NAH was found in the tissue of Betta splendens (Siamese fighting fish). Moreover, the NAH contents in the tissues of Trichogaster trichopterus (three spot gourami), Kryptopterus bicirrhis (glass catfish), Oreochromis niloticus (Nile tilapia), Mikrogeophagus ramirezi (ram cichlid) and Parachromis managuensis (Guapote tigre) were 3.17–6.16 µmol/g. The skeletal muscle of amphibians (5 species) and reptiles (4 species) had a low level (< 0.25 µmol/g) of NAH. The present findings clearly demonstrate NAH as the fifth imidazole-related compound, in addition to histidine, carnosine, anserine and ophidine (balenine), recognized as a major non-protein nitrogenous constituent in the skeletal muscle of vertebrate animals.  相似文献   

12.
Biosynthesis of carcinine (beta-alanyl-histamine) in vivo   总被引:1,自引:0,他引:1  
Carcinine was biosynthesized by Carcinus maenas from [14C]beta-alanine, [14C] histidine and [14C] histamine. Since carnosine (beta-alanyl-histidine) could not be detected in crab tissues, biosynthesis of carcinine could only be effected by direct coupling of beta-alanine and histamine resulting from histidine decarboxylation. Biosynthesis of carcinine was weak when [14C]beta-alanine and [14C] histidine were used as precursors. On the contrary when [14C] histamine was used, synthesis was important. Thus carcinine appears to be a product of histamine catabolism. After injecting [14C] histamine, radioactive carcinine was concentrated mainly in the heart and nervous system; nonmetabolized [14C] histamine was recovered mainly in the latter. The nervous system might therefore be the seat of carcinine biosynthesis and thus the site of action of histamine.  相似文献   

13.
Three dipeptide complexes of the form K[M(dipeptide)Cl] (H2dipeptide=glycylbeta-alanine, beta-alanylglycine, beta-alanylbeta-alanine) and four dipeptide methyl ester complexes of the form K[M(dipeptideOMe)Cl2] (HdipeptideOMe=glycylalpha-alanine methyl ester, alpha-alanylglycine methyl ester, dialpha-alanine methyl ester) were newly prepared. The K[Pt(glybeta-ala)Cl] complex crystallizes in the monoclinic space group C2/c with unit cell dimensions of a=25.77(1) A, b=4.09(2) A, c= 16.432(9) A, beta=103.74(4) degrees, and Z=8. The K[Pt(glyalpha-alaOMe)Cl2] complex crystallizes in the monoclinic space group P1 with unit cell dimensions of a=7.195(2) A, b=7.977(5) A, c=10.326(3) A, alpha=72.49(3) degrees, beta=103.74(4) degrees, gamma=88.27(4) degrees and Z=2. The 195Pt NMR peaks of the complexes containing the beta-alanine moiety appeared significantly more upfield than those of the complexes containing diglycine. The ratios of the species of the platinum complexes containing the dipeptide ester in neutral solution were significantly different from those in alkaline solution at 40 degrees C for a short time.  相似文献   

14.
Carcinine biosynthesis was induced in vitro from its two components, beta-alanine and histamine. The reaction was catalyzed by muscle, heart, and CNS extracts from Carcinus maenas. The specific activity of the enzyme, carcinine synthetase, was 15 times higher in CNS than in other organs. Only CNS extracts induced biosynthesis of carcinine from histidine, and only in the presence of pyridoxal-5'-phosphate. Hence the seat of carcinine biosynthesis seems to be the CNS. It is highly probable that in the CNS, histidine is transformed into histamine, which is then catabolized into carcinine. The latter would then be transported and accumulated in the cardiac tissue. Thus histamine--the metabolism of which takes place totally within the CNS--would be implicated as a participant in the neuronal activity of Carcinus maenas. Carcinine synthetase is a soluble enzyme that requires the presence of ATP, beta-alanine, and histamine. Mg2+ and dithiothreitol are also essential for activity. Optimum pH is approximately 7.6. Carcinine synthetase differs from carnosine synthetase and gamma-glutamylhistamine synthetase in that it does not catalyze synthesis of beta-alanylhistidine or gamma-glutamylhistamine.  相似文献   

15.
Anti-crosslinking properties of carnosine: significance of histidine   总被引:15,自引:0,他引:15  
Carnosine, a histidine-containing dipeptide, is a potential treatment for Alzheimer's disease. There is evidence that carnosine prevents oxidation and glycation, both of which contribute to the crosslinking of proteins; and protein crosslinking promotes beta-amyloid plaque formation. It was previously shown that carnosine has anti-crosslinking activity, but it is not known which of the chemical constituents are responsible. We tested the individual amino acids in carnosine (beta-alanine, histidine) as well as modified forms of histidine (alpha-acetyl-histidine, 1-methyl-histidine) and methylated carnosine (anserine) using glycation-induced crosslinking of cytosolic aspartate aminotransferase as our model. beta-Alanine showed anti-crosslinking activity but less than that of carnosine, suggesting that the beta-amino group is required in preventing protein crosslinking. Interestingly, histidine, which has both alpha-amino and imidazolium groups, was more effective than carnosine. Acetylation of histidine's alpha-amino group or methylation of its imidazolium group abolished anti-crosslinking activity. Furthermore, methylation of carnosine's imidazolium group decreased its anti-crosslinking activity. The results suggest that histidine is the representative structure for an anti-crosslinking agent, containing the necessary functional groups for optimal protection against crosslinking agents. We propose that the imidazolium group of histidine or carnosine may stabilize adducts formed at the primary amino group.  相似文献   

