首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mammalian secondary palate forms from two shelves of mesenchyme sheathed in a single-layered epithelium. These shelves meet during embryogenesis to form the midline epithelial seam (MES). Failure of MES degradation prevents mesenchymal confluence and results in a cleft palate. Previous studies indicated that MES cells undergo features of epithelial-to-mesenchymal transition (EMT) and may become migratory as part of the fusion mechanism. To detect MES cell movement over the course of fusion, we imaged the midline of fusing embryonic ephrin-B2/GFP mouse palates in real time using two-photon microscopy. These mice express an ephrin-B2-driven green fluorescent protein (GFP) that labels the palatal epithelium nuclei and persists in those cells through the time window necessary for fusion. We observed collective migration of MES cells toward the oral surface of the palatal shelf over 48 hr of imaging, and we confirmed histologically that the imaged palates had fused by the end of the imaged period. We previously reported that ephrin reverse signaling in the MES is required for palatal fusion. We therefore added recombinant EphA4/Fc protein to block this signaling in imaged palates. The blockage inhibited fusion, as expected, but did not change the observed migration of GFP-labeled cells. Thus, we uncoupled migration and fusion. Our data reveal that palatal MES cells undergo a collective, unidirectional movement during palatal fusion and that ephrin reverse signaling, though required for fusion, controls aspects of the fusion mechanism independent of migration.  相似文献   

2.
BMP signaling plays many important roles during organ development, including palatogenesis. Loss of BMP signaling leads to cleft palate formation. During development, BMP activities are finely tuned by a number of modulators at the extracellular and intracellular levels. Among the extracellular BMP antagonists is Noggin, which preferentialy binds to BMP2, BMP4 and BMP7, all of which are expressed in the developing palatal shelves. Here we use targeted Noggin mutant mice as a model for gain of BMP signaling function to investigate the role of BMP signaling in palate development. We find prominent Noggin expression in the palatal epithelium along the anterior-posterior axis during early palate development. Loss of Noggin function leads to overactive BMP signaling, particularly in the palatal epithelium. This results in disregulation of cell proliferation, excessive cell death, and changes in gene expression, leading to formation of complete palatal cleft. The excessive cell death in the epithelium disrupts the palatal epithelium integrity, which in turn leads to an abnormal palate-mandible fusion and prevents palatal shelf elevation. This phenotype is recapitulated by ectopic expression of a constitutively active form of BMPR-IA but not BMPR-IB in the epithelium of the developing palate; this suggests a role for BMPR-IA in mediating overactive BMP signaling in the absence of Noggin. Together with the evidence that overexpression of Noggin in the palatal epithelium does not cause a cleft palate defect, we conclude from our results that Noggin mediated modulation of BMP signaling is essential for palatal epithelium integrity and for normal palate development.  相似文献   

3.
4.
To explain the disappearance of medial edge epithelial (MEE) cells during palatal fusion, programmed cell death, epithelial-mesenchymal transformation, and migration of these cells to the oral and nasal epithelia have been proposed. However, MEE cell death has not always been accepted as a mechanism involved in midline epithelial seam disappearance. Similarly, labeling of MEE cells with vital lipophilic markers has not led to a clear conclusion as to whether MEE cells migrate, transform into mesenchyme, or both. To clarify these controversies, we first utilized TUNEL techniques to detect apoptosis in mouse palates at the fusion stage and concomitantly analyzed the presence of macrophages by immunochemistry and confocal microscopy. Second, we in vitro infected the MEE with the replication-defective helper-free retroviral vector CXL, which carries the Escherichia coli lacZ gene, and analyzed beta-galactosidase activity in cells after fusion to follow their fate. Our results demonstrate that MEE cells die and transform into mesenchyme during palatal fusion and that dead cells are phagocytosed by macrophages. In addition, we have investigated the effects of the absence of transforming growth factor beta(3) (TGF-beta(3)) during palatal fusion. Using environmental scanning electron microscopy and TUNEL labeling we compared the MEE of the clefted TGF-beta(3) null and wild-type mice. We show that MEE cell death in TGF-beta(3) null palates is greatly reduced at the time of fusion, revealing that TGF-beta(3) has an important role as an inducer of apoptosis during palatal fusion. Likewise, the bulging cells observed on the MEE surface of wild-type mice prior to palatal shelf contact are very rare in the TGF-beta(3) null mutants. We hypothesize that these protruding cells are critical for palatal adhesion, being morphological evidence of increased cell motility/migration.  相似文献   

