首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The NMR titration curves of proton chemical shifts were observed for the C2 protons of histidine residues in intact bovine pancreatic RNAase A (EC 3.1.27.5) and carboxyalkylated RNAase A. By comparing the methyl region of NMR spectra, the 250-340 nm region of circular dichoic spectra, and the NMR titration curves of tyrosine ring protons among intact and modified RNAase A, it was ascertained that the carboxyalkylation of histidine residues at position 12 or 119 did not make any appreciable conformational changes to RNAase A. With the pK values determined for intact and modified RNAase A, the microscopic pK values and molar ratios of tautomers were estimated for His-12 and His-119 by means of the procedure described in the preceding paper. The estimated microscopic pK values of tautomers were 6.2 for the N1-H tautomer of His-12, more than 8 for the N3-H tautomer of His-12, 7.0 for the N1-H tautomer of His-119, and 6.4 for the N3-H tautomer of His-119, respectively. These values were interpreted in terms of the microscopic environments surrounding the histidine residues. The microscopic structure estimated in the present study was discussed, comparing it with those from X-ray crystallography and hydrogen-tritium (or hydrogen-deuterium) exchange technique.  相似文献   

2.
Bovine pancreatic ribonuclease A (RNase A) has a conserved His ... Asp catalytic dyad in its active site. Structural analyses had indicated that Asp121 forms a hydrogen bond with His119, which serves as an acid during catalysis of RNA cleavage. The enzyme contains three other histidine residues including His12, which is also in the active site. Here, 1H-NMR spectra of wild-type RNase A and the D121N and D121A variants were analyzed thoroughly as a function of pH. The effect of replacing Asp121 on the microscopic pKa values of the histidine residues is modest: none change by more than 0.2 units. There is no evidence for the formation of a low-barrier hydrogen bond between His119 and either an aspartate or an asparagine residue at position 121. In the presence of the reaction product, uridine 3'-phosphate (3'-UMP), protonation of one active-site histidine residue favors protonation of the other. This finding is consistent with the phosphoryl group of 3'-UMP interacting more strongly with the two active-site histidine residues when both are protonated. Comparison of the titration curves of the unliganded enzyme with that obtained in the presence of different concentrations of 3'-UMP shows that a second molecule of 3'-UMP can bind to the enzyme. Together, the data indicate that the aspartate residue in the His ... Asp catalytic dyad of RNase A has a measurable but modest effect on the ionization of the adjacent histidine residue.  相似文献   

3.
NMR titration curves are reported for the 4 histidine residues of ribonuclease A in sodium acetate and for ribonuclease S in sodium acetate, phosphate, and sulfate solutions. Evidence is presented that the imidazole side chain of histidine residue 48 undergoes a conformational change, probably also involving the carboxyl side chain of aspartic acid residue 14. This group is considered to be responsible for the low pH inflection with pKa 4.2 present in the NMR titration curve of the C-2 proton resonance of histidine 48. The NMR titration curves of the active site histidine residues 12 and 119 also exhibit inflections at low pH values, although there is no carboxyl group within 9 A of the imidazole side chain of histidine residue 12 in the structure of ribonuclease S determined by x-ray crystallography (Wyckoff, H. W., Tsernoglou, D., Hanson, A. W. Knox, J. R., Lee, B., and Richards, F. M. (1970) J. Biol. Chem. 245, 305-328). Curve fitting was carried out on 11 sets of NMR titration data using a model in which the 3 histidine residues 12, 119, and 48 are assumed to be affected by a common carboxyl group. The results obtained indicate that such a model with fewer parameters gives as good a representation of the data as the model in which each histidine residue is assumed to interact separately with a different carboxyl group. Therefore, it is concluded that the ionization of aspartic acid residue 14 is indirectly experienced by the active site histidine residues through the conformational change at histidine 48. A model assuming mutual interaction of the active site histidine residues does not account for the low pH inflections in these curves.  相似文献   

