首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Insulin-like growth factor (IGF)-binding protein (BP) has been purified from Cohn fraction IV of human plasma by acidification, ion exchange to remove endogenous ligands, and affinity chromatography on agarose-IGF-II. The pure protein appeared as a single peak by high performance reverse-phase and gel permeation chromatography (molecular mass, 45-50 kDa), but on sodium dodecyl sulfate-polyacrylamide gel electrophoresis gave a major band at 53 kDa and a minor band at 47 kDa, unreduced, or 43 and 40 kDa, respectively, reduced. The two bands stained for both protein and carbohydrate. After storage at 2 degrees C for 5 months at pH 3, two additional bands, at 26 and 22 kDa on unreduced gels, were also present. Autoradiography after affinity labeling with IGF-I or IGF-II tracer revealed a single labeled band of 61 kDa. BP, quantitated using a specific radioimmunoassay, was retained by agarose-immobilized IGF-I, IGF-II, concanavalin A, and wheat germ lectin, but not Helix pomatia lectin. Competitive binding curves using pure BP and human IGF-I and IGF-II as both labeled and unlabeled ligands indicated association constants of 2-3 X 10(10) liters/mol for both peptides, with a slightly higher affinity for IGF-II than IGF-I, and 0.9 binding sites for either peptide per 53-kDa protein. The exact relationship of this acid-stable IGF BP to the 150-kDa complex from which it is derived remains to be determined.  相似文献   

2.
Insulin-like growth factor (IGF) binding protein has been purified from adult rat serum by affinity chromatography on agarose-IGF-II and high performance reverse-phase chromatography. The final preparation contains two components, of apparent molecular mass 50 and 56 kDa nonreduced, or 44 and 48 kDa reduced, both of which specifically bind IGF-I and IGF-II. Competitive binding data indicate association constants of 5-10 X 10(10) l/mol for both IGFs, with a slightly higher affinity for IGF-II than IGF-I. Amino-terminal sequence analysis yields a unique sequence, identical in 11 of the first 15 amino acids with that of a human plasma IGF binding protein (Martin, J. L., and Baxter, R. C. (1986) J. Biol Chem. 261, 8754-8760), and with slight homology to other human and rat IGF binding proteins characterized to date. By analogy with the binding protein from human plasma, it is likely that the rat protein is part of the growth-hormone dependent complex which appears to carry most or all of the circulating IGFs.  相似文献   

3.
In the human circulation, the insulin-like growth factors (IGFs) circulate as part of a growth hormone-dependent 125- to 150-kDa complex. This complex has been postulated to contain, in addition to IGFs and one or more IGF-binding proteins, an acid-labile subunit (ALS) which does not itself bind IGFs. In this study, the ALS has been purified 1600-fold from human serum, and its binding properties have been examined. Fresh serum was fractionated on DEAE-Sephadex, and active fractions (determined by radioimmunoassay) were purified by affinity chromatography on an IGF-agarose column saturated with the plasma IGF-binding protein BP-53. After further high performance anion exchange chromatography, an ALS preparation was obtained which contained only an 84-86-kDa protein doublet, converting to a single 70-kDa band on N-glycanase treatment, and having an amino-terminal sequence unrelated to IGF-binding proteins or receptors. Pure ALS formed a complex with BP-53 (Ka approximately 5 x 10(8) M-1), immunoprecipitable by anti-BP-53 antiserum, only in the presence of IGF-I or IGF-II. This complex appeared at approximately 150 kDa on high performance gel chromatography. Pure ALS had no intrinsic IGF-binding activity and no effect on the binding of IGF-I or IGF-II to BP-53. These studies suggest that formation of the high molecular weight IGF-binding protein complex requires ALS, BP-53, and IGF.  相似文献   

