首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Ecological Complexity》2007,4(4):242-249
A stochastic model for the predator–prey type ecosystems in a random environment is proposed and investigated. The model is a variation of the Lotka–Volterra type with an additional self-competition mechanism within the prey population. Two different situations are considered: (1) saturation of predators, and (2) competition among predators. Changes in the birth rate of the preys and the death rate of the predators are modeled as random processes. The stochastic averaging procedure of Stratonovich and Khasminskii is applied to obtain the probability distribution of the system state variables at the state of statistical stationarity. Asymptotic behaviors of the system are also investigated. Effects on the ecosystem behaviors are evaluated of (1) prey self-competition, (2) predator saturation and predator competition, (3) random variation in the prey birth rate, and (4) random variation in the predator death rate.  相似文献   

2.
The three species ecosystem with one prey and two predators is considered in an exactly solvable model with interactions of the Gompertz form. Oscillatory solutions implying coexistence of the three species are obtained for the case without the self-interaction term for the prey species, provided an equality relation between ratios of certain parameters holds. The same model enlarged by incorporating the self-interaction terms for the prey species also leads to coexistence but the above equality relation persists. If the model is further enlarged by adding self-interaction terms for all the species, coexistence can be shown to follow quite generally without the constraint of the earlier equality relation.  相似文献   

3.
Gauss's competitive exclusive principle states that two competing species having analogous environment cannot usually occupy the same space at a time but in order to exploit their common environment in a different manner, they can co-exist only when they are active in different times. On the other hand, several studies on predators in various natural and laboratory situations have shown that competitive coexistence can result from predation in a way by resisting any one prey species from becoming sufficiently abundant to outcompete other species such that the predator makes the coexistence possible. It has also been shown that the use of refuges by a fraction of the prey population exerts a stabilizing effect in the interacting population dynamics. Further, the field surveys in the Sundarban mangrove ecosystem reveal that two detritivorous fishes, viz. Liza parsia and Liza tade (prey population) coexist in nature with the presence of the predator fish population, viz. Lates calcarifer by using refuges.  相似文献   

4.
一种狩猎者为有限食饵而具自竞争的生态方程及其应用   总被引:2,自引:0,他引:2  
赤眼蜂和螟虫之间的生态系统是一种典型的狩猎者为有限食饵而具有自竞争的生态系统。根据这种系统的生物学特点,构造出一个生态模式,并对其作了定性分析和计算机数值模拟。结果表明,本文模式较之Volterra-Lolka生态模式,在描述天敌治虫规律上,更为切合实践并具有一定的理论意义。  相似文献   

5.
Understanding mechanisms behind variability in early life survival of marine fishes through modeling efforts can improve predictive capabilities for recruitment success under changing climate conditions. Walleye pollock (Theragra chalcogramma) support the largest single-species commercial fishery in the United States and represent an ecologically important component of the Bering Sea ecosystem. Variability in walleye pollock growth and survival is structured in part by climate-driven bottom-up control of zooplankton composition. We used two modeling approaches, informed by observations, to understand the roles of prey quality, prey composition, and water temperature on juvenile walleye pollock growth: (1) a bioenergetics model that included local predator and prey energy densities, and (2) an individual-based model that included a mechanistic feeding component dependent on larval development and behavior, local prey densities and size, and physical oceanographic conditions. Prey composition in late-summer shifted from predominantly smaller copepod species in the warmer 2005 season to larger species in the cooler 2010 season, reflecting differences in zooplankton composition between years. In 2010, the main prey of juvenile walleye pollock were more abundant, had greater biomass, and higher mean energy density, resulting in better growth conditions. Moreover, spatial patterns in prey composition and water temperature lead to areas of enhanced growth, or growth ‘hot spots’, for juvenile walleye pollock and survival may be enhanced when fish overlap with these areas. This study provides evidence that a spatial mismatch between juvenile walleye pollock and growth ‘hot spots’ in 2005 contributed to poor recruitment while a higher degree of overlap in 2010 resulted in improved recruitment. Our results indicate that climate-driven changes in prey quality and composition can impact growth of juvenile walleye pollock, potentially severely affecting recruitment variability.  相似文献   

