首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polyamines as modulators of salt tolerance in rice cultivars   总被引:24,自引:1,他引:24       下载免费PDF全文
The effect of NaCl on the endogenous levels of diamine, putrescine and polyamines, spermidine and spermine, was studied in the shoot system of salt-tolerant and salt-sensitive lines of rice (Oryza sativa L.) cultivars during three growth stages. Salt stress increased the levels of diamine and polyamine in varying degrees among nine rice cultivars investigated. Salt tolerant AU1, Co43, and CSC1 were effective in maintaining high concentrations of spermidine and spermine, while the content of putrescine was not significantly altered in all the growth stages when plants were exposed to salinity. The salt sensitivity in rice was associated with excessive accumulation of putrescine and with low levels of spermidine and spermine in the shoot system of salt-sensitive cultivars Co36, CSC2, GR3, IR20, TKM4, and TKM9 under saline condition. One of the possible mechanisms of saline resistance was observed to be due to the highly increased polyamines against the low increase in diamines. Alternatively, the salt sensitivity could be due to high increase of diamines and an incapacity to maintain high levels of polyamines.  相似文献   

2.
Three tobacco cell lines have been analyzed which are resistant to lethal inhibitors of either putrescine production or conversion of putrescine into polyamines. Free and conjugated putrescine pools, the enzymic activities (arginine, ornithine, and S-adenosylmethionine decarboxylases), and the growth characteristics during acidic stress were measured in suspension cultures of each cell line. One cell line, resistant to difluoromethylornithine (Dfr1) had a very low level of ornithine decarboxylase activity which was half insensitive to the inhibitor in vitro. Intracellular free putrescine in Dfr1 was elevated 10-fold which was apparently due to a 20-fold increase in the arginine decarboxylase activity. The increased free putrescine titer was not reflected in an increased level of spermidine, spermine, or putrescine conjugation. Dfr1 cultures survived acidic stress at molarities which were lethal to wild type cultures. Two other mutants, resistant to methylglyoxal bis(guanylhydrazone) (Mgr3, Mgr12), had near normal levels of the three decarboxylases and normal titers of free putrescine, spermidine, and spermine. Both mutants however had elevated levels of conjugated putrescine. Mgr12 had an increased sensitivity to acidic medium. These results suggest that increased levels of free putrescine production may enhance the ability of tobacco cells to survive acid stress. This was supported by the observation that cytotoxic effects of inhibiting arginine decarboxylase in wild type cell lines were dependent on the acidity of the medium.  相似文献   

3.
Cereal leaves subjected to the osmotica routinely used for protoplast isolation show a rapid increase in arginine decarboxylase activity, a massive accumulation of putrescine, and slow conversion of putrescine to the higher polyamines, spermidine, and spermine (HE Flores, AW Galston 1984 Plant Physiol 75: 102). Mesophyll protoplasts from these leaves, which have a high putrescine:polyamine ratio, do not undergo sustained division. By contrast, in Nicotiana, Capsicum, Datura, Trigonella, andVigna, dicot genera that readily regenerate plants from mesophyll protoplasts, the response of leaves to osmotic stress is opposite to that in cereals. Putrescine titer as well as arginine and ornithine decarboxylase activities decline in these osmotically stressed dicot leaves, while spermidine and spermine titers increase. Thus, the putrescine:polyamine ratio in Vigna protoplasts, which divide readily, is 4-fold lower than in oat protoplasts, which divide poorly. We suggest that this differing response of polyamine metabolism to osmotic stress may account in part for the failure of cereal mesophyll protoplasts to develop readily in vitro.  相似文献   

4.
We have attempted to improve the viability of cereal mesophyll protoplasts by pretreatment of leaves with dl-α-difluoromethylarginine (DFMA), a specific `suicide' inhibitor of the enzyme (arginine decarboxylase) responsible for their osmotically induced putrescine accumulation. Leaf pretreatment with DFMA before a 6 hour osmotic shock caused a 45% decrease of putrescine and a 2-fold increase of spermine titer. After 136 hours of osmotic stress, putrescine titer in DFMA-pretreated leaves increased by only 50%, but spermidine and spermine titers increased dramatically by 3.2- and 6-fold, respectively. These increases in higher polyamines could account for the reduced chlorophyll loss and enhanced ability of pretreated leaves to incorporate tritiated thymidine, uridine, and leucine into macromolecules. Pretreatment with DFMA significantly improved the overall viability of the protoplasts isolated from these leaves. The results support the view that the osmotically induced rise in putrescine and blockage of its conversion to higher polyamines may contribute to the lack of sustained cell division in cereal mesophyll protoplasts, although other undefined factors must also play a major role.  相似文献   