5.
Compared with the embryonic development of other organs, development of the secondary palate is seemingly simple. However, each step of palatogenesis, from initiation until completion, is subject to a tight molecular control that is governed by epithelial-mesenchymal interactions. The importance of a rigorous molecular regulation of palatogenesis is reflected when loss of function of a single protein generates cleft palate, a frequent malformation with a complex etiology. Genetic studies in humans and targeted mutations in mice have identified numerous factors that play key roles during palatogenesis. This review highlights the current understanding of the molecular and cellular mechanisms involved in normal and abnormal palate development with special respect to recent advances derived from studies of mouse models.  相似文献   

6.
Epithelial-mesenchymal transformation (EMT), the process by which epithelial cells are converted into motile, invasive mesenchymal cells, is critical to valvulogenesis. Transforming growth factor-beta3 (TGF-beta3), an established mediator of avian atrioventricular (AV) canal EMT, is secreted as a latent complex. In vitro, plasmin-mediated proteolysis has been shown to release active TGF-betas from the latent complex. Annexin II, a co-receptor for tissue plasminogen activator (tPA) and plasminogen, promotes cell-surface generation of the serine protease plasmin. Here, we show that annexin II-mediated plasmin activity regulates release of active TGF-beta3 during chick AV canal EMT. Primary embryonic endocardial-derived cells express annexin II which promotes plasminogen activation in vitro. Incubation of heart explant cultures with either alpha(2)antiplasmin (alpha(2)AP), a major physiological plasmin inhibitor, or anti-annexin II IgG, blocked EMT by approximately 80%, and 50%, respectively. Anti-annexin II IgG-mediated inhibition of EMT was overcome by the addition of recombinant TGF-beta3. Upon treatment with anti-annexin II IgG or alpha(2)AP, conditioned medium from heart explant cultures showed absence of the active fragment of TGF-beta3 by Western blot analysis and a approximately 50% decrease in TGF-beta specific bioactivity. Our results suggest that annexin II-mediated plasmin activity regulates the release of active TGF-beta during cardiac valve development in the avian heart.  相似文献   

7.
Tgf-beta3-induced palatal fusion is mediated by Alk-5/Smad pathway   总被引:5,自引:0,他引:5  
Cleft palate is among the most common birth defects in humans, caused by a failure in the complex multistep developmental process of palatogenesis. It has been recently shown that transforming growth factor beta3 (Tgf-beta3) is an absolute requirement for successful palatal fusion, both in mice and humans. However, very little is known about the mechanisms of Tgf-beta3 signaling during this process. Here we show that putative Tgf-beta type I receptors, Alk-1, Alk-2, and Alk-5, are all endogenously expressed in the palatal epithelium. Activation of Alk-5 in the Tgf-beta3 (-/-) palatal epithelium is able to rescue palatal fusion, whereas inactivation of Alk-5 in the wild-type palatal epithelium prevents palatal fusion. The effect of Alk-2 is similar, but less pronounced. The induction of fusion by activation of Alk-5 or Alk-2 is stronger in the posterior parts of the palates at the embryonic day 14 (E14), while their activation at E13.5 also restores anterior fusion, reflecting the natural anterior-posterior direction of palate maturation in vivo. We also show that Smad2 is endogenously activated in the palatal midline epithelial seam (MES) during the fusion process. By using a mutant Alk-5 receptor that is an active kinase but is unable to activate Smads, we show that activation of Smad-independent Tgf-beta responses is not sufficient to induce fusion of shelves deficient in Tgf-beta3. Based on these observations, we conclude that the Smad2-dependent Alk-5 signaling pathway is dominant in palatal fusion driven by Tgf-beta3.  相似文献   

8.
TGFbeta3 signaling initiates and completes sequential phases of cellular differentiation that is required for complete disintegration of the palatal medial edge seam, that progresses between 14 and 17 embryonic days in the murine system, which is necessary in establishing confluence of the palatal stroma. Understanding the cellular mechanism of palatal MES disintegration in response to TGFbeta3 signaling will result in new approaches to defining the causes of cleft palate and other facial clefts that may result from failure of seam disintegration. We have isolated MES primary cells to study the details of MES disintegration mechanism by TGFbeta3 during palate development using several biochemical and genetic approaches. Our results demonstrate a novel mechanism of MES disintegration where MES, independently yet sequentially, undergoes cell cycle arrest, cell migration and apoptosis to generate immaculate palatal confluency during palatogenesis in response to robust TGFbeta3 signaling. The results contribute to a missing fundamental element to our base knowledge of the diverse roles of TGFbeta3 in functional and morphological changes that MES undergo during palatal seam disintegration. We believe that our findings will lead to more effective treatment of facial clefting.  相似文献   