6.
  1. Quantifying consumption and prey choice for marine predator species is key to understanding their interaction with prey species, fisheries, and the ecosystem as a whole. However, parameterizing a functional response for large predators can be challenging because of the difficulty in obtaining the required data on predator diet and on the availability of multiple prey species.
  2. This study modeled a multi‐species functional response (MSFR) to describe the relationship between consumption by harbour porpoises (Phocoena phocoena) and the availability of multiple prey species in the southern North Sea. Bayesian methodology was employed to estimate MSFR parameters and to incorporate uncertainties in diet and prey availability estimates. Prey consumption was estimated from stomach content data from stranded harbour porpoises. Prey availability to harbour porpoises was estimated based on the spatial overlap between prey distributions, estimated from fish survey data, and porpoise foraging range in the days prior to stranding predicted from telemetry data.
  3. Results indicated a preference for sandeels in the study area. Prey switching behavior (change in preference dependent on prey abundance) was confirmed by the favored type III functional response model. Variation in the size of the foraging range (estimated area where harbour porpoises could have foraged prior to stranding) did not alter the overall pattern of the results or conclusions.
  4. Integrating datasets on prey consumption from strandings, predator foraging distribution using telemetry, and prey availability from fish surveys into the modeling approach provides a methodological framework that may be appropriate for fitting MSFRs for other predators.
  相似文献   

7.
The theory of regulation in animal populations is fundamental to understanding the dynamics of populations, the causes of mortality and how natural selection shapes the life history of species. In mammals, the great range in body size allows us to see how allometric relationships affect the mode of regulation. Resource limitation is the fundamental cause of regulation. Top-down limitation through predators is determined by four factors: (i). body size; (ii). the diversity of predators and prey in the system; (iii). whether prey are resident or migratory; and (iv). the presence of alternative prey for predators. Body size in mammals has two important consequences. First, mammals, particularly large species, can act as keystones that determine the diversity of an ecosystem. I show how keystone processes can, in principle, be measured using the example of the wildebeest in the Serengeti ecosystem. Second, mammals act as ecological landscapers by altering vegetation succession. Mammals alter physical structure, ecological function and species diversity in most terrestrial biomes. In general, there is a close interaction between allometry, population regulation, life history and ecosystem dynamics. These relationships are relevant to applied aspects of conservation and pest management.  相似文献   

8.
Research in eco-evolutionary dynamics and community genetics has demonstrated that variation within a species can have strong impacts on associated communities and ecosystem processes. Yet, these studies have centred around individual focal species and at single trophic levels, ignoring the role of phenotypic variation in multiple taxa within an ecosystem. Given the ubiquitous nature of local adaptation, and thus intraspecific variation, we sought to understand how combinations of intraspecific variation in multiple species within an ecosystem impacts its ecology. Using two species that co-occur and demonstrate adaptation to their natal environments, black cottonwood (Populus trichocarpa) and three-spined stickleback (Gasterosteus aculeatus), we investigated the effects of intraspecific phenotypic variation on both top-down and bottom-up forces using a large-scale aquatic mesocosm experiment. Black cottonwood genotypes exhibit genetic variation in their productivity and consequently their leaf litter subsidies to the aquatic system, which mediates the strength of top-down effects from stickleback on prey abundances. Abundances of four common invertebrate prey species and available phosphorous, the most critically limiting nutrient in freshwater systems, are dictated by the interaction between genetic variation in cottonwood productivity and stickleback morphology. These interactive effects fit with ecological theory on the relationship between productivity and top-down control and are comparable in strength to the effects of predator addition. Our results illustrate that intraspecific variation, which can evolve rapidly, is an under-appreciated driver of community structure and ecosystem function, demonstrating that a multi-trophic perspective is essential to understanding the role of evolution in structuring ecological patterns.  相似文献   