4.
The biological effects of the insulin-like growth factors, IGF-I and IGF-II, on their receptors are modulated by IGF-binding proteins. Recently, we isolated a cDNA clone for one member of the family of IGF-binding proteins, BP-3A, a 30 kilodalton (kDa) protein synthesized by the BRL-3A rat liver cell line. BP-3A is related to but distinct from two other cloned IGF-binding proteins, the human amniotic fluid binding protein and the glycosylated binding subunit of the 150 kDa IGF-binding protein complex in serum. It is expressed in multiple nonneural tissues and in serum in the fetal rat and decreases after birth, similar to the developmental pattern of IGF-II expression. IGF-I, IGF-II, and their receptors are expressed in brain. The present study examines the expression of BP-3A in the rat central nervous system. By Northern blot analysis, BP-3A mRNA is present at high levels in brain stem, cerebral cortex, and hypothalamus from 21-day gestation rats and, like IGF-II mRNA, persists in adult rat brain. The site of BP-3A mRNA synthesis was localized by in situ hybridization to coronal sections of adult rat brain using 35S-labeled oligonucleotides, 48 bases in length, complementary and anticomplementary to the coding region of BP-3A. Specific hybridization of the BP-3A probe was observed exclusively to the choroid plexus extending from the level of the medial preoptic nucleus to the arcuate nucleus of the hypothalamus, similar to the previously reported preferential localization of IGF-II mRNA to the choroid plexus. Synthesis of BP-3A mRNA by choroid plexus suggested that BP-3A might be secreted into the cerebrospinal fluid. A 30 kDa IGF-binding protein was demonstrated in rat cerebrospinal fluid that is recognized by antibodies to BP-3A and, like purified BP-3A, has equal affinity for IGF-I and IGF-II. By analogy with other transport proteins synthesized by the choroid plexus, BP-3A may facilitate the secretion of IGF-II to the cerebrospinal fluid and modulate its biological actions at distant sites within the brain.  相似文献   

5.
Insulin-like growth factor-II (IGF-II) is the most abundant growth factor stored in human bone. Upon release from this storage depot, IGF-II could act in bone repair and in the coupling of bone formation to bone resorption, a process inherent to bone which is a key regulatory process for maintenance of bone tissue. In this study, we report the isolation and characterization of a novel IGF binding protein (IGFBP) from human bone and describe how this IGFBP may be involved in the fixation of IGF-II in human bone. This new IGFBP has an apparent molecular weight of 29 kDa and has several fold higher affinity for IGF-II than IGF-I which could explain the much greater abundance of IGF-II than IGF-I in human bone. In terms of biological activity, this IGFBP was found to potentiate the proliferative actions of IGF-II on bone cells. This work raises the possibility that this IGFBP may participate in mediating some of the actions of IGF-II.  相似文献   

6.
Our results show that an insulin-like growth factor binding protein, IGFBP-3, purified from rat serum, is an inhibitor of chick embryo fibroblast (CEF) growth. It abolished DNA synthesis in CEF stimulated by IGF-I as well as by human serum. Rat IGFBP-3 and IDF45 (an inhibitory diffusible factor secreted by mouse cells) had the same activities, confirming that they have an intrinsic capacity to inhibit serum stimulation and may be considered as growth inhibitors. Our data show that inhibition by IGFBP-3 of serum stimulation was not simply the result of its inhibition of IGF present in the serum: 1) While anti-IGF-I IgG was able to completely inhibit stimulation induced by added IGF-I, it did not decrease stimulation induced by 1% human serum. Anti-IGF-II IgG inhibited the stimulation induced by added IGF-II, but only 25% decreased the stimulation induced by 0.7% serum. The percent inhibition was not significantly increased when the concentration of serum was decreased to 0.2%, which induced 140% stimulation of DNA synthesis; 2) stimulation by 0.2% serum was much more inhibited by IGFBP-3 than by IgG anti IGF-II; 3) after separation of IGF-I and IGF-II from serum by chromatography of acidified serum proteins on BioGel P150, the remaining serum proteins (with a molecular mass greater than 45 kDa) which were depleted in IGF-I and -II (verified by RIA determination) still stimulated DNA synthesis, and this stimulation was 80% inhibited by IGFBP-3.  相似文献   