5.
The polyamines (PA) putrescine (Put), spermidine (Spd), and spermine (Spm) were measured during 3 weeks exposure to cold hardening (15.6°C day and 4.4°C night) and nonhardening (32.2°C day and 21.1°C night) temperature regimes in three citrus cultivars: sour orange (SO) (Citrus aurantium L.), `valencia' (VAL) (Citrus sinensis L. Osbeck), and rough lemon (RL) (Citrus jambhiri Lush). The changes in PA were compared to the amount of free proline, percent wood kill and percent leaf kill. A 2- to 3-fold increase in Spd concentrations were observed in hardened RL, SO, and VAL leaves compared to nonhardened leaves. Spermidine reached its highest level of approximately 200 nanomoles per gram fresh weight after 1 week of acclimation in both SO and VAL leaves, while RL spermidine content continued to increase up to the third week of acclimation. Spm levels in acclimated VAL and RL leaves increased 1- to 4-fold. However, SO leaves Spm content decreased with acclimation. Putrescine levels in SO and VAL increased 20 to 60% during the first 2 weeks of acclimation then declined after 3 weeks. RL putrescine content was not affected by cold acclimation. The data presented here provided direct relationship between increased Spd concentration and citrus cold hardiness. Free proline was 3- to 6-fold higher in acclimated than in nonacclimated trees. Results also demonstrate that in acclimated versus nonacclimated citrus trees the absolute amount rather than the ratio of increase in free proline is more important in predicting their ability to survive freezing stress.  相似文献   

6.
Morphological and biochemical changes in plant cells are known as important events for adaptation to stress. In this study, in Ctenanthe setosa leaves to which polyamines were applied during drought stress, changes in the activity of peroxidase, reducing sugar, proline and soluble protein levels were investigated. The three common polyamines, putrescine, spermidine and spermine were exogenously treated through the leaves. The polyamines were sprayed onto the leaves at 5 x 10(-5) M. In the leaves to which polyamines were applied the peroxidase activity decreased, soluble protein increased. Also, it was determined that putrescine and spermidine caused an increase in the amount of proline and in reducing sugar. However, increase was not observed in the leaves to which spermine was applied. In addition, we observed an increase in the activity of peroxidase, proline and reducing sugar levels, and a decrease in soluble protein level in the control ones and the leaves to which polyamines were applied during drought stress. As a result, the effect of polyamine on leaf rolling may be explained through the contribution to osmotic adjustment of the increase in proline, reducing sugar and soluble protein contents.  相似文献   

7.
The activity of L-arginine decarboxylase (ADC: EC 4.1.1.19)and polyamine content were examine in intact wheat plants ( Triticum aestivum L. cv. Sappo) exposed to osmotic stress (0.4 M mannitol) for 5 days. ADC activity was increased in first and second leaves and in roots of mannitol-stressed plants. Concentrations of putrescine, cadaverine and spermine were generally increased in leaves and roots of plants exposed to mannitol, whereas spermidine was reduced in first leaves and roots of these plants. In an attempt to determine the localization of mannitol in stressed wheat. 14C-mannitol was fed to plants grown in liquid culture. Most of the mannitol was detected in roots (84%), while small amounts were found in first (9%) and second (7%) leves.
Since it seemed possible that some of the effects on polyamine metabolism caused by exposure to mannitol could have been the result of water stress. polyamine metabolism was also studied in plants water stressed by exposure to 2% polyethylene glycol (PEG) 4000. ADC activity was not altered by exposure to PEG. but concentrations of putrescine, spermidine and spermine were generally reduced in leaves and roots of stressed plants. Cadaverine concentrations were not significantly affected by exposure to PEG. Spermidine and spermine concentrations were reduced in first and second leaves but remained unchanged in roots of plants exposed to PEG.  相似文献   