9.
Epithelial-mesenchymal transformation (EMT) occurs during both development and tumorigenesis. Transforming growth factor beta (TGFbeta) ligands signal EMT in the atrioventricular (AV) cushion of the developing heart, a critical step in valve formation. TGFbeta signals through a complex of type I and type II receptors. Several type I receptors exist although activin receptor-like kinase (ALK) 5 mediates the majority of TGFbeta signaling. Here, we demonstrate that ALK2 is sufficient to induce EMT in the heart. Both ALK2 and ALK5 are expressed throughout the heart with ALK2 expressed abundantly in endocardial cells of the outflow tract (OFT), ventricle, and AV cushion. Misexpression of constitutively active (ca) ALK2 in non-transforming ventricular endocardial cells induced EMT, while caALK5 did not, thus demonstrating that ALK2 activity alone is sufficient to stimulate EMT. Smad6, an inhibitor of Smad signaling downstream of ALK2, but not ALK5, inhibited EMT in AV cushion endocardial cells. These data suggest that ALK2 activation may stimulate EMT in the AV cushion and that Smad6 may act downstream of ALK2 to negatively regulate EMT.  相似文献   

10.
Transforming growth factor beta (TGF-beta) proteins play important roles in morphogenesis of many craniofacial tissues; however, detailed biological mechanisms of TGF-beta action, particularly in vivo, are still poorly understood. Here, we deleted the TGF-beta type I receptor gene Alk5 specifically in the embryonic ectodermal and neural crest cell lineages. Failure in signaling via this receptor, either in the epithelium or in the mesenchyme, caused severe craniofacial defects including cleft palate. Moreover, the facial phenotypes of neural crest-specific Alk5 mutants included devastating facial cleft and appeared significantly more severe than the defects seen in corresponding mutants lacking the TGF-beta type II receptor (TGFbetaRII), a prototypical binding partner of ALK5. Our data indicate that ALK5 plays unique, non-redundant cell-autonomous roles during facial development. Remarkable divergence between Tgfbr2 and Alk5 phenotypes, together with our biochemical in vitro data, imply that (1) ALK5 mediates signaling of a diverse set of ligands not limited to the three isoforms of TGF-beta, and (2) ALK5 acts also in conjunction with type II receptors other than TGFbetaRII.  相似文献   

11.
Palatal fusion is a complex, multi-step developmental process; the consequence of failure in this process is cleft palate, one of the most common birth defects in humans. Previous studies have shown that regression of the medial edge epithelium (MEE) upon palatal fusion is required for this process, and TGF-beta signaling plays an important role in regulating palatal fusion. However, the fate of the MEE and the mechanisms underlying its disappearance are still unclear. By using the Cre/lox system, we are able to label the MEE genetically and to ablate Tgfbr2 specifically in the palatal epithelial cells. Our results indicate that epithelial-mesenchymal transformation does not occur in the regression of MEE cells. Ablation of Tgfbr2 in the palatal epithelial cells causes soft palate cleft, submucosal cleft and failure of the primary palate to fuse with the secondary palate. Whereas wild-type MEE cells disappear, the mutant MEE cells continue to proliferate and form cysts and epithelial bridges in the midline of the palate. Our study provides for the first time an animal model for soft palate cleft and submucous cleft. At the molecular level, Tgfb3 and Irf6 have similar expression patterns in the MEE. Mutations in IRF6 disrupt orofacial development and cause cleft palate in humans. We show here that Irf6 expression is downregulated in the MEE of the Tgfbr2 mutant. As a recent study shows that heterozygous mutations in TGFBR1 or TGFBR2 cause multiple human congenital malformations, including soft palate cleft, we propose that TGF-beta mediated Irf6 expression plays an important, cell-autonomous role in regulating the fate of MEE cells during palatogenesis in both mice and humans.  相似文献   

