首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The role of ornithine decarboxylase and of polyamines was investigated on caerulein-induced pancreatic growth by the use of α-difluoromethylornithine (DFMO), an enzyme-activated irreversible inhibitor of ornithine decarboxylase. By itself, DFMO did not affect the pancreatic gland at all but when combined with caerulein, it reduced the increases in DNA synthesis and DNA content initiated by the cholecystokinin analog. The general hypertrophic action of caerulein was not affected by DFMO but specific increases in amylase and chymotrypsin concentrations were observed after 2 days of caerulein. The effect on amylase concentration was further increased after 4 days but that on chymotrypsin was reversed, showing a significant decrease. These data suggest that the polyamines might be involved in pancreatic growth that is stimulated by caerulein and that their action could be mainly oriented towards cellularity. The specific decreases obtained in DNA synthesis and content brought about by DFMO support this observation.  相似文献   

2.
Administration of thyroxine to rat pups leads to precocious development of the pancreas. The role of ornithine decarboxylase (ODC) and polyamines in thyroxine-induced pancreatic maturation was examined. Rat pups (aged 5 days) were given daily subcutaneous injection of thyroxine (0.1 micrograms/g body wt.) until the day before death. Serial ODC activities were measured in pancreatic homogenates after 1, 2, 3, 4, 5, 6, 7 and 10 days of thyroxine treatment. There was a biphasic induction of ODC activities by thyroxine: an early peak appeared on day 2 of treatment followed by a decrease on day 4; a second peak was evident on day 5 and then a decrease to control values by day 7. Significant increases in tissue concentrations of putrescine and spermidine were observed concomitant with two peaks of ODC activity. Pancreatic amylase concentration, DNA and protein also showed a significant increase after thyroxine treatment. Difluoromethyl ornithine (DFMO), a specific ODC inhibitor, given orally (8% in drinking water) to nursing dams at postnatal day 5 for 5 days caused an 83% inhibition of pancreatic ODC activity in thyroxine-treated pups when compared to thyroxine-treated pups not exposed to DFMO. Concomitantly, the thyroxine-induced increases in pancreatic weight, protein and amylase activity were suppressed. Our results suggest that increases in ODC activities and polyamine levels are critical intermediary steps in the precocious induction of pancreatic development by thyroxine.  相似文献   

3.
Influence of DL-alpha-difluoromethylornithine (DFMO) treatment on the growth kinetics, labelling index, extra- and intracellular polyamine and nucleotide concentrations was monitored in cultured P388 leukemia cells. A substantial decrease of cell proliferation was observed when the cells were continuously treated with 1-5 mM DFMO. Depletion of cellular polyamines, mostly of putrescine and spermidine, was seen with a concomitant but delayed increase of spermidine and spermine levels in the culture medium. Changes of DNA content and of labelling index of untreated and treated cells seem to indicate that DFMO arrested cells in G1/S transition. The results presented here provide additional in vitro evidence on the characteristic changes in the metabolic imbalance of ornithine in tumor cells induced by DFMO via inhibition of ornithine decarboxylase and ornithine carbamoyl transferase activities.  相似文献   

4.
Effects of exogenous polyamines and difluoromethylornithine (DFMO) on seed germination and seedling root growth of Arabidopsis thaliana were investigated. Root growth was stimulated by low concentrations of putrescine but was increasingly inhibited by high concentrations of putrscine. DFMO inhibited root growth and this inhibition was reversed by applying putrescine. In contrast, both spermidine and spermine had no effect on root growth but inhibited seed germination. The results suggest a possible requirement of endogeneous putrescine for normal root growth of Arabidopsis seedlings.Abbreviations DFMO difluoromethylornithine - DFMA difluoromethylarginine - ODC ornithine decarboxylase - Put Putrescine - Spd Spermidine - Spm Spermine  相似文献   