8.
The influence of pre-sowing seed treatment with polyamines (2.5 mM putrescine, 5.0 mM spermidine and 2.5 mM spermine) on growth, photosynthetic capacity, and ion accumulation in two spring wheat (Triticum aestivum L.) cultivars MH-97 (intolerant) and Inqlab-91 (tolerant) was examined. The primed seeds of each treatment and non-primed seeds were sown in a field containing 15 dS m−1 NaCl. Although all three polyamines were effective in improving shoot growth and grain yield in both cultivars under saline conditions, the effect of spermine was very pronounced particularly in improving grain yield. Different priming agents did not affect the net CO2 assimilation rate and transpiration rate of either cultivar. However, pre-treatment with spermidine increased stomatal conductance (gs) in the tolerant cultivar, whereas with spermine stomatal conductance decreased in the intolerant cultivar under salt stress. Priming agents had different effects on the accumulation of different ions in wheat plant tissues. When spermidine and distilled water were used as priming agents, they were effective in reducing shoot [Na+] in the tolerant and intolerant cultivars, respectively under saline conditions. Although all priming agents caused an increase in shoot [K+], distilled water was more effective in improving shoot [K+] in both cultivars under salt stress. Pre-treatment with spermidine was very effective in reducing shoot [Cl] under saline conditions particularly in the tolerant cultivar. However, the pattern of accumulation of different ions in roots due to different seed priming treatments was not consistent in either cultivar except that root Na+ decreased due to priming with spermine and spermidine in the intolerant and tolerant cultivars under saline conditions. In conclusion, although all three priming agents, spermine, spermidine and putrescine, were effective in alleviating the adverse effect of salt stress on wheat plants, their effects on altering the concentration of different ions and growth were different in the two cultivars differing in salt tolerance.  相似文献   

9.
Androgenic control of polyamine concentrations in rat epididymis.   总被引:1,自引:0,他引:1  
Unilateral orchidectomy resulted in a significant decrease in tissue content of putrescine and polyamines. However, no differences were detected when the results were expressed in terms of ng g-1 tissue. At 48 h after bilateral orchidectomy, a significant decrease in putrescine content was observed, but spermidine and spermine content were unaffected. The observed decrease in putrescine was prevented by treatment with testosterone propionate, but neither spermidine nor spermine were affected. Bilateral orchidectomy resulted in a significant decrease in the tissue content of putrescine, spermidine and spermine after 7 days. Treatment with testosterone propionate increased the content of putrescine, spermidine and spermine in the epididymis by about 200%, 92% and 34%, respectively. When results were expressed as nmol g-1, a significant decrease after castration in putrescine and spermidine, but not in spermine, was observed. Treatment with testosterone propionate restored putrescine concentration, but had no effect on spermidine and spermine concentrations. In castrated rats treated with testosterone propionate, the anti-androgen flutamide abolished the effect of the androgen on putrescine and spermidine content, but there was no effect on spermine. Acetylputrescine was not detected in the epididymis, while acetylpolyamines were detected at much lower concentrations than polyamines. After bilateral orchidectomy there was a decrease in the tissue content of all acetylpolyamines and an increase in their tissue concentration. The effect of castration on acetylpolyamine content was reversed by testosterone propionate treatment. We conclude that an active synthesis of polyamines occurs in the rat epididymis, and that this process depends upon the androgen environment. Regulation of ornithine decarboxylase activity appears to be the main step that is controlled by androgens.  相似文献   

10.
The leaves of four reed ecotypes (Phragmites communis Trinius) growing in the desert regions of northwest China were investigated for levels of polyamines and activity of arginine decarboxylase (ADC; EC 4.1.1.19) during the growing season of 5 months. The polyamines in the leaves of all reed ecotypes consisted of putrescine, spermidine and spermine. The polyamine levels of the leaves were lower in the swamp reed than in the terrestrial reed ecotypes. Leaf polyamine levels decreased in all ecotypes over the course of the season. Compared to the swamp reed, the terrestrial reed ecotypes maintained higher ADC activity and a predominance of spermine, resulting in a lower ratio of putrescine to spermidine and spermine. It seems that the adaptation of reed plants to drought and saline habitats may be correlated with putrescine synthesis via the ADC pathway, and with a successful conversion of putrescine to spermidine and spermine.  相似文献   