4.
Sensitive Raman difference spectroscopy was used to monitor the protonation and deprotonation of histidine residues in apo-transferrin. We have shown previously that the behavior of small molecules and/or small molecular groups bound to proteins or other large macromolecules can be studied by Raman difference spectroscopy (Yue, K.T. et al. (1989) J. Raman Spectrosc. 20, 541-545). Using this method, we have measured the Raman difference spectra of human transferrin at different pH values with respect to pH 8.9, titrating its various histidine residues. About 12 +/- 2 of the 19 residues were titrated. The pH difference spectrum of transferrin obtained is very similar to that of histidine in solution, but with clear differences in the 1200-1400 cm-1 region. A titration curve with pKa of 6.08 +/- 0.01 fit the data of histidine in solution and a value of 6.56 +/- 0.02 was found for the average value of the 12 histidine residues inside transferrin. The technique has enough sensitivity at present to monitor a single histidine residue in a 130 kDa molecule and to determine the titration curve of one residue in a 40 kDa protein.  相似文献   

5.
1H-NMR studies on the binding subsites of bovine pancreatic ribonuclease A   总被引:1,自引:0,他引:1  
The titration curves of the C-2 histidine protons of an RNAase derivative (a covalent derivative obtained by reaction of bovine pancreatic RNAase A (EC 3.1.27.5) with 6-chloropurine 9-beta-D-ribofuranosyl 5'-monophosphate) were studied by means of 1H-NMR spectroscopy at 270 MHz. The interaction of natural (5'AMP, 5'GMP, 5'IMP) and halogenated purine mononucleotides (cl6RMP, br8AMP) with RNAase A was also monitored by using the same technique. The slight change observed in the pK values of the active centre histidine residues of the RNAase derivative, with respect to those in the native enzyme, can be considered as evidence that the phosphate of the label does not interact directly either with His-12 or 119 in the p1 site, but the p2 site as proposed previously (Parés, X., Llorens, R., Arús, C. and Cuchillo, C.M. (1980) Eur. J. Biochem. 105, 571--579). Lys-7 and/or Arg-10 are proposed as part of the p2 phosphate-binding subsite. The pK values of His-12 and 119 and the shift of an aromatic resonance of the native enzyme found on interaction with some purine nucleotides, can be interpreted by postulating that the interaction of 5'AMP, 5'GMP and 5'IMP takes place not only in the so-called purine-binding site B2R2p1 but also in the primary pyrimidine-binding site B1R1 and p0 of RNAase A.  相似文献   

6.
Four titrating histidine ring C2 and C4 proton resonances are observed in 220 MHz proton NMR spectra of human metmyoglobin as a function of pH. Values of ionization constants determined from the NMR titration data using an equation describing a simple proton association-dissociation equilibrium are curves (1) 6.6, (2) 7.0, (3) 5.8, and (4) 7.4. Four histidine residues have also been found to be solvent-accessible in human metmyoglobin by carboxymethylation studies (Harris, C.M., and Hill, R.L. (1969) J. Biol. Chem. 244, 2195-2203). Two of the titration curves (3 and 4) deviate significantly from the chemical shift values normally observed for histidine C2 proton resonances. Curve 3, with a low pKa, is shifted downfield at high values of pH and also exhibits a second minor inflection with a pKa value of 8.8. On the other hand, the high pKa curve, 4, is shifted upfield at all values of pH. The characteristics of the NMR titration curves with the lowest and highest pKa values (3 and4) are very similar to curves observed previously with sperm whale and horse metmyoglobins (Cohen, J.S., Hagenmaier, H., Pollard, H., and Schechter, A.N. (1972) J. Mol. Biol. 71, 513-519). These results indicate that the histidine residues from which these curves are derived have unusual and characteristic environments in this series of homologous proteins. The NMR spectra of all three metmyoglobins are changed extensively as a result of azide ion binding, indicating conformational changes affecting the environments of several imidazole side chains. The presence of azide ion causes a selective downfield chemical shift for the low pKa curve and a selective upfield chemical shift for the high pKa curve in all three proteins. Azide also abolishes the second inflection seen in the low pKa curve at high pH. In addition to these effects, the presence of azide ion permits the observation of two additional titrating proton resonances for all three metmyoglobins. Increasing the azide to protein ratio at several fixed values of pH yields results which show that a slow exchange process is occurring with each of the metmyoglobins. In the azide titration studies the maximum changes in the NMR spectra occurred at approximately equimolar concentrations. The NMR results for these proteins in the absence and presence of azide ion are related to x-ray crystallographic studies of sperm whale metmyoglobin and the known alkylation properties of the histidine residues. Tentative assignments of the titrating resonances observed are suggested.  相似文献   