7.
Three members of a family of insulin-like growth factor binding proteins have been identified by nucleotide sequencing of cDNA clones: the binding subunit of the 150 kDa IGF-binding protein complex in human serum, the 30 kDa IGF binding protein in human amniotic fluid, and a 30 kDa binding protein (BP-3A) isolated from the rat BRL-3A cell line. The present study demonstrates by molecular hybridization and immunoreactivity that the human counterpart of rat BP-3A is a 34 kDa IGF binding protein that is present in human cerebrospinal fluid and is synthesized and secreted by the A673 human rhabdomyosarcoma cell line.  相似文献   

8.
Human insulin-like growth factor II (IGF-II) was produced in an Escherichia coli ompT strain as a 22.5-kDa fusion protein. IGF-II was fused to the carboxy-terminal of a synthetic 15-kDa IgG-binding protein, originating from staphylococcal protein A, via a unique methionine linker. During fermentation, the fusion protein was exported to the growth medium at levels exceeding 900 mg/liter and subsequently affinity purified on IgG Sepharose followed by ion exchange on S Sepharose. After chemical cleavage with CNBr, yielding an authentic IGF-II molecule, the recombinant IGF-II was purified to homogeneity by a two step procedure involving ion-exchange and reverse-phase HPLC. A substantial fraction of the secreted protein was found to be biologically active, eliminating the need for complex refolding procedures. The yield of highly purified and biologically active IGF-II was 5-7 mg/liter of fermenter broth. The IGF-II produced by this method displayed biochemical, immunological, receptor binding, and biological activity properties equal to those of native IGF-II isolated from human serum.  相似文献   

9.
Serum-free medium from batch cultures of Sf9 insect cells was examined for the occurrence of proteins related to the insulin-like growth factor family. We found that the Sf9 cell line constitutively produced and secreted a soluble protein with a MW of 27 kDa that exerted specific binding to human insulin-like growth factor-I (IGF-I) and -II. Moreover, the secreted protein bound human insulin and human proinsulin with higher affinity than IGF-I and -II. The order of affinity to the insulin peptides, determined by competitive inhibition of ligand binding, was: insulin > proinsulin > IGF-I > IGF-II. The dissociation constant (k(d)) for IGF-II was 28.5 +/- 1.7 nM and for insulin 7.2 +/- 1.3 nM, as determined by Scatchard plot analysis. The results suggest that the Sf9 cells produce an insulin binding protein similar to the human insulin-like growth factor binding protein-related protein 1 (IGFBP-rP1).  相似文献   

10.
We have purified a 14 kDa fragment of the 30 kDa binding protein for insulin-like growth factors (IGFs) from BRL-3A cell conditioned medium. The fragment binds IGF-I and IGF-II with similar specificity to the 30 kDa binding protein, but with lower affinity. It corresponds to the carboxy terminus of the native binding protein (residues 148-270), and is thought to arise by proteolysis. We infer that this region of the native binding protein contains, at least in part, the IGF binding domain.  相似文献   

