共查询到20条相似文献,搜索用时 15 毫秒
1.
Disease-associated mutations in human mannose-binding lectin compromise oligomerization and activity of the final protein 总被引:13,自引:0,他引:13
Larsen F Madsen HO Sim RB Koch C Garred P 《The Journal of biological chemistry》2004,279(20):21302-21311
Deficiency of human mannose-binding lectin (MBL) caused by mutations in the coding part of the MBL2 gene is associated with increased risk and severity of infections and autoimmunity. To study the biological consequences of MBL mutations, we expressed wild type MBL and mutated MBL in Chinese hamster ovary cells. The normal MBL cDNA (WT MBL-A) was cloned, and the three known natural and two artificial variants were expressed in Chinese hamster ovary cells. When analyzed, WT MBL-A formed covalently linked higher oligomers with a molecular mass of about 300-450 kDa, corresponding to 12-18 single chains or 4-6 structural units. By contrast, all MBL variants formed a dominant band of about 50 kDa, with increasingly weaker bands at 75, 100, and 125 kDa corresponding to two, three, four, and five chains, respectively. In contrast to WT MBL-A, variant MBL formed noncovalent oligomers containing up to six chains (two structural units). MBL variants bound ligands with a markedly reduced capacity compared with WT MBL-A. Mutations in the collagenous region of human MBL compromise assembly of higher order oligomers, resulting in reduced ligand binding capacity and thus reduced capability to activate complement. 相似文献
2.
3.
GPR56 is a member of the adhesion G protein-coupled receptor (GPCR) family. Mutations in GPR56 cause a devastating human brain malformation called bilateral frontoparietal polymicrogyria (BFPP). Using the N-terminal fragment of GPR56 (GPR56(N)) as a probe, we have recently demonstrated that collagen III is the ligand of GPR56 in the developing brain. In this report, we discover a new functional domain in GPR56(N), the ligand binding domain. This domain contains four disease-associated mutations and two N-glycosylation sites. Our study reveals that although glycosylation is not required for ligand binding, each of the four disease-associated mutations completely abolish the ligand binding ability of GPR56. Our data indicates that these four single missense mutations cause BFPP mostly by abolishing the ability of GPR56 to bind to its ligand, collagen III, in addition to affecting GPR56 protein surface expression as previously shown. 相似文献
4.
Loss of parkin function is the major cause of autosomal recessive Parkinson's disease (ARPD). A wide variety of parkin mutations have been identified in patients; however, the pathophysiological mechanisms leading to the inactivation of mutant parkin are poorly understood. In this study we characterized pathogenic C- and N-terminal parkin mutants and found distinct pathways of parkin inactivation. Deletion of the C terminus abrogated the association of parkin with cellular membranes and induced rapid misfolding and aggregation. Four N-terminal missense mutations, located within the ubiquitin-like domain (UBL), decrease the stability of parkin; as a consequence, these mutants are rapidly degraded by the proteasome. Furthermore, we present evidence that a smaller parkin species of 42 kDa, which is present in extracts prepared from human brain and cultured cells, originates from an internal start site and lacks the N-terminal UBL domain. 相似文献
5.
Kim KY Kovács M Kawamoto S Sellers JR Adelstein RS 《The Journal of biological chemistry》2005,280(24):22769-22775
Human families with single amino acid mutations in nonmuscle myosin heavy chain (NMHC) II-A (MYH9) and II-C (MYH14) have been described as have mice generated with a point mutation in NMHC II-B (MYH10). These mutations (R702C and N93K in human NMHC II-A, R709C in murine NMHC II-B, and R726S in human NMHC II-C) result in phenotypes affecting kidneys, platelets, and leukocytes (II-A), heart and brain (II-B), and the inner ear (II-C). To better understand the mechanisms underlying these defects, we characterized the in vitro activity of mutated and wild-type baculovirus-expressed heavy meromyosin (HMM) II-B and II-C. We also expressed two alternatively spliced isoforms of NMHC II-C which differ by inclusion/exclusion of eight amino acids in loop 1, with and without mutations. Comparison of the actin-activated MgATPase activity and in vitro motility shows that mutation of residues Asn-97 and Arg-709 in HMM II-B and the homologous residue Arg-722 (Arg-730 in the alternatively spliced isoform) in HMM II-C decreases both parameters but affects in vitro motility more severely. Analysis of the transient kinetics of the HMM II-B R709C mutant shows an extremely tight affinity of HMM for ADP and a very slow release of ADP from acto-HMM. Although mutations generally decreased HMM activity, the R730S mutation in HMM II-C, unlike the R730C mutation, had no effect on actin-activated MgATPase activity but decreased the rate of in vitro motility by 75% compared with wild type. Insertion of eight amino acids into the HMM II-C heavy chain increases both actin-activated MgATPase activity and in vitro motility. 相似文献
6.
