首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Carnitine acyltransferases catalyze the reversible exchange of acyl groups between coenzyme A (CoA) and carnitine. They have important roles in many cellular processes, especially the oxidation of long-chain fatty acids in the mitochondria for energy production, and are attractive targets for drug discovery against diabetes and obesity. To help define in molecular detail the catalytic mechanism of these enzymes, we report here the high resolution crystal structure of wild-type murine carnitine acetyltransferase (CrAT) in a ternary complex with its substrates acetyl-CoA and carnitine, and the structure of the S554A/M564G double mutant in a ternary complex with the substrates CoA and hexanoylcarnitine. Detailed analyses suggest that these structures may be good mimics for the Michaelis complexes for the forward and reverse reactions of the enzyme, representing the first time that such complexes of CrAT have been studied in molecular detail. The structural information provides significant new insights into the catalytic mechanism of CrAT and possibly carnitine acyltransferases in general.  相似文献   

2.
Jogl G  Tong L 《Cell》2003,112(1):113-122
Carnitine acyltransferases have crucial roles in the transport of fatty acids for beta-oxidation. Dysregulation of these enzymes can lead to serious diseases in humans, and they are targets for therapeutic development against diabetes. We report the crystal structures of murine carnitine acetyltransferase (CRAT), alone and in complex with its substrate carnitine or CoA. The structure contains two domains. Surprisingly, these two domains share the same backbone fold, which is also similar to that of chloramphenicol acetyltransferase and dihydrolipoyl transacetylase. The active site is located at the interface between the two domains. Carnitine and CoA are bound in deep channels in the enzyme, on opposite sides of the catalytic His343 residue. The structural information provides a molecular basis for understanding the catalysis by carnitine acyltransferases and for designing their inhibitors. Specifically, our structural information suggests that the substrate carnitine may assist the catalysis by stabilizing the oxyanion in the reaction intermediate.  相似文献   

3.
The activities of peroxisomal and mitochondrial beta-oxidation and carnitine acyltransferases changed during the process of development from embryo to adult chicken, and the highest activities of peroxisomal beta-oxidation, palmitoyl-CoA oxidase, and carnitine acetyltransferase were found at the hatching stage of the embryo. The profiles of these alterations were in agreement with those of the contents of triglycerides and free fatty acids in the liver. The highest activities of mitochondrial beta-oxidation and palmitoyl-CoA dehydrogenase were observed at the earlier stages of the embryo; then the activities decreased gradually from embryo to adult chicken. The ratio of activities of carnitine acetyltransferase in peroxisomes and mitochondria (peroxisomes/mitochondria) increased from 0.54 to 0.82 during the development from embryo to adult chicken. The ratio of activities of carnitine palmitoyltransferase decreased from 0.82 to 0.25 during the development. The affinity of fatty acyl-CoA dehydrogenase toward the medium-chain acyl-CoAs (C6 and C8) was high in the embryo and decreased with development, whereas the substrate specificity of fatty acyl-CoA oxidase did not change. The substrate specificity of mitochondrial carnitine acyltransferases did not change with development. The affinity of peroxisomal carnitine acyltransferases toward the long-chain acyl-CoAs (C10 to C16) was high in the embryo, but low in adult chicken.  相似文献   

4.
Carnitine and carnitine acyltransferases were thought to be merely a mechanism for the rapid transfer of activated long-chain fatty acids into the mitochondrion for beta-oxidation, until enzymologists came along. By kinetic, physical and localization studies, eight different mammalian carnitine acyltransferases have been characterized. Of these, five have been cloned and sequenced. The carnitine :acylcarnitine exchange carrier, first characterized in mitochondria, has now been demonstrated immunologically in peroxisomal membranes too. This cell-wide carnitine system consisting of at least six proteins linking at least four intracellular pools of acyl-CoA that supply a multitude of lipid metabolic pathways is clearly more complex than was first thought. In this article, I describe the location and properties of the components to show how they can modulate acyl-CoA-dependent reactions in the cell.  相似文献   