9.
This paper examines the application of maximum sustainable yield (MSY) policy in ecosystem and indicates when the ecosystem based fisheries management approach is required for conservation purpose. To describe the possible impacts of applying global MSY policy in an ecosystem, we have considered both specialist and generalist prey–predator models with different fishing efforts. It is found that harvesting both prey and predator species in specialist prey–predator systems, to achieve global maximum sustainable total yield (MSTY) under independent efforts, will cause the extinction of the predator species. In contrast, the global MSTY may exist in a generalist prey–predator system. If global MSTY does not exist, then it is due to the extinction of predator species. Hence, the prey species never goes to extinction under independent efforts and this scenario is quite different from the one found under combined harvesting effort.  相似文献   

10.
Behaviours related to foraging and feeding in predator–prey systems are fundamental to our understanding of food webs. From the perspective of a predator, the selection of prey size depends upon a number of factors including prey vulnerability, prey size, and the predator's motivation to eat. Thus, feeding motivation and prey visual cues are supposed to influence predator decisions and it is predicted that prey selection by visual cues is modulated by the predator's stomach fullness prior to attacking a prey. This study was conducted using an animal model from the rocky shores ecosystem, a predatory fish, the frillfin goby Bathygobius soporator, and a benthic prey, the mottled shore crab Pachygrapsus transversus. Our results demonstrate that frillfin gobies are capable of visually evaluating prey size and that the size evaluation process is modulated by the level of stomach fullness. Predators with an empty stomach (0% fullness) attacked prey that was larger than the predicted optimal size. Partially satiated predators (50% stomach fullness) selected prey close to the optimal size, while fully satiated predators (100% stomach fullness) showed no preference for size. This finding indicates an integrative response of the predator that depends on the input of both internal and external sensory information when choosing prey. Predator perceptions of visual cues (prey size) and stomach fullness modulate foraging decisions. As a result, a flexible feeding behaviour emerges, evidencing a clearly adaptive response in line with optimal foraging theory predictions.  相似文献   

11.
Cyanobacterial and zooplankton inducible defenses are important but understudied process that regulate the trophic interactions of freshwater ecosystem. Daphnia due to its large size is considered an important zooplankton with the high potential to control cyanobacterial blooms. It has been shown that Daphnia through maternal induction transfer tolerance to their next generation against Microcystis toxicity. Maternal induction has been investigated in different Daphnia species without considering phenotypic plasticity of prey. Laboratory experiments were performed to explore cyanobacteria-Daphnia inducible defenses in order to better understand their interactions. Two Daphnia species were fed either with Microcystis aeruginosa PCC7806 (Ma) or Microcystis flos-aquae (Mf) mixed with Chlorella vulgaris (Cv) (exposed Daphnia), and or pure Cv (unexposed Daphnia). Exposed prey cultures were produced by prior exposure to Daphnia infochemicals. Neonates produced by exposed and unexposed Daphnia were fed with mixed diet (Microcystis + Cv) of either exposed and or unexposed prey. Growth parameters and toxin production of exposed prey cultures were significantly different than that of control. Exposed Daphnia fecundity and survival was higher as compared to unexposed Daphnia. Growth and reproduction was reduced in exposed Daphnia when fed with exposed prey as compared to those fed with unexposed prey. This study provides information on the interactive inducible defenses between cyanobacteria and its grazer under laboratory conditions and may increase our understanding of cyanobacteria and Daphnia interactions in the freshwater ecosystem.  相似文献   