11.
Insulin-like growth factors (IGF)-I and -II are bound to carrier or binding proteins in serum. There are at least two classes of binding protein: a high molecular weight complex and a low molecular weight species that is relatively unsaturated. Total binding capacity in serum generally is determined by incubating [125I]IGF with protein that has been stripped of IGF by acid gel filtration. We found that addition of NaCl to the assay increased binding to stripped guinea pig binding protein to about two to four times the level measured in the absence of salt. Stimulation by NaCl was optimal between concentrations of 0.6 and 1.4 M and also was observed when fetal calf or human sera were used as sources of stripped binding protein or when IGF-II was the ligand. Using chloride salts, the order of activity with respect to cations was Na+ greater than K+ greater than Li+. Na2HPO4 at 0.6 M was as stimulatory as 1.2 M NaCl but 0.6 M Na2SO4 was less effective. NH4HCO3 was as effective as NaCl at 0.6 M. Scatchard plots of data from competitive dilution experiments with [125I]IGF-I and unlabeled IGF-I showed that binding was heterogeneous in the absence of 0.6 M NaCl but linear in its presence. NaCl did not stimulate binding when whole serum was used, but after gel filtration of serum on Sephacryl 200 at pH 8, which does not dissociate IGFs from binding protein, binding to individual fractions was stimulated three- to fourfold by NaCl. Fractions stimulated included those containing the large complex or the unsaturated binding protein.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
We have studied insulin-like-growth-factor (IGF) binding in two subclones of the C2 myogenic cell line. In the permissive parental subclone, myoblasts differentiate spontaneously into myotubes in medium supplemented with fetal calf serum. Unlike permissive myoblasts, inducible myoblasts require high concentrations of insulin (1.6 microM) or lower concentrations of IGF-I (25 nM) to differentiate, and expression of MyoD1 is not constitutive. IGF receptors were studied in microsomal membranes of proliferating and quiescent myoblasts and myotubes. IGF-II binding was also studied in inducible myoblasts transfected with the MyoD1 cDNA (clone EP5). Both inducible and permissive cells exhibited a single class of binding sites with similar affinity for IGF-I (Kd 0.8-1.2 nM). Affinity cross-linking of [125I]IGF-I to microsomal membranes, under reducing conditions, revealed a binding moiety with an apparent molecular mass of 130 kDa in permissive cells and 140 kDa in inducible cells, which corresponded to the alpha subunit of the IGF-I receptor. In permissive quiescent myoblasts, linear Scatchard plots suggested that [125I]IGF-II bound to a single class of binding sites (Kd 0.6 nM) compatible with binding to the IGF-II/M6P receptor. This was confirmed by affinity cross-linking experiments showing a labeled complex with an apparent molecular mass of 260 kDa and 220 kDa when studied under reducing and non-reducing conditions, respectively. In contrast, competitive inhibition of [125I]IGF-II binding to inducible quiescent myoblasts generated curvilinear Scatchard plots which could be resolved into two single classes of binding sites. One of them corresponded to the IGF-II/M6P receptor (Kd 0.2 nM) as evidenced by cross-linking experiments. The second was the binding site of highest affinity (Kd 0.04 nM) which was less inhibited by IGF-I than by IGF-II and was not inhibited by insulin. It migrated in SDS/PAGE at a position equivalent a molecular mass of 140 kDa, under reducing conditions, and at approximately 300 kDa, under non-reducing conditions. The labeling of this atypical binding moiety was not inhibited by anti(IGF-II/M6P-receptor) immunoglobulin. It was also observed in permissive and inducible myoblasts at proliferating stage. It was absent for permissive quiescent myoblasts and from permissive and inducible myotubes. Forced expression of MyoD1 in inducible cells (EP5 cells) dramatically reduced [125I]IGF-II binding to this atypical receptor. It emerges from these experiments that C2 cells express a putative alpha 2 beta 2 IGF-II receptor structurally related to the insulin/IGF-I receptor family. It is present in myoblasts but not in myotubes.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
A growth hormone-dependent binding protein for insulin-like growth factors (IGF-I and IGF-II) has been isolated from human plasma. Analyzed on SDS gels, the preparation contained a major protein band of 53 kDa, and a minor band of 47 kDa. After transfer to nitrocellulose, both species bound iodinated IGF-I, and could be detected using an antibody raised against the purified preparation. In contrast, an IGF binding protein purified from human amniotic fluid bound IGF-I but was not detectable immunologically. The amino acid comparison of the plasma binding protein preparation was different from that reported for amniotic fluid and HEP G2 hepatoma proteins, and the unique amino-terminal sequence, Gly-Ala-Ser-Ser-Ala-Gly-Leu-Gly-Pro-Val-, was different from that of the amniotic fluid and hepatoma proteins. This study indicates that the growth hormone-dependent IGF binding protein of human plasma is structurally and immunologically distinct from other IGF binding proteins.  相似文献   