5.
This study aimed to investigate whether exogenous application of carnitine stimulates transportation of fatty acids into mitochondria, which is an important part of fatty acid trafficking in cells, and mitochondrial respiration in the leaves of maize seedlings grown under normal and cold conditions. Cold stress led to significant increases in lipase activity, which is responsible for the breakdown of triacylglycerols, and carnitine acyltransferase (carnitine acyltransferase I and II) activities, which are responsible for the transport of activated long-chain fatty acids into mitochondria. While exogenous application of carnitine has a similar promoting effect with cold stress on lipase activity, it resulted in further increases in the activity of carnitine acyltransferases compared to cold stress. The highest activity levels for these enzymes were recorded in the seedlings treated with cold plus carnitine. In addition, these increases were correlated with positive increases in the contents of free- and long-chain acylcarnitines (decanoyl-l-carnitine, lauroyl-l-carnitine, myristoyl-l-carnitine, and stearoyl-l-carnitine), and with decreases in the total lipid content. The highest values for free- and long-chain acylcarnitines and the lowest value for total lipid content were recorded in the seedlings treated with cold plus carnitine. On the other hand, carnitine with and without cold stress significantly upregulated the expression level of citrate synthase, which is responsible for catalysing the first reaction of the citric acid cycle, and cytochrome oxidase, which is the membrane-bound terminal enzyme in the electron transfer chain, as well as lipase. All these results revealed that on the one hand, carnitine enhanced transport of fatty acids into mitochondria by increasing the activities of lipase and carnitine acyltransferases, and, on the other hand, stimulated mitochondrial respiration in the leaves of maize seedlings grown under normal and cold conditions.  相似文献   

6.
Carnitine acyltransferases are a family of ubiquitous enzymes that play a pivotal role in cellular energy metabolism. We report here the x-ray structure of human carnitine acetyltransferase to a 1.6-A resolution. This structure reveals a monomeric protein of two equally sized alpha/beta domains. Each domain is shown to have a partially similar fold to other known but oligomeric enzymes that are also involved in group-transfer reactions. The unique monomeric arrangement of the two domains constitutes a central narrow active site tunnel, indicating a likely universal feature for all members of the carnitine acyltransferase family. Superimposition of the substrate complex of a related protein, dihydrolipoyl trans-acetylase, reveals that both substrates localize to the active site tunnel of human carnitine acetyltransferase, suggesting the location of the ligand binding sites for carnitine and coenzyme A. Most significantly, this structure provides critical insights into the molecular basis for fatty acyl chain transfer and a possible common mechanism among a wide range of acyltransferases utilizing a catalytic dyad.  相似文献   

7.
Carnitine acyltransferases catalyze the exchange of acyl groups between coenzyme A (CoA) and carnitine. They have important roles in many cellular processes, especially the oxidation of long-chain fatty acids, and are attractive targets for drug discovery against diabetes and obesity. These enzymes are classified based on their substrate selectivity for short-chain, medium-chain, or long-chain fatty acids. Structural information on carnitine acetyltransferase suggests that residues Met-564 and Phe-565 may be important determinants of substrate selectivity with the side chain of Met-564 located in the putative binding pocket for acyl groups. Both residues are replaced by glycine in carnitine palmitoyltransferases. To assess the functional relevance of this structural observation, we have replaced these two residues with small amino acids by mutagenesis, characterized the substrate preference of the mutants, and determined the crystal structures of two of these mutants. Kinetic studies confirm that the M564G or M564A mutation is sufficient to increase the activity of the enzyme toward medium-chain substrates with hexanoyl-CoA being the preferred substrate for the M564G mutant. The crystal structures of the M564G mutant, both alone and in complex with carnitine, reveal a deep binding pocket that can accommodate the larger acyl group. We have determined the crystal structure of the F565A mutant in a ternary complex with both the carnitine and CoA substrates at a 1.8-A resolution. The F565A mutation has minor effects on the structure or the substrate preference of the enzyme.  相似文献   

8.
Carnitine/choline acyltransferases play diverse roles in energy metabolism and neuronal signalling. Our knowledge of their evolutionary relationships, important for functional understanding, is incomplete. Therefore, we aimed to determine the evolutionary relationships of these eukaryotic transferases. We performed extensive phylogenetic and intron position analyses. We found that mammalian intramitochondrial CPT2 is most closely related to cytosolic yeast carnitine transferases (Sc-YAT1 and 2), whereas the other members of the family are related to intraorganellar yeast Sc-CAT2. Therefore, the cytosolically active CPT1 more closely resembles intramitochondrial ancestors than CPT2. The choline acetyltransferase is closely related to carnitine acetyltransferase and shows lower evolutionary rates than long chain acyltransferases. In the CPT1 family several duplications occurred during animal radiation, leading to the isoforms CPT1A, CPT1B and CPT1C. In addition, we found five CPT1-like genes in Caenorhabditis elegans that strongly group to the CPT1 family. The long branch leading to mammalian brain isoform CPT1C suggests that either strong positive or relaxed evolution has taken place on this node. The presented evolutionary delineation of carnitine/choline acyltransferases adds to current knowledge on their functions and provides tangible leads for further experimental research.  相似文献   