Leonardi R Subramanian C Jackowski S Rock CO 《The Journal of biological chemistry》2012,287(18):14615-14620
Isocitrate dehydrogenase (IDH) is a reversible enzyme that catalyzes the NADP(+)-dependent oxidative decarboxylation of isocitrate (ICT) to α-ketoglutarate (αKG) and the NADPH/CO(2)-dependent reductive carboxylation of αKG to ICT. Reductive carboxylation by IDH1 was potently inhibited by NADP(+) and, to a lesser extent, by ICT. IDH1 and IDH2 with cancer-associated mutations at the active site arginines were unable to carry out the reductive carboxylation of αKG. These mutants were also defective in ICT decarboxylation and converted αKG to 2-hydroxyglutarate using NADPH. These mutant proteins were thus defective in both of the normal reactions of IDH. Biochemical analysis of heterodimers between wild-type and mutant IDH1 subunits showed that the mutant subunit did not inactivate reductive carboxylation by the wild-type subunit. Cells expressing the mutant IDH are thus deficient in their capacity for reductive carboxylation and may be compromised in their ability to produce acetyl-CoA under hypoxia or when mitochondrial function is otherwise impaired. 相似文献
7.
Chiang NY Hsiao CC Huang YS Chen HY Hsieh IJ Chang GW Lin HH 《The Journal of biological chemistry》2011,286(16):14215-14225
Loss-of-function mutations in the gene encoding G protein-coupled receptor 56 (GPR56) lead to bilateral frontoparietal polymicrogyria (BFPP), an autosomal recessive disorder affecting brain development. The GPR56 receptor is a member of the adhesion-GPCR family characterized by the chimeric composition of a long ectodomain (ECD), a GPCR proteolysis site (GPS), and a seven-pass transmembrane (7TM) moiety. Interestingly, all identified BFPP-associated missense mutations are located within the extracellular region of GPR56 including the ECD, GPS, and the extracellular loops of 7TM. In the present study, a detailed molecular and functional analysis of the wild-type GPR56 and BFPP-associated point mutants shows that individual GPR56 mutants most likely cause BFPP via different combination of multiple mechanisms. These include reduced surface receptor expression, loss of GPS proteolysis, reduced receptor shedding, inability to interact with a novel protein ligand, and differential distribution of the 7TM moiety in lipid rafts. These results provide novel insights into the cellular functions of GPR56 receptor and reveal molecular mechanisms whereby GPR56 mutations induce BFPP. 相似文献
8.