5.
Luminal and basolateral uptake of polyamines by the rat small intestine was studied in vivo. In the concentration range studied (0.1-5 mg per rat) 23-47% of the individual polyamines given intragastrically were found in the body after 1 h, with the small intestine retaining 4-12% of the dose. With spermidine or spermine, labelled polyamines accounted for 85-96% of the counts in the small intestine and between 72-82% were in the form given. However, with putrescine only 29-39% of the label found in the tissue remained in polyamine form and even less, 11-15%, as putrescine. Luminal uptake of polyamines was linear, non-saturable and was not stimulated when small intestinal growth was stimulated by phytohaemagglutinin (PHA). On the basolateral side of the gut, polyamine uptake was stimulated by PHA in a time-dependent way in advance of detectable growth. Overall polyamine recoveries were high (89-99%) with intraperitoneally administered spermidine and spermine. Moreover, a large proportion of the counts in the tissue (63-89%) were still in the original form. Even with putrescine, total recoveries of polyamines (72-88%) and putrescine (24-33%) were elevated in comparison with those from the lumen. Treatment of rats with alpha-difluoromethylornithine (DFMO), an inhibitor of ornithine decarboxylase, reduced tissue polyamine content, although it had slight effects only on basolateral polyamine transport. The PHA-stimulated increase of polyamine uptake was not abolished in the presence of DFMO.  相似文献   

6.
Difluoromethylornithine (DFMO), a selective inhibitor of ornithine decarboxylase, was used to probe the possible role of polyamines in the regulation of proliferation and steroidogenic activities of bovine adrenocortical cells in primary culture. The presence of DFMO in the culture medium not only suppressed the polyamine increase observed in proliferating control cells but resulted in a rapid depletion of the putrescine and spermidine cellular content, while spermine remained at a basal level. The proliferation of DFMO-treated cells was rapidly blocked and resumed at a normal rate upon addition of putrescine to the medium. DFMO-treated cells showed an impaired steroidogenic response to ACTH while adenylate cyclase stimulation was not altered. Thus, while ornithine decarboxylase and polyamines may be required for adrenocortical cell replication, deprivation of these compounds did not facilitate the expression of differentiated cell functions, as observed with granulosa cells.  相似文献   

7.
Previous studies from our laboratory have shown that caerulein, a cholecystokinin analog, can induce pancreatic growth. Because ornithine decarboxylase (ODC) could be involved in this process, it is of interest to localize and estimate ODC immunoreactivity in rat pancreatic acinar cells from control and caerulein-treated animals. This was carried out with the protein A-gold immunocytochemical technique. Rats received either saline (control) or caerulein at a dose of 1 microgram X kg-1 and were sacrificed 8 h after the first injection (control and caerulein group), 4 h after the second caerulein injection (second caerulein group), and 8 h after the third caerulein injection (third caerulein group). ODC immunoreactivity was revealed using a specific antibody. ODC was localized specifically in nuclei and rough endoplasmic reticulum (RER) of the pancreatic acinar cells and the number of gold particles was increased in both of these organelles by caerulein. Peak ODC immunoreactivity was observed in nuclei 4 h after the second caerulein injection, whereas it occurred 8 h after the third peptide injection in the RER. These studies are the first to demonstrate ODC localization in pancreatic acinar cells and show that the enzyme can be induced early upon growth stimulation of the organ by a cholecystokinin analog.  相似文献   