7.
M Flogel  R L Biltonen 《Biochemistry》1975,14(12):2603-2609
The proton association behavior of ribonuclease A and its complex with 3'-cytosine monophosphate has been thermodynamically characterized in the pH range 4--8 at 25 degrees, mu = 0.05. Calorimetric and potentiometric titration data have been used to estimate the apparent pK values and enthalpy values for protonation of the four histidine residues of the protein, deltaHp. In the free enzyme the pK values were deduced to be 5.0, 5.8, 6.6, and 6.7 and deltaHp deduced to be -6.5, -6.5, -6.5, and -24 kcal/mol for residues 119, 12, 105, and 48, respectively. For the nucleotide-enzyme complex it was concluded that the apparent pK values of residues 119, 12, and 48 increased to an average value of about 7.2, the deltaHp values remaining constant for all histidine groups except 48. It was also concluded that only the dianionic phosphate form of the nucleotide inhibitor is bound to the enzyme in this pH range. These results are consistent with a thermodynamic model for the binding reaction in which inhibitor-enzyme association is coupled to the ionization of three imidazole residues (12, 119, and 48) and the interaction between the negative phosphate moiety of the inhibitor and the positively charged residues 12 and 119 is purely electrostatic. However, the "interaction" with residue 48 probably involves a conformational rearrangement of the macromolecule.  相似文献   

8.
The current article describes a new two-dimensional lambda-dynamics method to include proton tautomerism in continuous constant pH molecular dynamics (CPHMD) simulations. The two-dimensional lambda-dynamics framework is used to devise a tautomeric state titration model for the CPHMD simulations involving carboxyl and histidine residues. Combined with the GBSW implicit solvent model, the new method is tested on titration simulations of blocked histidine and aspartic acid as well as two benchmark proteins, turkey ovomucoid third domain (OMTKY3) and ribonuclease A (RNase A). A detailed analysis of the errors inherent to the CPHMD methodology as well as those due to the underlying solvation model is given. The average absolute error for the computed pKa values in OMTKY3 is 1.0 pK unit. In RNase A the average absolute errors for the carboxyl and histidine residues are 1.6 and 0.6 pK units, respectively. In contrast to the previous work, the new model predicts the correct sign for all the pKa shifts, but one, in the benchmark proteins. The predictions of the tautomeric states of His12 and His48 and the conformational states of His48 and His119 are in agreement with experiment. Based on the simulations of OMTKY3 and RNase A, the current work has demonstrated the capability of the CPHMD technique in revealing pH-coupled conformational dynamics of protein side chains.  相似文献   

9.
Subtilisins Novo and DY were photoinactivated in the presence of methylene blue according to first order kinetics. The competitive inhibitor N alpha-benzoyl-L-arginine protected significantly against inactivation. Under the conditions employed in this study a selective photooxidation of the active site histidine 64 was achieved. Rate constants of 0.32 X 10(-2), s-1 and 0.35 X 10(-2), s-1, were calculated for the Novo enzyme and subtilisin DY, respectively. Apparent pKa values of the catalytically important imidazole group of 7.0 +/- 0.1 (s. Novo) and 7.1 +/- 0.1 (s. DY) were directly determined. The histidyl residues in the two proteases, except the active site histidine, which is the first target of photooxidation, are "buried" in the interior of the protein globule. Conformational studies suggested that the photoreactive histidine is not involved in the stabilization of the protein conformation.  相似文献   