Krakowiak A Pace HC Blackburn GM Adams M Mekhalfia A Kaczmarek R Baraniak J Stec WJ Brenner C 《The Journal of biological chemistry》2004,279(18):18711-18716
Hint, histidine triad nucleotide-binding protein, is a universally conserved enzyme that hydrolyzes AMP linked to lysine and, in yeast, functions as a positive regulator of the RNA polymerase II C-terminal domain kinase, Kin28. To explore the biochemical and structural bases for the adenosine phosphoramidate hydrolase activity of rabbit Hint, we synthesized novel substrates linking a p-nitroaniline group to adenylate (AMP-pNA) and inhibitors that consist of an adenosine group and 5'-sulfamoyl (AdoOSO(2)NH(2)) or N-ethylsulfamoyl (AdoOSO(2)NHCH(2)CH(3)) group. AMP-pNA is a suitable substrate for Hint that allowed characterization of the inhibitors; titration of each inhibitor into AMP-pNA assays revealed their K(i) values. The N-ethylsulfamoyl derivative has a 13-fold binding advantage over the sulfamoyl adenosine. The 1.8-A cocrystal structure of rabbit Hint with N-ethylsulfamoyl adenosine revealed a binding site for the ethyl group against Trp-123, a residue that reaches across the Hint dimer interface to interact with the alkyl portion of the inhibitor and, presumably, the alkyl portion of a lysyl substrate. Ser-107 is positioned to donate a hydrogen bond to the leaving group nitrogen. Consistent with a role in acid-base catalysis, the Hint S107A mutant protein displayed depressed catalytic activity. 相似文献
9.
Pechtl IC Kavanagh D McIntosh N Harris CL Barlow PN 《The Journal of biological chemistry》2011,286(13):11082-11090
Many mutations associated with atypical hemolytic uremic syndrome (aHUS) lie within complement control protein modules 19-20 at the C terminus of the complement regulator factor H (FH). This region mediates preferential action of FH on self, as opposed to foreign, membranes and surfaces. Hence, speculation on disease mechanisms has focused on deficiencies in regulation of complement activation on glomerular capillary beds. Here, we investigate the consequences of aHUS-linked mutations (R53H and R78G) within the FH N-terminal complement control protein module that also carries the I62V variation linked to dense-deposit disease and age-related macular degeneration. This module contributes to a four-module C3b-binding site (FH1-4) needed for complement regulation and sufficient for fluid-phase regulatory activity. Recombinant FH1-4(V62) and FH1-4(I62) bind immobilized C3b with similar affinities (K(D) = 10-14 μM), whereas FH1-4(I62) is slightly more effective than FH1-4(V62) as cofactor for factor I-mediated cleavage of C3b. The mutant (R53H)FH1-4(V62) binds to C3b with comparable affinity (K(D) ~12 μM) yet has decreased cofactor activities both in fluid phase and on surface-bound C3b, and exhibits only weak decay-accelerating activity for C3 convertase (C3bBb). The other mutant, (R78G)FH1-4(V62), binds poorly to immobilized C3b (K(D) >35 μM) and is severely functionally compromised, having decreased cofactor and decay-accelerating activities. Our data support causal links between these mutations and disease; they demonstrate that mutations affecting the N-terminal activities of FH, not just those in the C terminus, can predispose to aHUS. These observations reinforce the notion that deficiency in any one of several FH functional properties can contribute to the pathogenesis of this disease. 相似文献
10.
Sebastin A. Esperante Nathalia Varejo Francisca Pinheiro Ricardo Sant'Anna Juan Romn Luque-Ortega Carlos Alfonso Valentina Sora Elena Papaleo Germn Rivas David Reverter Salvador Ventura 《The Journal of biological chemistry》2021,297(3)
Hereditary transthyretin amyloidosis (ATTR) is an autosomal dominant disease characterized by the extracellular deposition of the transport protein transthyretin (TTR) as amyloid fibrils. Despite the progress achieved in recent years, understanding why different TTR residue substitutions lead to different clinical manifestations remains elusive. Here, we studied the molecular basis of disease-causing missense mutations affecting residues R34 and K35. R34G and K35T variants cause vitreous amyloidosis, whereas R34T and K35N mutations result in amyloid polyneuropathy and restrictive cardiomyopathy. All variants are more sensitive to pH-induced dissociation and amyloid formation than the wild-type (WT)-TTR counterpart, specifically in the variants deposited in the eyes amyloid formation occurs close to physiological pHs. Chemical denaturation experiments indicate that all the mutants are less stable than WT-TTR, with the vitreous amyloidosis variants, R34G and K35T, being highly destabilized. Sequence-induced stabilization of the dimer–dimer interface with T119M rendered tetramers containing R34G or K35T mutations resistant to pH-induced aggregation. Because R34 and K35 are among the residues more distant to the TTR interface, their impact in this region is therefore theorized to occur at long range. The crystal structures of double mutants, R34G/T119M and K35T/T119M, together with molecular dynamics simulations indicate that their strong destabilizing effect is initiated locally at the BC loop, increasing its flexibility in a mutation-dependent manner. Overall, the present findings help us to understand the sequence-dynamic-structural mechanistic details of TTR amyloid aggregation triggered by R34 and K35 variants and to link the degree of mutation-induced conformational flexibility to protein aggregation propensity. 相似文献
11.