8.
In the short-day plant, strawberry (Fragaria ananassa Duch.), polyamines (putrescine, spermidine and spermine), conjugated spermidine (water-insoluble compounds) and bound amines (putrescine, spermidine, phenylethylamine, 3-hydroxy, 4-methoxyphenylethylamine) accumulated in the shoot tips during floral induction and before floral emergence. Different associations of free amines and conjugated amines were observed during floral induction, as compared with the reproductive phase. During the whole period of floral development, phenylethylamine (an aromatic amine) was the predominant amine, representing 80 to 90% of the total free amine pool. Phenylethylamine conjugates (water-insoluble compounds) were the predominant amides observed prior to fertilization. These substances decreased drastically after fertilization. In vegetative shoot tips from plants grown continously under long days, free polyamines (putrescine, spermidine) and bound polyamines (putrescine, spermidine) were low and no change was observed. Free amines (spermine and phenylethylamine), bound aromatic amines (phenylethylamine, 3-hydroxy, 4-methoxyphenylethylamine), conjugated spermidine and phenylethylamine did not appear. Male-sterile flowers were distinguished by their lack of conjugated spermidine and phenylethyalamine and by a decrease in free phenylethylamine. In normal and sterile strawberry plants -DL-difluoromethylornithine (DFMO), a specific irreversible inhibitor of ornithine decarboxylase (ODC), caused inhibition of flowering and free and polyamine conjugates. When putrescine was added, polyamine titers and flowering were restored. A similar treatment with -DL-difluoromethylarginine (DFMA), a specific, irreversible inhibitor of arginine decarboxylase (ADC), did not affect flowering and polyamine titers. These results suggest that ornithine decarboxylase (ODC) and polyamines are involved in regulating floral initiation in strawberry. The relationship between polyamines, aromatic amines, conjugates, floral initiation and male sterility is discussed.Abbreviations ADC arginine decarboxylase - ODC ornithine decarboxylase - DFMA -DL-difluoromethylarginine - DFMO -DL-difluoromethylornithine - Put putrescine - Spd spermidine - Spm spermine - Phen phenylethylamine - 3H4M Phen 3-hydroxy, 4-methoxyphenylethylamine  相似文献   

9.
α-Difluoromethylornithine (DFMO), a specific and irreversible inhibitor of the polyamine biosynthetic enzyme ornithine decarboxylase, effectively inhibits mycelial growth of several phytopathogenic fungi on defined media in vitro and provides systemic protection of bean plants against infection by Uromyces phaseoli L. race 0 (MV Rajam, AW Galston 1985 Plant Cell Physiol 26: 683-692; MV Rajam et al. 1985 Proc Natl Acad Sci USA 82: 6874-6878). We now find that application of 0.5 millimolar DFMO to unifoliolate leaves of Pinto beans up to 3 days after inoculation with uredospores of U. phaseoli completely inhibits the growth of the pathogen, while application 4 or 5 days after inoculation results in partial protection against the pathogen. Spores do not germinate on the surface of unifoliolate leaves treated with DFMO 1 day before infection, but addition of spermidine to the DFMO treatments partially reverses the inhibitory effect. The titer of polyamines in bean plants did not decline after DFMO treatment; rather, putrescine and spermidine contents actually rose, probably due to the known but paradoxical stimulation of arginine decarboxylase activity by DFMO.  相似文献   

10.
The migration of IEC-6 cells is inhibited when the cells are depleted of polyamines by inhibiting ornithine decarboxylase with alpha-difluoromethylornithine (DFMO). Exogenous putrescine, spermidine, and spermine completely restore cell migration inhibited by DFMO. Because polyamines are interconverted during their synthesis and catabolism, the specific role of individual polyamines in intestinal cell migration, as well as growth, remains unclear. In this study, we used an inhibitor of S-adenosylmethionine decarboxylase, diethylglyoxal bis(guanylhydrazone)(DEGBG), to block the synthesis of spermidine and spermine from putrescine. We found that exogenous putrescine does not restore migration and growth of IEC-6 cells treated with DFMO plus DEGBG, whereas exogenous spermine does. In addition, the normal distribution of actin filaments required for migration, which is disrupted in polyamine-deficient cells, could be achieved by adding spermine but not putrescine along with DFMO and DEGBG. These results indicate that putrescine, by itself, is not essential for migration and growth, but that it is effective because it is converted into spermidine and/or spermine.  相似文献   