9.
Carnitine (1, 3-hydroxy-4-trimethylammoniobutyrate) is important in mammalian tissue as a carrier of acyl groups. In order to explore the binding requirements of the carnitine acyltransferases for carnitine, we designed conformationally defined cyclohexyl carnitine analogues. These diastereomers contain the required gauche conformation between the trimethylammonium and hydroxy groups but vary the conformation between the hydroxy and carboxylic acid groups. Here we describe the synthesis and biological activity of the all-trans diastereomer (2), which was prepared by the ring opening of trans-methyl 2,3-epoxycylohexanecarboxylate with NaN3. Racemic 2 was a competitive inhibitor of neonatal rat cardiac myocyte CPT-1 (K(i) 0.5 mM for racemic 2; K(m) 0.2 mM for L-carnitine) and a noncompetitive inhibitor of neonatal rat cardiac myocyte CPT-2 (K(i) 0.67 mM). These results suggest that 2 represents the bound conformation of carnitine for CPT-1.  相似文献   

10.
Carnitine acyltransferases have crucial functions in fatty acid metabolism. Members of this enzyme family show distinctive substrate preferences for short-, medium- or long-chain fatty acids. The molecular mechanism for this substrate selectivity is not clear as so far only the structure of carnitine acetyltransferase has been determined. To further our understanding of these important enzymes, we report here the crystal structures at up to 2.0-A resolution of mouse carnitine octanoyltransferase alone and in complex with the substrate octanoylcarnitine. The structures reveal significant differences in the acyl group binding pocket between carnitine octanoyltransferase and carnitine acetyltransferase. Amino acid substitutions and structural changes produce a larger hydrophobic pocket that binds the octanoyl group in an extended conformation. Mutation of a single residue (Gly-553) in this pocket can change the substrate preference between short- and medium-chain acyl groups. The side chains of Cys-323 and Met-335 at the bottom of this pocket assume dual conformations in the substrate complex, and mutagenesis studies suggest that the Met-335 residue is important for catalysis.  相似文献   

11.
Carnitine palmitoyltransferase II (CPT-II) has a crucial role in the beta-oxidation of long-chain fatty acids in mitochondria. We report here the crystal structure of rat CPT-II at 1.9A resolution. The overall structure shares strong similarity to those of short- and medium-chain carnitine acyltransferases, although detailed structural differences in the active site region have a significant impact on the substrate selectivity of CPT-II. Three aliphatic chains, possibly from a detergent that is used for the crystallization, were found in the structure. Two of them are located in the carnitine and CoA binding sites, respectively. The third aliphatic chain may mimic the long-chain acyl group in the substrate of CPT-II. The binding site for this aliphatic chain does not exist in the short- and medium-chain carnitine acyltransferases, due to conformational differences among the enzymes. A unique insert in CPT-II is positioned on the surface of the enzyme, with a highly hydrophobic surface. It is likely that this surface patch mediates the association of CPT-II with the inner membrane of the mitochondria.  相似文献   

12.
The properties of two carnitine acyltransferases (CPT) purified from bovine liver are compared to confirm that they are different proteins. The soluble CPT and the inner CPT from mitochondria differ in subunit Mr, native Mr, pI and reactivity with thiol reagents. All eight free thiol groups in soluble CPT react with 5,5'-dithiobis-(2-nitrobenzoate) in the absence of any unfolding reagent, and activity is gradually lost. The inner CPT activity is completely stable in the presence of 5,5'-dithiobis-(2-nitrobenzoate), and only one thiol group per molecule of subunit is modified in the native enzyme. Antisera to each enzyme inhibit that enzyme, but do not cross-react. CPT activity in subcellular fractions can now be identified by titration with these antibodies. The soluble CPT from bovine liver is probably peroxisomal in origin, but, although antigenically similar, it differs from the peroxisomal carnitine octanoyltransferase found in rat and mouse liver in its specificity for the longer-chain acyl-CoA substrates.  相似文献   

13.
The concentration of total carnitine (i.e. carnitine plus acetylcarnitine) was measured in seminal plasma and spermatozoa of men and rams. In ram semen, there was a close correlation between the concentration of spermatozoa and that of total carnitine in the seminal plasma, indicating that the epididymal secretion was the sole source of seminal carnitine. The percentage of total carnitine present as acetylcarnitine was 40% in seminal plasma and 70-80% in spermatozoa. The acetylation state of carnitine in seminal plasma was apparently not influenced by the metabolic activity of spermatozoa in ejaculated ram semen as no change was found in the plasma concentration of carnitine or acetylcarnitine up to 45 min after ejaculation. In spermatozoa, the activity of carnitine acetyltransferase (EC 2.3.1.7) was approximately equivalent to that of carnitine palmitoyltransferase (EC 2.3.1.21); and the activity of these enzymes was similar in ram and human spermatozoa but greater in rat spermatozoa. It is concluded that there is no correlation between the content of either total carnitine or the carnitine acyltransferases and the respiratory capacity of spermatozoa.  相似文献   