Mechanism of ubiquitin carboxyl-terminal hydrolase. Borohydride and hydroxylamine inactivate in the presence of ubiquitin 总被引:4,自引:0,他引:4
Ubiquitin (Ub) carboxyl-terminal hydrolase (E) catalyzes the hydrolysis, at the Ub-carboxyl terminus, of a wide variety of C-terminal Ub derivatives. We show that the enzyme is inactivated by millimolar concentrations of either sodium borohydride or hydroxylamine, but only if Ub is present. We have interpreted these results on the assumption that the hydrolase mechanism is one of nucleophilic catalysis with an acyl-Ub-E intermediate. The borohydride-inactivated enzyme has the following properties. It is a stoichiometric complex of E and Ub containing tritium from sodium boro[3H]hydride. This complex is stable at neutral pH in 5 M urea and can be isolated on the basis of size on a sieving column, but a labeled product the size of Ub is released under more strongly denaturing conditions. The "Ub" released in acid is Ub-carboxyl-terminal aldehyde, based on the observations that: it contains the tritium present in the reduced complex and it is able to form the inactive enzyme from a stoichiometric amount of fresh enzyme, and inactivation is accompanied by E-Ub adduct formation; it has chemical properties expected of an aldehyde: after a second reduction of the Ub released with boro[3H]hydride and complete acid hydrolysis, tritium counts are found in ethanolamine (the carboxyl-terminal residue of Ub is glycine). These results suggest that enzyme and Ub combine in an equilibrium reaction to form an ester or thiol ester adduct (at the Ub-carboxyl terminus), and that this adduct is trapped by borohydride to give a very stable inactive E-Ub (thio) hemiacetal which is unable to undergo a second reduction step and which can release Ub-aldehyde in mild acid. Inactivation in the presence of hydroxylamine of hydrolase occurs once during hydrolysis of 1200 molecules of Ub-hydroxamate by the enzyme. The hydrolysis/inactivation ratio is constant over the range of 10-50 mM hydroxylamine showing that forms of E-Ub with which hydroxylamine and water react are different and not in rapid equilibrium. The inactive enzyme may be an acylhydroxamate formed from an E-Ub mixed anhydride generated from the E-Ub (thiol) ester inferred from the borohydride study. A direct radioactive assay for the hydrolase has been developed using the Ub-C-terminal amide of [3H]butanol-4-amine as substrate. 相似文献
12.
The familial form of amyotrophic lateral sclerosis is caused by mutations in the SOD1 gene encoding the cytosolic antioxidant enzyme Cu,Zn superoxide dismutase. Although there is no clear correlation between disease and dismutating catalytic activity among the various disease-associated SOD1 alleles, all of the known missense mutations significantly alter the half-life of the encoded polypeptides. Using transient transfection studies in mammalian cells, it was demonstrated that a frameshift mutation in SOD1 which results in a truncated polypeptide is similarly destabilized. Using an epitope-tagging strategy to discriminate between mutant and wild-type SOD1 polypeptides, no evidence for dominant effects on polypeptide stability was detected, including that of a positive effect of the wild-type on mutant SOD1 polypeptides or that of a negative effect of mutant on wild-type SOD1 polypeptides. These experiments thus favor a non-catalytic role of mutant forms of SOD1 in disease progression. 相似文献
13.