12.
Summary The epithelium of wounded guinea pig palate was subjected to stereologic analysis. A total of 18 biopsies (animals) were used. Biopsies were taken at 18, 48, 96 and 120 h after wounding. Point counting procedures were employed to analyse electron micrographs sampled from one (18 h) or two epithelial strata (48, 96 and 120 h). The essential modulations in epithelial structure as wound healing proceeds were as follows: During the early phases characterized by formation and advancement of epithelial lips (18 and 48 h), migrating cells converged towards a cell type which structurally was less differentiated than normal basal cells. This alteration was expressed by a decrease in volume density of cytoplasmic organelles, mainly mitochondria, free ribosomes and tonofilament bundles, coupled with an increase in volume density of lysosomal bodies. Concomitantly, the volume density of cytoplasmic ground substance rose markedly. Subsequent to fusion of contralateral migratory lips (96 and 120 h) reversion to normal epithelial structure was indicated by the increment in magnitude of basal cell parameters. Further structural density gradients from basal towards upper cell layers appeared. This pattern was mainly displayed by mitochondria, free ribosomes, and tonofilament bundles. The magnitude and gradation of most tissue and cell parameters were not yet re-established at 120 h. The density of tonofilament bundles and the density level of cytoplasmic ground substance in particular deviated.This investigation was supported in part by grants No. 512-5958 and No. 512-5151 from the Danish State Medical Research Council  相似文献   

13.
Sonic hedgehog (Shh) was isolated from the Xenopus laevis intestine as an early thyroid hormone (TH) response gene. To investigate possible roles of TH-upregulated expression of Shh during metamorphosis, we raised a polyclonal antibody against Xenopus Shh and immunohistochemically examined the relationship between Shh expression and the larval-to-adult intestinal remodeling at the cellular level. Our results indicate that the epithelial-specific expression of Shh in the intestine spatiotemporally correlates well with active proliferation and/or initial differentiation of the secondary (adult) epithelial primordia that originate from stem cells, but not with apoptosis of the primary (larval) epithelium. Given the similar transformations of the stomach during metamorphosis, we also analyzed Shh expression in this organ and found similar correlations in the stomach, although the position of the adult epithelial primordia and their final differentiation in the stomach are different from those in the intestine. Furthermore, we show here that Shh expression is organ-autonomously induced by TH and its correlation with the adult epithelial development is reproduced in vitro in both the intestine and the stomach. More importantly, addition of recombinant Shh protein to the culture medium results in developmental anomalies of both organs. However, differentiation of the adult epithelium is more severely inhibited by exogenous Shh in the intestine than in the stomach. These results suggest that TH-upregulated expression of Shh plays important roles in the postembryonic gastrointestinal remodeling, but its roles are at least partially different between the intestine and the stomach.  相似文献   

14.
Regulation of epithelial-mesenchymal transformation (EMT) is of central importance both in normal development and in disease. During heart development, cells of the superficial epicardial mesothelium undergo EMT to give rise to precursor cells of the coronary vasculature and cardiac fibroblasts. Here we report that the alpha(4)beta(1) integrin ligand, VCAM-1, inhibits EMT of chick epicardial mesothelial cells stimulated by TGFbeta isoforms. We further investigated the molecular basis of this inhibition using cultured chick embryonic and rat adult epicardial mesothelial cells. We observed that VCAM-1 increased cortical actin filaments at intercellular junctions and reduced stress fibers across epicardial cells. VCAM-1 inhibited stress fiber formation by TGFbeta1, TGFbeta2, TGFbeta3 and lysophosphatidic acid and altered Rho activity stimulated by TGFbeta3. This was accompanied by an increase in tyrosine phosphorylation of p190RhoGAP. All three TGFbeta isoforms weakened intercellular adhesion, reduced membrane localization of beta-catenin and E-cadherin and stimulated epicardial EMT in chick hearts. Each of these effects was restricted by simultaneous VCAM-1 treatment. Our data support the hypothesis that VCAM-1 can alter epicardial EMT at two key points: it limits Rho-dependent events such as stress fiber formation and it maintains the association of beta-catenin and E-cadherin with the adherens junction.  相似文献   

15.
The fate of the medial edge epithelial (MEE) cells during palatal fusion has been proposed to be either programmed cell death or epithelial-mesenchymal transformation. Vital cell labeling techniques were used to mark the MEE and observe their fate during palatal fusion in vitro. Fetal mouse palatal shelves were labeled with Dil and allowed to proceed through fusion while maintained in an organ culture system. The tissues were examined at several stages of palatal fusion for the distribution of Dil, presence of specific antigens and ultrastructural appearance of the cells. The MEE labeled with Dil occupied a midline position at all stages of palatal fusion. Initially the cells had keratin intermediate filaments and were separated from the underlying mesenchyme by an intact basement membrane. During the process of fusion the basement membrane was degraded and the Dil-labeled MEE were in contact with the mesenchymal-derived extracellular matrix. In the late stages of fusion the Dil-labeled MEE altered their cellular morphology, had vimentin intermediate filaments, and were not associated with an identifiable basement membrane. Dil-labeled cells, without an epithelial phenotype, remained present in the midline of the completely fused palate. The data indicate that the MEE did not die but underwent a phenotypic transformation to viable mesenchymal cell types, which were retained in the palatal mesenchyme.  相似文献   