14.
Carnitine acyltransferases in rat liver peroxisomes   总被引:3,自引:0,他引:3  
Carnitine acyltransferase activities, as well as acetyl-CoA, octanyl-CoA, and palmityl-CoA hydrolase activities, were assayed in mitochondrial, peroxisomal, and endoplasmic reticulum fractions after isopycnic density sucrose gradient fractionation of rat liver homogenates. Both the forward and reverse assays show that carnitine acetyltransferase and carnitine octanyltransferase are associated with peroxisomes, mitochondria, and endoplasmic reticulum, while carnitine palmityltransferase was detected in mitochondria. Palmityl-CoA and octanyl-CoA hydrolase activities were found in all but the leading edge of the peroxisome peak of the gradient. The palmityl-CoA hydrolase in peroxisomal fractions was due to lysosomal contamination since the activity coincided with the lysosomal marker, acid phosphatase. The substrate specificity for carnitine octanyltransferase activity was maximum with medium-chain-length derivatives (about 20 nmol/ min/mg protein) and decreased as the acyl length increased until very low activity (<1 nmol/min/mg protein) was obtained with palmityl-CoA. When acyltransferases in peroxisomes were assayed by measuring acylcarnitine formation, nearly theoretical amounts of acetylcarnitine and octanylcarnitine were formed, but lesser quantities of 12 and 14 carbon acylcarnitines and very low amounts of palmitylcarnitine were detected. The presence of a broad spectrum of medium-chain and short-chain carnitine acyltransferases in peroxisomes is consistent with a role for carnitine for shuttling short-chain and medium-chain acyl residues out of peroxisomes. Carnitine acyltransferase activity was not detected in peroxisomes from spinach leaves.  相似文献   

15.
Cells contain limited and sequestered pools of Coenzyme A (CoA) that are essential for activating carboxylate metabolites. Some acyl-CoA esters have high metabolic and signalling impact, so control of CoA ester concentrations is important. This and transfer of the activated acyl moieties between cell compartments without wasting energy on futile cycles of hydrolysis and resynthesis is achieved through the carnitine system. The location, properties of and deficiencies in the carnitine acyltransferases are described in relation to their influence on the CoA pools in the cell and, hence, on metabolism. The protection of free CoA pools in disease states is achieved by excretion of acyl-carnitine so that carnitine supplementation is required where unwanted acyl groups build up, such as in some inherited disorders of fatty acid oxidation. Acetyl-carnitine improves cognition in the brain and propionyl-carnitine improves cardiac performance in heart disease and diabetes. The therapeutic effects of carnitine and its esters are discussed in relation to the integrative influence of the carnitine system across CoA pools. Recent evidence for sequestered pools of activated acetate for synthesis of malonyl-CoA, for the synthesis of polyunsaturated fatty acids and for the inhibition of carnitine palmitoyltransferase 1 to regulate fatty acid oxidation is reviewed.  相似文献   

16.
Carnitine plays an essential role in mitochondrial fatty acid β-oxidation as a part of a cycle that transfers long-chain fatty acids across the mitochondrial membrane and involves two carnitine palmitoyltransferases (CPT1 and CPT2). Two distinct carnitine acyltransferases, carnitine octanoyltransferase (COT) and carnitine acetyltransferase (CAT), are peroxisomal enzymes, which indicates that carnitine is not only important for mitochondrial, but also for peroxisomal metabolism. It has been demonstrated that after peroxisomal metabolism, specific intermediates can be exported as acylcarnitines for subsequent and final mitochondrial metabolism. There is also evidence that peroxisomes are able to degrade fatty acids that are typically handled by mitochondria possibly after transport as acylcarnitines. Here we review the biochemistry and physiological functions of metabolite exchange between peroxisomes and mitochondria with a special focus on acylcarnitines.  相似文献   