11.
Two wheat (Triticum aestivum L.) cultivars, Sids 1 and Giza 168, were grown under non-saline or saline conditions (4.7 and 9.4 dS m?1) with and without arbuscular mycorrhizal fungi (AMF) inoculation. Salt stress considerably decreased root colonization, plant productivity and N, P, K+, Fe, Zn and Cu concentrations, while it increased Na+ level, particularly in Giza 168. Mycorrhizal colonization significantly enhanced plant productivity and N, P, K+, Fe, Zn and Cu acquisition, while it diminished Na+ uptake, especially in Sids 1. Salinity increased putrescine level in Giza 168, however, values of spermidine and spermine increased in Sids 1 and decreased in Giza 168. Mycorrhization changed the polyamine balance under saline conditions, an increase in putrescine level associated with low contents of spermidine and spermine in Giza 168 was observed, while Sids 1 showed a decrease in putrescine and high increase in spermidine and spermine. Moreover, mycorrhizal inoculation significantly reduced the activities of diamine oxidase and polyamine oxidase in salt-stressed wheat plants. Modulation of nutrient acquisition and polyamine pool can be one of the mechanisms used by AMF to improve wheat adaptation to saline soils. This is the first report dealing with mycorrhization effect on diamine oxidase and polyamine oxidase activities under salt stress.  相似文献   

12.
Treatment of rats with spermidine, spermine or sym-norspermidine led to a substantial induction of spermidine/spermine N1-acetyltransferase activity in liver, kidney and lung. The increase in this enzyme, which was determined independently of other acetylases by using a specific antiserum, accounted for all of the increased acetylase activity in extracts from rats treated with these polyamines. Spermine was the most active inducer, and the greatest effect was seen in liver. Liver spermidine/spermine N1-acetyltransferase activity was increased about 300-fold within 6 h of treatment with 0.3 mmol/kg doses of spermine; activity in kidney increased 30-fold and activity in the lung 15-fold under these conditions. The increased spermidine/spermine N1-acetyltransferase activity led to a large increase in the liver putrescine content and a decline in spermidine. These changes are due to the oxidation by polyamine oxidase of the N1-acetylspermidine formed by the acetyltransferase. Our results indicated that spermidine was the preferred substrate in vivo of the acetylase/oxidase pathway for the conversion of the higher polyamines into putrescine. The induction of the spermidine/spermine N1-acetyltransferase by polyamines may provide a mechanism by which excess polyamines can be removed.  相似文献   

13.
14.
Polyamines are known to play important roles in plant stress tolerance but it has been difficult to determine precise functions for each type of polyamine and their interrelationships. To dissect the roles of putrescine from the higher polyamines spermidine and spermine, we generated transgenic rice plants constitutively expressing a heterologous S-adenosylmethionine decarboxylase (SAMDC) gene from Datura stramonium so that spermidine and spermine levels could be investigated while maintaining a constant putrescine pool. Whereas transgenic plants expressing arginine decarboxylase (ADC) produced higher levels of putrescine, spermidine and spermine, and were protected from drought stress, transgenic plants expressing SAMDC produced normal levels of putrescine and showed drought symptoms typical of wild type plants under stress, but the transgenic plants showed a much more robust recovery on return to normal conditions (90% full recovery compared to 25% partial recovery for wild type plants). At the molecular level, both wild type and transgenic plants showed transient reductions in the levels of endogenous ADC1 and SAMDC mRNA, but only wild type plants showed a spike in putrescine levels under stress. In transgenic plants, there was no spike in putrescine but a smooth increase in spermine levels at the expense of spermidine. These results confirm and extend the threshold model for polyamine activity in drought stress, and attribute individual roles to putrescine, spermidine and spermine.  相似文献   