10.
The relative importance of tyrosine and histidine residues for the catalytic action of Escherichia coli asparaginase (L-asparagine amidohydrolase, EC 3.5.1.1) was studied by chemical modification and 1H-NMR spectroscopy. We show that, under appropriate reaction conditions, N-bromosuccinimide (NBS) as well as diazonium-1H-tetrazole (DHT) inactivate by selectively modifying two tyrosine residues per asparaginase subunit without affecting histidyl moieties. We further show that diethyl pyrocarbonate (DEP), a reagent considered specific for histidine, also modifies tyrosine residues in asparaginase. Thus, inactivation of the enzyme by DEP is not indicative of histidine residues being involved in catalysis. In 1H-nuclear magnetic resonance (NMR) spectra of asparaginase signals from all three histidine residues were identified. By measuring the pH dependencies of these resonances, pKa values of 7.0 and 5.8 were derived for two of the histidines. Titration with aspartate which tightly binds to the enzyme at low pH strongly reduced the signal amplitude of the pKa 7 histidyl moiety as well as those of resonances of one or more tyrosine residues. This suggests that tyrosine and histidine are indeed constituents of the active site.  相似文献   

11.
The ionization constants of 3 of the histidine residues of ribonuclease A have beenobtained at 5 temperatures from the nuclear magnetic resonance titration curves of the imidazole C2 proton resonances. Thermodynamic parameters derived from the ionization constants indicate that histidine residues 105 and 119 are fairly well exposed to solvent, while histidine residue 12 is in a somewhat more restricted environment. Measurements of the low pH inflection present in the titration curve of histidine-12 yield a large negative entropy value, indicating that the group givine rise to this inflection is also buried.  相似文献   

12.
Two active site histidine residues have been implicated in the catalysis of phosphatidylinositol-specific phospholipase C (PI-PLC). In this report, we present the first study of the pKa values of histidines of a PI-PLC. All six histidines of Bacillus cereus PI-PLC were studied by 2D NMR spectroscopy and site-directed mutagenesis. The protein was selectively labeled with 13C epsilon 1-histidine. A series of 1H-13C HSQC NMR spectra were acquired over a pH range of 4.0-9.0. Five of the six histidines have been individually substituted with alanine to aid the resonance assignments in the NMR spectra. Overall, the remaining histidines in the mutants show little chemical shift changes in the 1H-13C HSQC spectra, indicating that the alanine substitution has no effect on the tertiary structure of the protein. H32A and H82A mutants are inactive enzymes, while H92A and H61A are fully active, and H81A retains about 15% of the wild-type activity. The active site histidines, His32 and His82, display pKa values of 7.6 and 6.9, respectively. His92 and His227 exhibit pKa values of 5.4 and 6.9. His61 and His81 do not titrate over the pH range studied. These values are consistent with the crystal structure data, which shows that His92 and His227 are on the surface of the protein, whereas His61 and His81 are buried. The pKa value of 6.9 corroborates the hypothesis of His82 acting as a general acid in the catalysis. His32 is essential to enzyme activity, but its putative role as the general base is in question due to its relatively high pKa.  相似文献   

13.
Aromatic side-chains are found in the vicinity of histidine residues in many proteins and protein complexes. We have studied the interaction between a histidine residue (His18) and aromatic residues at position 94 in barnase. Three different techniques have been applied to show that Trp94 interacts more strongly with the protonated form of His18. The aromatic-histidine interaction stabilizes the protonated form of histidine by 0.8 to 1 kcal mol-1 relative to the unprotonated and, thereby, increases its pKa value. This was shown indirectly from the pH dependence of the stability of the wild-type protein and the mutant Trp94----Leu; and directly from the difference in pKa of His18 between wild-type barnase and the same mutant protein, and from double-mutant cycles that measure the total interaction energy of Trp94 with His18 at both low and high pH. When Trp94 is replaced by other aromatic amino acids, the strength of the interaction decreases in the series His-Trp greater than His-Tyr greater than His-Phe. The interaction is not masked by high salt concentrations. The raising of the pKa value of His18 by interaction with Trp94 is shown to be consistent with solution studies with model compounds. The histidine-aromatic interaction could have implications in binding and catalysis for modulation of the histidine pKa value.  相似文献   