14.
A variety of human cell types, including human osteoblasts (hOBs), produce an IGFBP-4 protease, which cleaves IGFBP-4 in the presence of IGF-II. Recently, the pregnancy-associated plasma protein (PAPP)-A has been determined to be the IGF-II-dependent IGFBP-4 protease produced by human fibroblasts. This study sought to define the mechanism by which IGF-II enhances IGFBP-4 proteolysis. Addition of PAPP-A antibody blocked the IGFBP-4 proteolytic activity in hOB conditioned medium (CM), suggesting that PAPP-A is the major IGFBP-4 protease in hOB CM. Pre-incubation of IGFBP-4 with IGF-II, followed by removal of unbound IGF-II, led to IGFBP-4 proteolysis without further requirement of the presence of IGF-II in the reaction. In contrast, prior incubation of the partially purified IGFBP-4 protease from either hOB CM or human pregnancy serum with IGF-II did not lead to IGFBP-4 proteolysis unless IGF-II was re-added to the assays. To further confirm that the interaction between IGF-II and IGFBP-4 is required for IGFBP-4 protease activity, we prepared IGFBP-4 mutants, which contained the intact cleavage site (Met135-Lys136) but lacked the IGF binding activity, by deleting the residues Leu72-His74 in the IGF binding domain or Cys183-Glu237 that contained an IGF binding enhancing motif. The IGFBP-4 protease was unable to cleave these IGFBP-4 mutants, regardless of whether or not IGF-II was present in the assay. Conversely, an IGFBP-4 mutant with His74 replaced by an Ala, which exhibited normal IGF binding activity, was effectively cleaved in the presence of IGF-II. Taken together, these findings provided strong evidence that the interaction between IGF-II and IGFBP-4, rather than the direct interaction between IGF-II and IGFBP-4 protease, is required for optimal IGFBP-4 proteolysis.  相似文献   

15.
The binding of the 125I-labelled insulin-like growth factors I and II (125I-IGF I and 125I-IGF II) to the high-molecular-mass binding protein of human serum was characterized. With diluted human serum both growth factors showed optimal specific binding at 4 degrees C and pH 5-6. When 0.1% Triton X-100 was present in the incubation buffer an increase in the affinity of the IGF-binding protein was induced, which produced an enhanced binding of IGF I and IGF II. Competition experiments with various peptide hormones revealed that the native IGF-binding protein complex binds both the IGF I and IGF II with high specificity. Analysis of binding data according to the method of Scatchard resulted in linear plots for IGF I and IGF II respectively, indicating that in human serum only a single class of non-interacting binding sites is present. At optimal binding conditions the dissociation constants were determined to be 0.28 x 10(-9) M for IGF I binding and 0.66 x 10(-9) M for IGF II. Human serum was gel-filtered on Sepharose CL-6B at neutral pH and the eluate was assayed for binding activity with both IGF I and IGF II. One peak with an apparent molecular mass of 175 kDa and a Stokes radius of 4.8 nm was determined for both growth factors. Thus, our data suggest that human serum contains one class of high-molecular-mass binding protein with comparable binding characteristics for IGF I and IGF II.  相似文献   

16.
The 140 kDa insulin-like growth factor (IGF)-binding protein complex in human serum consists of three subunits: an acid-labile, non-IGF-binding glycoprotein (alpha-subunit), an IGF-binding glycoprotein known as BP-53 or IGFBP-3 (beta-subunit), and IGF-I or IGF-II (gamma-subunit). This study investigates the regulation, by salt and glycosaminoglycans, of ternary (alpha-beta-gamma) complex formation, measured by incubating radioiodinated alpha-subunit with a mixture of IGF-I and IGFBP-3 and precipitating bound radioactivity with an anti-IGFBP-3 antiserum. Increasing NaCl concentrations progressively decreased ternary complex formation without any effect on binary (beta-gamma) complex formation. In 0.15 M-NaCl, the association constant for the ternary complex was 0.318 +/- 0.092 nM-1, 100-fold lower than that for the binary complex. Glycosaminoglycans also inhibited ternary complex formation without affecting the binary complex. Heparin [50% inhibition at 0.27 +/- 0.08 units/ml (1.5 +/- 0.4 micrograms/ml)] was more potent than heparan sulphate (50% inhibition at 15 +/- 7 micrograms/ml), with chondroitin sulphate even less potent. The inhibition by heparin was due principally to a decrease in binding affinity, from 0.604 +/- 0.125 to 0.151 +/- 0.024 nM-1 in the presence of 0.25 units of heparin/ml, with a slight decrease in the number of apparent binding sites from 1.05 +/- 0.08 to 0.85 +/- 0.15 mol of alpha-subunit bound/mol of beta-subunit. Since the ternary IGF-binding protein complex cannot cross the capillary barrier, it is proposed that a decrease in the affinity of the complex, mediated by circulating or cell-associated glycosaminoglycans, may be important in the passage of IGFs and IGFBP-3 to the tissues.  相似文献   