15.
16.
Spermine accumulation under salt stress   总被引:11,自引:0,他引:11  
Polyamines have long been recognized to be linked to stress situations, and it is generally accepted that they have protective characteristics. However, little is known about their physiological relevance in plants subjected to long-term salt stress. In order to precise their importance, two rice (Oryza sativa) cultivars differing in their salt tolerance were salinized for 7, 14 and 21 days. The activities of some of the enzymes involved in polyamine metabolism, free polyamines and proline contents were evaluated. Arginine decarboxylase and S-adenosyl-L-methionine decarboxylase activities were reduced in both cultivars as a consequence of salt treatment. However, spermidine synthase activity was reduced in the salt tolerant cultivar (var Giza) but not in the salt sensitive (var El Paso), while no polyamine oxidase activity was detected. During the salinization period, putrescine and spermidine levels decreased in both cultivars, although less dramatically in Giza. Simultaneously, spermine accumulations occur in both varieties, while proline accumulation was major in the sensitive one. However, spermine accumulation induced by treatment with spermidine synthase inhibitor cyclohexylamine, determined no reduction in leaf injury associated with salt stress in both cultivars. The data presented suggest that spermine accumulation is not a salt tolerance trait.  相似文献   

17.
Content of polyamines and activities of antioxidative enzymes in response to stripe rust disease caused by Puccinia striiformis have been studied in two wheat (Triticum aestivum L.) cultivars PBW 343 (resistant) and HD 2329 (susceptible). Various infection stages ranging from traces to 100 % were collected. Infection leads to stimulation of peroxidase (POD), superoxide dismutase (SOD), catalase, diamine oxidase and polyamine oxidase activities along with increase in putrescine, spermidine and spermine content while ascorbate, tocopherol and chlorophyll content decreased in HD 2329 and no visible symptoms appeared in PBW 343. Histochemical localization pattern of POD and SOD activities revealed correlation with lignin deposition in cell walls.  相似文献   

18.
19.
Theiss C  Bohley P  Voigt J 《Plant physiology》2002,128(4):1470-1479
Polyamines are required for cell growth and cell division in eukaryotic and prokaryotic organisms. In the unicellular green alga Chlamydomonas reinhardtii, biosynthesis of the commonly occurring polyamines (putrescine, spermidine, and spermine) is dependent on the activity of ornithine decarboxylase (ODC, EC 4.1.1.17) catalyzing the formation of putrescine, which is the precursor of the other two polyamines. In synchronized C. reinhardtii cultures, transition to the cell division phase was preceded by a 4-fold increase in ODC activity and a 10- and a 20-fold increase, respectively, in the putrescine and spermidine levels. Spermine, however, could not be detected in C. reinhardtii cells. Exogenous polyamines caused a decrease in ODC activity. Addition of spermine, but not of spermidine or putrescine, abolished the transition to the cell division phase when applied 7 to 8 h after beginning of the light (growth) phase. Most of the cells had already doubled their cell mass after this growth period. The spermine-induced cell cycle arrest could be overcome by subsequent addition of spermidine or putrescine. The conclusion that spermine affects cell division via a decreased spermidine level was corroborated by the findings that spermine caused a decrease in the putrescine and spermidine levels and that cell divisions also could be prevented by inhibitors of S-adenosyl-methionine decarboxylase and spermidine synthase, respectively, added 8 h after beginning of the growth period. Because protein synthesis was not decreased by addition of spermine under our experimental conditions, we conclude that spermidine affects the transition to the cell division phase directly rather than via protein biosynthesis.  相似文献   

20.
Concentrations of spermidine, spermine and putrescine have been measured in rat diaphragm muscle after unilateral nerve section. The concentration of putrescine increased approx. 10-fold 2 days after nerve section, that of spermidine about 3-fold by day 3, whereas an increase in the concentration of spermine was only observed after 7-10 days. It was not possible to show enhanced uptake of either exogenous putrescine or spermidine by the isolated tissue during the hypertrophy. Consistent with the accumulation of putrescine, activity of ornithine decarboxylase increased within 1 day of nerve section, was maximally elevated by the second day and then declined. Synthesis of spermidine from [14C]putrescine and either methionine or S-adenosylmethionine bt diaphragm cytosol rose within 1 day of nerve section, but by day 3 had returned to normal or below normal values. Activity of adenosylmethionine decarboxylase similarly increased within 1 day of nerve section, but by day 3 had declined to below normal values. Activity of methionine adenosyltransferase was elevated throughout the period studied. The concentration of S-adenosylmethionine was likewise enhanced during hypertrophy. Administration of methylglyoxal bis(guanylhydrazone) produced a marked increase in adenosylmethionine decarboxylase activity and a large increase in putrescine concentration, but did not prevent the rise in spermidine concentration produced by denervation. Possible regulatory mechanisms of polyamine metabolism consistent with the observations are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号