14.
15.
The histidines of the iron-uptake regulation protein, Fur   总被引:9,自引:0,他引:9  
There are 12 histidine residues/molecule in the iron-uptake regulation protein (Fur). Here we examine their pH dependence using proton nuclear magnetic resonance spectroscopy. The histidines have widely spread acid dissociation constants but we can not offer a simple explantation for their complicated behaviour.  相似文献   

16.
The pH-dependent kinetics of lysyl oxidase catalysis was examined for evidence of an ionizable enzyme residue which might function as a general base catalyzing proton abstraction previously shown to be a component of the mechanism of substrate processing by this enzyme. Plots of log Vmax/Km for the oxidation of n-hexylamine versus pH yielded pKa values of 7.0 +/- 0.1 and 10.4 +/- 0.1. The higher pKa varied with different substrates, reflecting ionization of the substrate amino group. A van't Hoff plot of the temperature dependence of the lower pKa yielded a value of 6.1 kcal mol-1 for the enthalpy of ionization. This value as well as the pKa of 7.0 are consistent with those of histidine residues previously implicated as general base catalysts in enzymes. Incubation of lysyl oxidase with low concentrations of diethyl pyrocarbonate, a histidine-selective reagent, at 22 degrees C and pH 7.0 irreversibly inhibited enzyme activity by a pseudo first-order kinetic process. The inactivation of lysyl oxidase correlated with spectral and pH-dependent kinetic evidence for the chemical modification of 1 histidine residue/mol of enzyme, the pKa of which was 6.9 +/- 0.1, within experimental error of that seen in the plot of log Vmax/Km versus pH. Enzyme activity was restored by incubation of the modified enzyme with hydroxylamine, consistent with the ability of this nucleophile to displace the carbethoxy group from N-carbethoxyhistidine. The presence of the n-hexylamine substrate largely protected against enzyme inactivation by diethyl pyrocarbonate. These results thus indicate a functional role for histidine in lysyl oxidase catalysis consistent with that of a general base in proton abstraction.  相似文献   

17.
The histidine C-2 proton NMR titration curves of ribonuclease S-peptide (residues 1 to 20) and S-protein (residues 21 to 124) are reported. Although S-protein contains 3 histidine residues, four discrete resonances are observed to titrate. One of these arises from the equivalent histidine residues of unfolded S-protein. The variation in area of the four resonances indicate that there is a reversible pH-dependent equilibrium between the folded and unfolded forms of S-protein, with some unfolded material being present at most pH values. Two of the resonances of the folded S-protein can be assigned to 2 of the histidine residues, 48 and 105, from the close similarity of their titration curves to those in ribonuclease. These similarities indicate a homology of portions of the folded conformation of S-protein to that of ribonuclease in solution. These results indicate that the complete amino acid sequence is not required to produce a folded conformation similar to the native globular protein, and they appear to eliminate the possibility that proteins fold from their NH2 terminus during protein synthesis. The low pH inflection present in the titration curve assigned to histidine residue 48 in ribonuclease is absent from this curve in S-protein. This is consistent with our previous conclusion that this inflection arises from the interaction of histidine 48 with aspartic acid residue 14, which is also absent in S-protein. The third titrating resonance of native S-protein is assigned to the remaining histidine residue at position 119. The properties of this resonance are not identical with either of the titration curves of the active site histidine residues 12 and 119 of ribonuclease. The resonance assigned to histidine 119 is the only one significantly affected on the addition of sodium phosphate to S-protein, indicating that some degree of phosphate binding occurs. In both the absence and presence of phosphate this curve also lacks the low pH inflection observed in the histidine 119 NMR titration curve in ribonuclease. This difference presumably arise from a conformational between ribonuclease and the folded S-protein involving a carboxyl group.  相似文献   