17.
The acyltransferases that catalyze the synthesis of phosphatidic acid from labelled sn-[14C]glycero-3-phosphate and fatty acyl carnitine or coenzyme A derivatives have been shown to be present in both isolated mitochondria and microsomes from rat liver. The major reaction product was phosphatidic acid in both subcellular fractions. A small quantity of lysophosphatidic acid and neutral lipids were produced as by-products. Divalent cations had significant effects on both mitochondrial and microsomal fractions in stimulating acylation using palmitoyl CoA, but not when palmitoyl carnitine was used as the acyl donor. Palmitoyl CoA and palmitoyl carnitine could be used for acylation by both mitochondria and microsomes. Mitochondria were more permeable to palmitoyl carnitine and readily used it as the substrate for acylation. On the other hand, microsomes yielded a better rate with palmitoyl CoA and the rate of acylation from palmitoyl carnitine in microsomes was correlated with the degree of mitochondrial contamination. The enzymes were partially purified from Triton X-100 extracts of subcellular fractions. Based on the differences of substrate utilization, products formed, divalent cation effects, molecular weights, and polarity, the mitochondrial and microsomal acyltransferases appeared to be different enzymes.  相似文献   

18.
A novel brain-expressed protein related to carnitine palmitoyltransferase I   总被引:5,自引:0,他引:5  
Malonyl-CoenzymeA acts as a fuel sensor, being both an intermediate of fatty acid synthesis and an inhibitor of the two known isoforms of carnitine palmitoyltransferase I (CPT I), which control mitochondrial fatty acid oxidation. We describe here a novel CPT1 family member whose mRNA is present predominantly in brain and testis. Chromosomal locations and genome organization are reported for the mouse and human genes. The protein sequence contains all the residues known to be important for both carnitine acyltransferase activity and malonyl-CoA binding in other family members. Yeast expressed protein has no detectable catalytic activity with several different acyl-CoA esters that are good substrates for other carnitine acyltransferases, including the liver isoform of CPT I, which is also expressed in brain; however, it displays high-affinity malonyl-CoA binding. Thus this new CPT I related protein may be specialized for the metabolism of a distinct class of fatty acids involved in brain function.  相似文献   

19.
Carnitine acyltransferase activities for acetyl- and octanoyl-CoA (coenzyme A) occur in isolated peroxisomal, mitochondrial, and microsomal fractions from rat and pig liver. Solubility studies indicated that both peroxisomal carnitine acyltransferases were in the soluble matrix. In contrast, the microsomal carnitine acyltransferases were tightly associated with their membrane. The microsomal short-chain transferase, carnitine acetyltransferase, was solubilized and stabilized by extensive treatment of the membrane with 0.4 m KCl or 0.3 m sucrose in 0.1 m pyrophosphate at pH 7.5. The same treatment only partially solubilized the microsomal medium-chain transferase, carnitine octanoyltransferase.Although half of the total carnitine acetyltransferase activity in rat liver resides in peroxisomes and microsomes, previous reports have only investigated the mitochondrial activity. Transferase activity for acetyl- and octanoyl-CoA were about equal in peroxisomal and in microsomal fractions. A 200-fold purification of peroxisomal and microsomal carnitine acetyltransferases was achieved using O-(diethylaminoethyl)-cellulose and cellulose phosphate chromatography. This short-chain transferase preparation contained less than 5% as much carnitine octanoyltransferase and acyl-CoA deacylase activities. This fact, plus differences in solubility and stability of the microsomal transferase system for acetyl- and octanoyl-CoA indicate the existence of two separate enzymes: a carnitine acetyltransferase and a carnitine octanoyltransferase in peroxisomes and in microsomes.Peroxisomal and microsomal carnitine acetyltransferases had similar properties and could be the same protein. They showed identical chromatographic behavior and had the same pH activity profiles and major isoelectric points. They also had the same apparent molecular weight by gel filtration (59,000) and the same relative velocities and Km values for several short-chain acyl-CoA substrates. Both were active with propionyl-, acetyl-, malonyl-, and acetyacetyl-CoA, but not with succinyl- and β-hydroxy-β-methylglutaryl-CoA as substrates.  相似文献   

20.
Patients with autism spectrum disorders(ASD) present deficits in social interactions and communication, they also show limited and stereotypical patterns of behaviors and interests. The pathophysiological bases of ASD have not been defined yet. Many factors seem to be involved in the onset of this disorder. These include genetic and environmental factors, but autism is not linked to a single origin, only. Autism onset can be connected with various factors such as metabolic disorders: including carnitine deficiency. Carnitine is a derivative of two amino acid lysine and methionine. Carnitine is a cofactor for a large family of enzymes: the carnitine acyltransferases. Through their action these enzymes(and L-carnitine) are involved in energy production and metabolic homeostasis. Some people with autism(less than 20%) seem to have L-carnitine metabolism disorders and for these patients, a dietary supplementation with Lcarnitine is beneficial. This review summarizes the available information on this topic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号