12.
The intensity of competitive interactions between fishes is partly determined by prey use and ontogenetic niche shifts. In a wetland where distinct habitat shifts are missing we compared prey use of three generalist benthivorous sunfishes to look for evidence of ontogenetic, interspecific, and “seasonal” variation in prey composition. Diet analysis revealed evidence of diet ontogeny in warmouth (Lepomis gulosus, 30–152 mm standard length, SL), but not in bluespotted sunfish (Enneacanthus gloriosus, 30–47 mm SL) or dollar sunfish (Lepomis marginatus, 30–60 mm SL). Bluespotted and dollar sunfishes consumed small dipteran and amphipod prey and had similar diets in both seasons suggesting a potential for strong interspecific competition. In the dry season, warmouth shifted from using smaller insect prey to larger decapod and fish prey with increasing size. This shift to prey types that were little used by the other species reduced dietary niche overlap with the other sunfishes. After drought and re-flooding (in the wet season), decapods and small fish were less abundant in the wetland and the warmouth ontogenetic shift was less distinct. When matched for gape width, prey composition differed between warmouth and both dollar and bluespotted sunfishes in the wet season, suggesting differences in sunfish foraging modes, but prey use differences were less clear in the dry season when prey were abundant. Both warmouth ontogenetic diet shifts and seasonal variation in prey use (probably mediated by prey abundance) had strong influences on diet overlap and therefore the potential for intra- and interspecific competition between sunfishes in this wetland ecosystem.  相似文献   

13.
Killer whales (Orcinus orca) are large predators that occupy the top trophic position in the world''s oceans and as such may have important roles in marine ecosystem dynamics. Although the possible top-down effects of killer whale predation on populations of their prey have received much recent attention, little is known of how the abundance of these predators may be limited by bottom-up processes. Here we show, using 25 years of demographic data from two populations of fish-eating killer whales in the northeastern Pacific Ocean, that population trends are driven largely by changes in survival, and that survival rates are strongly correlated with the availability of their principal prey species, Chinook salmon (Oncorhynchus tshawytscha). Our results suggest that, although these killer whales may consume a variety of fish species, they are highly specialized and dependent on this single salmonid species to an extent that it is a limiting factor in their population dynamics. Other ecologically specialized killer whale populations may be similarly constrained to a narrow range of prey species by culturally inherited foraging strategies, and thus are limited in their ability to adapt rapidly to changing prey availability.  相似文献   

14.
It is argued that alternate prey species in the diet of a food-limited generalist predator should reduce each other's equilibrial abundances, whether or not they directly compete. Such indirect, interspecific interactions are labeled apparent competition. Two examples are discussed in which an observed pattern of habitat segregation was at first interpreted as evidence for direct competition, but later interpreted as apparent competition resulting from shared predation. In order to study the consequences of predator-mediated apparent competition in isolation from other complicating factors, a model community is analyzed in which there is no direct interspecific competition among the prey. An explicit necessary condition for prey species coexistence is derived for the case of one predator feeding on many prey species. This model community has several interesting properties: (1) Prey species with high relative values for a parameter ra are “keystone” species in the community; (2) prey species can be excluded from the community by “diffuse” apparent competition; (3) large changes in the niche breadth of the predator need not correspond to large changes in predator density; (4) the prey trophic level as a whole is regulated by the predator, yet each of its constituent species is regulated by both the predator and available resources; (5) increased productivity may either increase, decrease, or leave unchanged the number of species in the community; (6) a decrease in density-independent mortality may decrease species diversity. These conclusions seem to be robust to changes in the prey growth equations and to the incorporation of predator satiation. By contrast, adding prey refugia or predator switching to the model weakens these conclusions. If the predator can be satiated or switched, the elements aij comprising the community matrix may have signs opposite the long-term effect of j upon i. The effect of natural selection upon prey species coexistence is discussed. Unless ri, Ki, and ai are tightly coupled, natural selection within prey species i will tend to decrease the equilibrial abundance of species j.  相似文献   