18.
Evidence for an essential histidine in neutral endopeptidase 24.11   总被引:3,自引:0,他引:3  
R C Bateman  L B Hersh 《Biochemistry》1987,26(14):4237-4242
Rat kidney neutral endopeptidase 24.11, "enkephalinase", was rapidly inactivated by diethyl pyrocarbonate under mildly acidic conditions. The pH dependence of inactivation revealed the modification of an essential residue with a pKa of 6.1. The reaction of the unprotonated group with diethyl pyrocarbonate exhibited a second-order rate constant of 11.6 M-1 s-1 and was accompanied by an increase in absorbance at 240 nm. Treatment of the inactivated enzyme with 50 mM hydroxylamine completely restored enzyme activity. These findings indicate histidine modification by diethyl pyrocarbonate. Comparison of the rate of inactivation with the increase in absorbance at 240 nm revealed a single histidine residue essential for catalysis. The presence of this histidine at the active site was indicated by (a) the protection of enzyme from inactivation provided by substrate and (b) the protection by the specific inhibitor phosphoramidon of one histidine residue from modification as determined spectrally. The dependence of the kinetic parameter Vmax/Km upon pH revealed two essential residues with pKa values of 5.9 and 7.3. It is proposed that the residue having a kinetic pKa of 5.9 is the histidine modified by diethyl pyrocarbonate and that this residue participates in general acid/base catalysis during substrate hydrolysis by neutral endopeptidase 24.11.  相似文献   

19.
Wang W  Seah SY 《FEBS letters》2008,582(23-24):3385-3388
Histidine 45 in HpaI was replaced with alanine (H45A) and glutamine (H45Q). In the aldol cleavage reaction, kcat values were lowered by 78- and 2059-fold while Km values were increased by 100- and 42-fold in H45A and H45Q, respectively, compared to the wild-type enzyme. Both mutants displayed higher dissociation constants towards the metal cofactor, pyruvate and the transition state analogue, oxalate. Pyruvate proton exchange rates are consequently reduced in H45A and H45Q. pKa for a catalytic base (6.5) is lost in the mutant enzymes and catalysis is dependent on hydroxide ions. The results show that histidine 45 is important for metal cofactor binding and for facilitating C4-OH proton abstraction of the substrate in the reaction mechanism.  相似文献   

20.
The proton magnetic resonance spectrum at 300 MHz of the histidine residues in a semisynthetic derivative of bovine pancreatic ribonuclease (RNase A) has been determined. The derivative RNase 1-118 . 111-124 was prepared by enzymically removing six residues from the COOH terminus of the protein (positions 119-124) and then complementing the inactive RNase 1-118 with a chemically synthesized peptide containing the COOH-terminal 14 residues of ribonuclease (RNase 111-124) [Lin, M.C., Gutte, B., Moore, S., & Merrifield, R.B. (1970) J. Biol. Chem. 245, 5169-5170]. Comparison of the line positions of the C(2)-1H resonances of these residues and of their pH dependence with those reported by other workers has allowed assignment of the resonances to individual residues, as well as the determination of individual pK values for histidine-12, histidine-105, and histidine-119. The assignment of histidine-119 was confirmed by the use of a selectively deuterated derivative. The titration behavior of all four histidine residues is indistinguishable from that observed by others for bovine pancreatic ribonuclease A. Partial dissociation of the noncovalent semisynthetic complex was evident at 30 degrees C, pH 4.0, 0.3 M NaCl; pertinent spectra were analyzed to provide an estimate of the association constant between the component chains under these conditions of 1.9 X 10(3) M-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号