16.
The endogenous dipeptide carnosine (beta-alanyl-L-histidine), at 0.1-10 mM, can provoke sustained contractures n rabbit saphenous vein rings with greater efficacy than noradrenaline. The effects are specific; anserine and homocarnosine are ineffective, as are carnosine's constituent amino acids histidine and beta-alanine. Zinc ions enhance the maximum carnosine-induced tension (to 127 +/- 13% of control at 10 microM Zn(total)) and muscle sensitivity is potentiated (mean K(0.5) reduced from 1.23 mM to 17 microM carnosine with 15 microM Zn(total)). The dipeptide acts as a Zn-carnosine complex (Zn. Carn). The effects of carnosine at 1 microM-10 mM (total) in the presence of 1-100 microM Zn(2+) (total) can be described as a unique function of [Zn.Carn] with an apparent K(0.5) for the complex of [7.4)(10(-8)] M. Contractures are reduced at low [Ca(2+)], unaffected by adrenoceptor antagonists, but can be blocked by antagonists to several receptor types. The most specific effect is by mepyramine, the H(1) receptor antagonist. With Zn present, carnosine can inhibit the H(1)-specific binding of [(3)H]mepyramine to isolated Guinea pig cerebella membranes. This effect of carnosine can be described as a function of the concentration of Zn.Carn with an apparent IC(50) of 2.45 microM. Like histamine, carnosine evoked an H2-mediated (cimetidine-sensitive) relaxation in the presence of mepyramine, but was less potent (10.8 +/- 3.1% of initial tension remaining at 10 mM carnosine compared with 13.4 +/- 7.5% remaining at 0.1 mM histamine). Preliminary studies with a Zn-selective fluorescent probe indicate that functionally significant levels of Zn can be released from adventitial mast cells that could modulate actions of carnosine in the extravascular space as well as those of histamine itself. We conclude that carnosine can act at the smooth muscle H(1)-receptor to provoke vasoconstriction and that it also has the potential to act at H(1)-receptors in the central nervous system. Carnosine's mode of action is virtually unique: a vascular muscle receptor apparently transduces the action of a dipeptide in the form of a metal chelate. The functional relationship of carnosine with histamine and the possible physiological relevance of Zn ions for the activity of both agents have not previously been reported.  相似文献   

17.
International Journal of Peptide Research and Therapeutics - Imidazole dipeptides (IDPs) such as carnosine (CAR), anserine (ANS), and balenine (BAL) are widely distributed in the skeletal muscle of...  相似文献   

18.
The release of beta-alanine from the resting and contracting frog sartorius muscles was demonstrated by the two-dimensional thin-layer chromatography. The release of beta-alanine from indirectly stimulated muscles of frogs in winter was about 230% higher than at rest. When synaptic transmission was blocked by d-tubocurarine the release of beta-alanine from directly stimulated muscles did not exceed the release at rest. Thus, activation of neuromuscular synapse leads to increased beta-alanine release from contracting muscle.  相似文献   

19.
Existence of carcinine, a histamine-related compound, in mammalian tissues   总被引:1,自引:0,他引:1  
Carcinine (beta-alanylhistamine) was synthesized in vitro from histamine and beta-alanine. It was detected quantitatively using an HPLC method previously described for the quantification of the related compounds histamine, histidine, carnosine and 3-methylhistamine. Carcinine was identified in several tissue of the rat, guinea pig, mouse and human, and was then shown to be metabolically related in vivo to histamine, histidine, carnosine and 3-methylhistamine through radioisotopic labeling. The results demonstrate that carcinine may be concurrently quantitated using the same HPLC method as that used to measure histamine, histidine, carnosine and 3-methylhistamine. These findings suggest a role for carcinine in the carnosine-histidine-histamine metabolic pathway and in the mammalian physiologic response to stress.  相似文献   

20.
肌肽是一种发现于脊椎动物骨骼肌和大脑中的二肽(β-丙氨酰-L-组氨酸).为了探讨肌肤的抗氧化性与其结构之间的关系,试验研究了肌肽、丙氨酸和组氨酸对DPPH自由基的清除作用和对牛血清白蛋白(BSA)氧化修饰的抑制作用.结果表明肌肽对DPPH自由基有显著的清除效果(P<0.01),组氨酸清除率低于肌肤,而丙氨酸基本无清除自...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号