17.
Site-specific cleavage of human insulin-like growth factor II mRNAs requires two cis-acting elements, I and II, that are both located in the 3' untranslated region and separated by almost 2 kb. These elements can interact and form a stable RNA-RNA stem structure. In this study we have initiated the investigation of transacting factors involved in the cleavage of IGF-II mRNAs. The products of the cleavage reaction accumulate in the cytoplasm, suggesting that cleavage occurs in this cellular compartment. By electrophoretic mobility shift assays, we have identified a cytoplasmic protein with an apparent molecular weight of 48-50 kDa, IGF-II cleavage unit binding protein (ICU-BP), that binds to the stem structure formed by interaction of parts of the cis-acting elements I and II. The binding is resistant to high K+ concentrations and is dependent on Mg2+. In addition, ICU-BP binding is dependent on the cell density and correlates inversely with the IGM-II mRNA levels. In vivo cross-linking data show that this protein is associated with IGF-II mRNAs in vivo.  相似文献   

18.
The insulin-like growth factors, IGF-I and IGF-II, circulate in both humans and rats as part of a 125-150 kDa complex comprising IGFs, the IGF binding protein IGFBP-3, and an acid-labile subunit. Clones encoding rat acid-labile subunit have been isolated from a rat liver cDNA library probed with a human acid-labile subunit cDNA. Two overlapping clones encode a leucine-rich protein of 576 amino acids preceded by a 27-residue signal sequence, with 78% homology to the human acid-labile subunit. Northern analysis of mRNA from adult rat brain, kidney, heart, lung, spleen, muscle and liver shows a major species of about 4.4 kb and minor bands of about 2 kb, 1.4 kb and 1 kb. The tissue distribution of this protein may therefore be wider than previously recognized.  相似文献   

19.
Ligand blotting analysis of serum from the horse using radiolabelled IGF-I revealed a protein at 96 kDa which was not present in serum from goat, cow, sheep, deer or donkey. These latter species all displayed five labelled bands in the range 24 to 41 kDa. Conversely, these were only weakly labelled in serum from the horse. Size exclusion chromatography of horse serum pre-incubated with radiolabelled IGF-I revealed reduced binding in the 130-kDa peak compared with goat plasma, and ligand blotting analysis indicated the 96-kDa protein was present in this peak. The 96-kDa protein from horse serum binds IGF-I and IGF-II specifically and appears to be unique to this species. The nature of this protein is at present unknown.  相似文献   

20.
Photoreduction and incorporation of iron into ferritins.   总被引:3,自引:1,他引:2       下载免费PDF全文
The characteristics of a new kallikrein-binding protein in human serum and its activities were studied. Both the kallikrein-binding protein and alpha 1-antitrypsin form 92 kDa SDS-stable and heat-stable complexes with human tissue kallikrein. In non-SDS/PAGE, the mobility of these complexes differ. Complex-formation between kallikrein and the binding protein is inhibited by heparin, whereas that between kallikrein and alpha 1-antitrypsin is heparin-resistant. In normal or alpha 1-antitrypsin-deficient-serum, the amount of 92 kDa SDS-stable complex formed upon addition of kallikrein is not related to serum alpha 1-antitrypsin levels. The rate of complex-formation between kallikrein and the binding protein is 12 times higher than that between kallikrein and alpha 1-antitrypsin. Purified alpha 1-antitrypsin, which exhibits normal elastase binding, has a kallikrein-binding activity less than 5% of that of serum. Binding of tissue kallikrein in serum is not inhibited by increasing elastase concentrations, and elastase binding in serum is not inhibited by excess tissue kallikrein. A specific monoclonal antibody to human alpha 1-antitrypsin does not bind to either 92 kDa endogenous or exogenous kallikrein complexes isolated from human serum. The studies demonstrate a new tissue kallikrein-binding protein, distinct from alpha 1-antitrypsin, is present in human serum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号