Summary A mixed bacterial culture which was obtained in a previous enrichment grew on parathion, an organophosphate insecticide, as a sole carbon and energy source. A cell-free enzyme preparation from this culture detoxified by hydrolysis eight commercially used organophosphate insecticides.Fermentation procedures for the production of this parathion hydrolase activity were examined to determine if this enzyme activity could be produced economically. The mixed culture was grown using sterile or non-sterile procedures in 4 or 11 continuous and batch culture fermentations. A pure Pseudomonas sp isolated from the mixed culture expressed parathion hydrolase activity when grown under axenic fermentation conditions on industrially used media such as meat extract, soya bean meal, and corn extract. The optimal conditions for production of parathion hydrolase activity were determined for both pure and mixed cultures. The yield of parathion hydrolase activity/ of fermentation broth per hour was improved 22 fold by growing the pure culture on an industrial meat extract medium instead of the mixed culture on parathion. 相似文献
14.
Acylpeptide hydrolase activity from erythrocytes 总被引:3,自引:0,他引:3
Acylpeptide hydrolase, which cleaves the NH2-terminal acetylated or formylated amino acid from a blocked peptide, has been purified to apparent homogeneity from human erythrocytes. The enzyme catalyzes the hydrolysis of a diverse number of peptides and displays different pH optima for certain substrates in doing so. Zinc inhibits to the same extent the hydrolysis of both the most efficient and the least efficient substrates. This enzyme may play a pivotal role in the processing of polypeptide chains during biosynthesis. 相似文献
15.
Sulfhydryl-alkylating reagents inactivate the NAD glycohydrolase activity of pertussis toxin 总被引:2,自引:0,他引:2
The combination of ATP, CHAPS (3-[(3-cholamidopropyl)dimethylammonio]-1-propane-sulfonate), and DTT (dithiothreitol) is known to promote the expression of the NAD glycohydrolase activity of pertussis toxin, which resides in the toxin's S1 subunit. By monitoring changes in electrophoretic mobility, we have found that ATP and CHAPS act by promoting the reduction of the disulfide bond of the S1 subunit. In addition, ATP, CHAPS, and DTT allowed sulfhydryl-alkylating reagents to inactivate the NAD glycohydrolase activity. In the presence of iodo[14C]acetate, the combination of ATP, CHAPS, and DTT increased 14C incorporation into only the S1 subunit of the toxin, indicating that alkylation of this subunit was responsible for the loss of activity. If iodoacetate is used as the alkylating reagent, alkylation can be monitored by an acidic shift in the isoelectric point of the S1 peptide. Including NAD in alkylation reactions promoted the accumulation of a form of the S1 peptide with an isoelectric point intermediate between that of native S1 and that of S1 alkylated in the absence of NAD. This result suggests that NAD interacts with one of the two cysteines of the S1 subunit. In addition, we found the pH optimum for the NAD glycohydrolase activity of pertussis toxin is 8, which may reflect the participation of a cysteine in the catalytic mechanism of the toxin. 相似文献
16.
Epoxide hydrolase activity of Streptomyces strains 总被引:2,自引:0,他引:2
Zocher F Enzelberger MM Bornscheuer UT Hauer B Wohlleben W Schmid RD 《Journal of biotechnology》2000,77(2-3):287-292
The discovery of epoxide hydrolases within a Streptomyces sp. strain collection is described. Screening was performed in 96 well microtiter plates using a modified 4-(p-nitrobenzyl)pyridine assay with styrene oxide, 1,2-epoxy-hexane or 3-phenyl ethylglycidate (3-PEG) as substrates. Out of 120 strains investigated, S. antibioticus Tü4, S. arenae Tü495 and S. fradiae Tü27 exhibited epoxide hydrolase activity. These strains were further investigated by performing laboratory-scale biotransformations utilizing styrene oxide, 1,2-epoxy-hexane and 3-PEG followed by subsequent quantitative analysis employing chiral gas chromatography. The highest conversions were achieved with whole cells from S. antibioticus Tü4 in the presence of 10% (v/v) DMSO. However, enantioselectivity was only satisfying (E = 31) in the presence of 5% (v/v) acetone, which allowed isolation of optically pure non-hydrolyzed (R)-styrene oxide (99% enantiomeric excess (ee)) and (S)-phenyl-1,2-ethandiol (72% ee) at 55% conversion after 24 h. The resolution of 3-PEG proceeded with slightly lower enantioselectivity albeit higher reaction rates. With S. fradiae Tü27 and S. arenae Tü495 enantioselectivity towards styrene oxide was only E = 3-4. 相似文献
17.