16.
2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is a persistent organic pollutant that is strongly associated with a number of human diseases and birth defects, including cleft palate. Transforming growth factor (TGF) plays a significant role during mammalian palatogenesis. However, the epigenetic mechanism of transforming growth factors in the process of TCDD-induced cleft palate is unclear. The purpose of this research was to investigate the relationship and potential mechanism between TGF-β2/3 promoter DNA methylation and Smad signaling during TCDD-induced cleft palate. Pregnant C57BL/6N mice were exposed to 64 µg/kg TCDD on gestational day 10 (GD10) to establish the cleft palate model and palatal tissues of embryos were collected on GD13, GD14, and GD15 for subsequent experiments. TGF-β2/3 mRNA expression, TGF-β2/3 promoter methylation, and Smad signaling molecules expression were assessed in the palate of the two groups. The results showed that the incidence of cleft palate was 94.7% in the TCDD-treated group whereas no cleft palate was found in the control group. TCDD-treated group altered specific CpG sites of TGF-β2/3 promoter methylation. Compared to the control group, the proliferation of mouse embryonic palate mesenchymal stromal cells (MEPM), the expressions of TGF-β2/3, p-Smad2, and Smad4 were all reduced, while the expression of Smad7 was significantly increased in the atAR group. Smad signaling was downregulated by TCDD. Therefore, we suggest that TGF-β2/3 promoter methylation and Smad signaling may be involved in TCDD-induced cleft palate formation in fetal mice.  相似文献   

17.
c-Fos is an indispensable proto-oncogene product in the developmental process and a key factor in the proliferation of normal and neoplastic cells. It is also implicated in triggering epithelial–fibroblastoid cell conversion and the induction of apoptosis. To clarify the role of c-Fos in the life span of rat embryonic cells, we examined the disappearance of the medial edge epithelium (MEE) of the palatal shelf on palatal fusion and formation of the interdigital web. Using immunohistochemical techniques with anti-c-Fos antibody and a TdT-mediated dUTP-digoxigenin nick end labeling (TUNEL) method, we compared the pattern of c-Fos-positive cells and DNA fragmentation. To investigate the epithelial–mesenchymal transformation, transforming growth factor (TGF)-β3 was examined in both regions. During palatal fusion, c-Fos was detected in the nuclei of MEE cells just before the elevation of the palatal shelf and strongly stained at the MEE remaining in the center of the palate. c-Fos became undetectable in accordance with the disruption of the medial edge epithelium. We also immunohistochemically recognized the colocalization of c-Fos and TGF-β3 in the MEE. However, DNA fragmentation was not observed at the center of fusion. Considered together, cell disappearance at the fusion site was suggested to reflect epithelial–mesenchymal transformation. In contrast, mesenchymal cells of the interdigital web and the chondrocytes of the digit expressing c-Fos appeared to be the hallmark of programmed cell death and TGF-β3 could not be found in the interdigital mesenchyme. c-Fos in the interdigital space was detected more proximal than DNA fragmentation detection, suggesting that c-Fos acted at the upper stream of apoptosis. Our results support the involvement of c-Fos in the physiological process of cell transformation during palatogenesis and apoptosis during the interdigital formation. c-Fos may trigger a cell specific signal during organogenesis, especially transformation of epithelial cells and apoptosis of mesenchymal cells.  相似文献   

18.
Nevoid basal cell carcinoma syndrome (NBCCS) is an autosomal dominant or spontaneous disorder characterized by multiple cutaneous basal cell carcinomas, odontogenic keratocysts, skeletal anomalies and facial dysmorphology, including cleft lip and palate. Causative mutations for NBCCS occur in the PTCH1 gene on chromosome 9q22.3-q31, which encodes the principle receptor for the Hedgehog signalling pathway. We have investigated the molecular basis of craniofacial defects seen in NBCCS using a transgenic mouse model expressing Shh in basal epithelium under a Keratin-14 promoter. These mice have an absence of flat bones within the skull vault, hypertelorism, open-bite malocclusion, cleft palate and arrested tooth development. Significantly, increased Hedgehog signal transduction in these mice can influence cell fate within the craniofacial region. In medial edge epithelium of the palate, Shh activity prevents apoptosis and subsequent palatal shelf fusion. In contrast, high levels of Shh in odontogenic epithelium arrests tooth development at the bud stage, secondary to a lack of cell proliferation in this region. These findings illustrate the importance of appropriately regulated Hedgehog signalling during early craniofacial development and demonstrate that oro-facial clefting and hypodontia seen in NBCCS can occur as a direct consequence of increased Shh signal activity within embryonic epithelial tissues.  相似文献   

19.