15.
The opportunistic feeder Pterois volitans is a voracious invader, causing large impacts in marine food-webs. We have used a Ecopath-with-Ecosim model to hypothesize an invasion by lionfish and to predict the likely impact of this potential generalist mesopredator in a subtropical food-web model. With thirty-three functional groups, the initial Ecopath model was balanced with a low biomass of lionfish (0.07 t/km2). In Ecosim, three scenarios of different vulnerability settings for the linkages between the introduced fish and its prey were tested, representing the default setting, a top-down control, and an extreme top-down control. The scenarios were tested using different assumptions on the ability of the invasive fish to change the proportions of prey consumed according to prey availability. Our model predicted that the hypothesized lionfish invasion would have a strong impact on this subtropical marine food web: (1) by reducing prey populations and, consequently, food for native predators, and; (2) by predating on key species, causing direct impacts and possibly cascading trophic effects. Reef fish were the most affected, including some groups ecologically and economically important, like lutjanids and groupers. However, some adaptations in the fishing strategy of fishermen are expected which may affect other fish groups. Stakeholders should be warned of the potential ecological and socio-economic impacts that may arise from a lionfish invasion and various strategies and policy options should be immediately developed and applied (1) to prevent the arrival and establishment of the lionfish, and; (2) to make the ecosystem more resilient to this and other possible exotic species.  相似文献   

16.
Non-native species introductions are widespread and can affect ecosystem functioning by altering the structure of food webs. Invading plants often modify habitat structure, which may affect the suitability of vegetation as refuge and could thus impact predator-prey dynamics. Yet little is known about how the replacement of native by non-native vegetation affects predator-prey dynamics. We hypothesize that plant refuge provisioning depends on (1) the plant’s native status, (2) plant structural complexity and morphology, (3) predator identity, and (4) prey identity, as well as that (5) structurally similar living and artificial plants provide similar refuge. We used aquatic communities as a model system and compared the refuge provided by plants to macroinvertebrates (Daphnia pulex, Gammarus pulex and damselfly larvae) in three short-term laboratory predation experiments. Plant refuge provisioning differed between plant species, but was generally similar for native (Myriophyllum spicatum, Ceratophyllum demersum, Potamogeton perfoliatus) and non-native plants (Vallisneria spiralis, Myriophyllum heterophyllum, Cabomba caroliniana). However, plant refuge provisioning to macroinvertebrate prey depended primarily on predator (mirror carp: Cyprinus carpio carpio and dragonfly larvae: Anax imperator) and prey identity, while the effects of plant structural complexity were only minor. Contrary to living plants, artificial plant analogues did improve prey survival, particularly with increasing structural complexity and shoot density. As such, plant rigidity, which was high for artificial plants and one of the living plant species evaluated in this study (Ceratophyllum demersum), may interact with structural complexity to play a key role in refuge provisioning to specific prey (Gammarus pulex). Our results demonstrate that replacement of native by structurally similar non-native vegetation is unlikely to greatly affect predator-prey dynamics. We propose that modification of predator-prey interactions through plant invasions only occurs when invading plants radically differ in growth form, density and rigidity compared to native plants.  相似文献   

17.
Trophic interactions may strongly depend on body size and environmental variation, but this prediction has been seldom tested in nature. Many spiders are generalist predators that use webs to intercept flying prey. The size and mesh of orb webs increases with spider size, allowing a more efficient predation on larger prey. We studied to this extent the orb‐weaving spider Araneus diadematus inhabiting forest fragments differing in edge distance, tree diversity, and tree species. These environmental variables are known to correlate with insect composition, richness, and abundance. We anticipated these forest characteristics to be a principle driver of prey consumption. We additionally hypothesized them to impact spider size at maturity and expect shifts toward larger prey size distributions in larger individuals independently from the environmental context. We quantified spider diet by means of metabarcoding of nearly 1,000 A. diadematus from a total of 53 forest plots. This approach allowed a massive screening of consumption dynamics in nature, though at the cost of identifying the exact prey identity, as well as their abundance and putative intraspecific variation. Our study confirmed A. diadematus as a generalist predator, with more than 300 prey ZOTUs detected in total. At the individual level, we found large spiders to consume fewer different species, but adding larger species to their diet. Tree species composition affected both prey species richness and size in the spider''s diet, although tree diversity per se had no influence on the consumed prey. Edges had an indirect effect on the spider diet as spiders closer to the forest edge were larger and therefore consumed larger prey. We conclude that both intraspecific size variation and tree species composition shape the consumed prey of this generalist predator.  相似文献   