18.
J Z Haeggstr?m A Wetterholm B L Vallee B Samuelsson 《Biochemical and biophysical research communications》1990,173(1):431-437
Purified leukotriene A4 hydrolase from human leukocytes is shown to exhibit peptidase activity towards the synthetic substrates alanine-4-nitroanilide and leucine-4-nitroanilide. The enzymatic activity is abolished after heat treatment (70 degrees C, 30 min). At 37 degrees C these substrates are hydrolyzed at a rate of 380 and 130 nmol/mg/min, respectively, and there is no enzyme inhibition during catalysis. Apo-leukotriene A4 hydrolase, obtained by removal of the intrinsic zinc atom, exhibits only a low peptidase activity which can be restored by the addition of stoichiometric amounts of zinc. Reconstitution of the apoenzyme with cobalt results in a peptidase activity which exceeds that of enzyme reactivated with zinc. Preincubation of the native enzyme with leukotriene A4 reduces the peptidase activity. Semipurified preparations of bovine intestinal aminopeptidase and porcine kidney aminopeptidase do not hydrolyze leukotriene A4 into leukotriene B4. 相似文献
19.
Ohkubo N Vitek MP Morishima A Suzuki Y Miki T Maeda N Mitsuda N 《Journal of neurochemistry》2007,103(2):820-830
Reelin plays an important role in the migration of embryonic neurons, but its continuing presence suggests additional functions in the brain. We now report a novel function where reelin protects P19 embryonal cells from apoptosis during retinoic acid-induced neuronal differentiation. This increased survival is associated with reelin activation of the phosphatidyl-inositol-3-kinase (PI3 K)/Akt pathway. When PI3 K was inhibited with LY294002, reelin failed to protect against this retinoic acid-induced apoptosis. The protective effect of reelin includes activating the Src-family kinases/PI3 K/Akt pathway which then led to selective phosphorylation of Bcl-2/Bcl-XL associated death promoter (BAD) at serine-136, while the phosphorylation-incompetent mutation of BAD (S136A) suppressed this protection. These and additional studies define a novel pathway where reelin binds apoE receptors, significantly activates the PI3 K/Akt pathway causing phosphorylation of BAD which helps to protect cells from apoptosing, thus serving an important role in promoting the survival of maturing neurons in the brain. 相似文献
20.
Ataxia with oculomotor apraxia type 1 (AOA1) is an early onset autosomal recessive spinocerebellar ataxia with a defect in the protein Aprataxin, implicated in the response of cells to DNA damage. We describe here the expression of a recombinant form of Aprataxin and show that it has dual DNA binding and nucleotide hydrolase activities. This protein binds to double-stranded DNA with high affinity but is also capable of binding double-stranded RNA and single-strand DNA, with increased affinity for hairpin structures. No increased binding was observed with a variety of DNA structures mimicking intermediates in DNA repair. The DNA binding observed here was not dependent on zinc, and the addition of exogenous zinc abolished DNA binding. We also demonstrate that Aprataxin hydrolyzes with similar efficiency the model histidine triad nucleotide-binding protein substrate, AMPNH2, and the Fragile histidine triad protein substrate, Ap4A. These activities were significantly reduced in the presence of duplex DNA and to a lesser extent in the presence of single-strand DNA, and removal of the N-terminal Forkhead associated domain did not alter activity. Finally, comparison of sequence relationships between the histidine triad superfamily members shows that Aprataxin forms a distinct branch in this superfamily. In addition to its capacity for nucleotide binding and hydrolysis, the observation that it also binds DNA and RNA adds a new dimension to this superfamily of proteins and provides further support for a role for Aprataxin in the cellular response to DNA damage. 相似文献