Background

The excess and persistent accumulation of fibroblasts due to aberrant tissue repair results in fibrotic diseases such as idiopathic pulmonary fibrosis. Recent reports have revealed significant changes in microRNAs during idiopathic pulmonary fibrosis and evidence in support of a role for microRNAs in myofibroblast differentiation and the epithelial-mesenchymal transition in the context of fibrosis. It has been reported that microRNA-21 is up-regulated in myofibroblasts during fibrosis and promotes transforming growth factor-beta signaling by inhibiting Smad7. However, expression changes in microRNA-21 and the role of microRNA-21 in epithelial-mesenchymal transition during lung fibrosis have not yet been defined.

Methods

Lungs from saline- or bleomycin-treated C57BL/6 J mice and lung specimens from patients with idiopathic pulmonary fibrosis were analyzed. Enzymatic digestions were performed to isolate single lung cells. Lung epithelial cells were isolated by flow cytometric cell sorting. The expression of microRNA-21 was analyzed using both quantitative PCR and in situ hybridization. To induce epithelial-mesenchymal transition in culture, isolated mouse lung alveolar type II cells were cultured on fibronectin-coated chamber slides in the presence of transforming growth factor-β, thus generating conditions that enhance epithelial-mesenchymal transition. To investigate the role of microRNA-21 in epithelial-mesenchymal transition, we transfected cells with a microRNA-21 inhibitor. Total RNA was isolated from the freshly isolated and cultured cells. MicroRNA-21, as well as mRNAs of genes that are markers of alveolar epithelial or mesenchymal cell differentiation, were quantified using quantitative PCR.

Results

The lung epithelial cells isolated from the bleomycin-induced lung fibrosis model system had decreased expression of epithelial marker genes, whereas the expression of mesenchymal marker genes was increased. MicroRNA-21 was significantly upregulated in isolated lung epithelial cells during bleomycin-induced lung fibrosis and human idiopathic pulmonary fibrosis. MicroRNA-21 was also upregulated in the cultured alveolar epithelial cells under the conditions that enhance epithelial-mesenchymal transition. Exogenous administration of a microRNA-21 inhibitor prevented the increased expression of vimentin and alpha-smooth muscle actin in cultured primary mouse alveolar type II cells under culture conditions that induce epithelial-mesenchymal transition.

Conclusions

Our experiments demonstrate that microRNA-21 is increased in lung epithelial cells during lung fibrosis and that it promotes epithelial-mesenchymal transition.  相似文献   

20.
Breakdown of the medial epithelial seam (MES) is essential to allow bridging of the mesenchyme during palatal fusion. Evidence exists for three mechanisms for this breakdown that are incompatible at the level of individual cells in the seam. To determine if breakdown of the seam was regionally restricted, 3-dimensional reconstructions were generated using volume rendering software from 1 micron serial sections in the sagittal plane of rat palates fixed during the process of fusion. The earliest break detected in electron micrographs was cell separation and in reconstructions was a discrete defect, with a rounded outline, nearer to the nasal than to the oral margin of the seam. Further breakdown produced a pattern of rounded defects along the nasal margin of the seam resulting in interconnected columns of cells preferentially attached to the oral epithelium. Computer generated slicing of reconstructed seams showed that groups of cells evident in cross-sections as islands at this stage of breakdown of the MES could be artifacts. Unequivocal islands of epithelial cells formed later in fusion had a rounded outline, an incomplete basal lamina and a halo of cells containing phagocytosed apoptotic debris. The pattern of breakdown indicated that the MES breaks down under tension. Laser confocal microscopy of sections and whole-mounts of palates demonstrated alpha-smooth muscle actin preferentially localized in the epithelial cells of the palatal shelves immediately before and during formation of the seam. Expression in epithelial cells of the isoform of actin normally restricted to smooth muscle cells engaged in tonic contraction supported an interpretation that the epithelial cells of the seam may be capable of generating tension during the palatal fusion event.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号