18.
Invasive species cause catastrophic alterations to communities worldwide by changing the trophic balance within ecosystems. Ever since their introduction in the mid 1980''s common red lionfish, Pterois volitans, are having dramatic impacts on the Caribbean ecosystem by displacing native species and disrupting food webs. Introduced lionfish capture prey at extraordinary rates, altering the composition of benthic communities. Here we demonstrate that the extraordinary success of the introduced lionfish lies in its capacity to circumvent prey risk assessment abilities as it is virtually undetectable by prey species in its native range. While experienced prey damselfish, Chromis viridis, respond with typical antipredator behaviours when exposed to a common predatory rock cod (Cephalopholis microprion) they fail to visibly react to either the scent or visual presentation of the red lionfish, and responded only to the scent (not the visual cue) of a lionfish of a different genus, Dendrochirus zebra. Experienced prey also had much higher survival when exposed to the two non-invasive predators compared to P. volitans. The cryptic nature of the red lionfish has enabled it to be destructive as a predator and a highly successful invasive species.  相似文献   

19.
The exceptional fossil sites of Cerro de los Batallones (Madrid Basin, Spain) contain abundant remains of Late Miocene mammals. From these fossil assemblages, we have inferred diet, resource partitioning and habitat of three sympatric carnivorous mammals based on stable isotopes. The carnivorans include three apex predators: two sabre-toothed cats (Felidae) and a bear dog (Amphicyonidae). Herbivore and carnivore carbon isotope (δ13C) values from tooth enamel imply the presence of a woodland ecosystem dominated by C3 plants. δ13C values and mixing-model analyses suggest that the two sabre-toothed cats, one the size of a leopard and the other the size of a tiger, consumed herbivores with similar δ13C values from a more wooded portion of the ecosystem. The two sabre-toothed cats probably hunted prey of different body sizes, and the smaller species could have used tree cover to avoid encounters with the larger felid. For the bear dog, δ13C values are higher and differ significantly from those of the sabre-toothed cats, suggesting a diet that includes prey from more open woodland. Coexistence of the sabre-toothed cats and the bear dog was likely facilitated by prey capture in different portions of the habitat. This study demonstrates the utility of stable isotope analysis for investigating the behaviour and ecology of members of past carnivoran guilds.  相似文献   

20.
Generalist insectivorous birds can provide ecosystem services in agricultural landscapes by consuming arthropod pests, or they can provide disservices when they consume beneficial arthropods. To examine bird impacts on arthropod communities, including pest control services, we need to know which arthropods birds commonly consume. Faecal metabarcoding is an emerging technique that can be used to identify prey from faecal samples, often to the species level. We used faecal metabarcoding to study diets of birds inhabiting the ecotone between soybean fields and adjacent grasslands in a largely agricultural landscape in Illinois, USA, during the summer of 2017. Whereas previous studies have used faecal metabarcoding to compare bird diets among species or among capture sites, we analysed samples from multiple species within a community at replicate sites. We collected and sequenced DNA from 132 faecal samples from 25 bird species captured at six sites. We found that birds consumed an extremely large and varied diet that differed among both species and sites, suggesting that birds were consuming prey opportunistically as available at each site. Of the nine most commonly detected prey species, three are known pests of soybeans. Bird diets also contained significantly more species of herbivorous prey than natural enemies. Finally, we discovered that American Goldfinches Spinus tristis, a highly granivorous species, may consume arthropods more frequently than expected and thus may provide ecosystem services in agricultural landscapes. Our study demonstrates that birds within this system consume a large variety of prey, suggesting that they may be able to respond quickly to pest outbreaks and contribute to agricultural resiliency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号