11.
This paper reviews the relationships between the effects of glucocorticoids on rat pancreatic acinar AR42J cell polyamine levels and cellular growth and differentiation. Glucocorticoids inhibit the growth of AR42J cells. Glucocorticoids either stimulate or inhibit the formation of polyamines in a variety of cell types. Cells require polyamines for normal growth. Therefore, we tested the hypothesis that polyamines mediate the effects of glucocorticoids on AR42J cells. First, to confirm that AR42J cells required polyamines for growth we examined the effects of inhibiting ornithine decarboxylase (ODC). ODC is the most important and generally rate-limiting enzyme in the synthesis of the polyamines. As expected, the ODC inhibitor difluoromethylornithine (DFMO) inhibited AR42J cell DNA synthesis, and the addition of exogenous putrescine reversed this effect. The levels of growth inhibition by glucocorticoids and DFMO treatment were similar. Second, we examined the effects of glucocorticoids on ODC. Surprisingly, glucocorticoids increased levels of AR42J cell ODC mRNA, ODC activity, and putrescine. Glucocorticoids increased these parameters over a similar time-course as they decreased DNA synthesis. Analog specificity studies indicated that a glucocorticoid receptor mediated both the growth inhibitory and ODC stimulatory effects. Dose-response studies indicated, however, that growth inhibition was more sensitive to dexamethasone (DEX) than were ODC levels. Therefore, polyamines do not account for the effects of glucocorticoids on AR42J cell growth. In these cells, glucocorticoids have opposite and independent effects on ODC and growth.  相似文献   

12.
The object of this study was to examine the effect of inhibition of polyamine biosynthesis on the cell cycle traverse of HeLa cells using α-difluoromethyl ornithine (DFMO), a catalytic irreversible inhibitor of ornithine decarboxylase. The results of this study indicate that DFMO inhibits HeLa cell growth by causing a decrease in the intracellular levels of putrescine and spermidine without any significant effect on concentration of spermine. The inhibition is readily reversible by exogenous supply of putrescine to the medium. The DFMO treatment also results in an accumulation of cells in S phase. Further, the use of an S phase-specific drug like Ara-C following DFMO treatment results in a synergistic killing of the tumor cells as revealed by the inhibition of cell growth. These observations suggest that exploitation of regulation of the cell cycle by the depletion of polyamines with the use of inhibitors like DFMO might help in designing better therapeutic regimes in combination with other cytotoxic drugs.  相似文献   

13.
Small molecule inhibitors of cyclin-dependent kinases (CDKs) show high therapeutic potential in various cancer types which are characterized by the accumulation of transformed cells due to impaired apoptotic machinery. Roscovitine, a CDK inhibitor showed to be a potent apoptotic inducer in several cancer cells. Polyamines, putrescine, spermidine and spermine, are biogenic amines involved in many cellular processes, including apoptosis. In this study, we explored the potential role of polyamines in roscovitine-induced apoptosis in HCT116 colon cancer cells. Roscovitine induced apoptosis by activating mitochondrial pathway caspases and modulating the expression of Bcl-2 family members. Depletion of polyamines by treatment with difluoromethylornithine (DFMO) increased roscovitine-induced apoptosis. Transient silencing of ornithine decarboxylase, polyamine biosynthesis enzyme and special target of DFMO also increased roscovitine-induced apoptosis in HCT116 cells. Interestingly, additional putrescine treatment was found pro-apoptotic due to the presence of non-functional ornithine decarboxylase (ODC). Finally, roscovitine altered polyamine catabolic pathway and led to decrease in putrescine and spermidine levels. Therefore, the metabolic regulation of polyamines may dictate the power of roscovitine induced apoptotic responses in HCT116 colon cancer cells.  相似文献   

14.
Different groups of CFY female newborn rats were treated with saline, or 1 microgram/kg or 100 micrograms/kg doses of caerulein given s. c. 3 x/day. Application of 100 micrograms/kg dose of caerulein for 3 days stimulated pancreatic growth inducing pancreatic hyperplasia; both (1 and 100 micrograms/kg) doses evoked increase in trypsin/DNA ratio inducing pancreatic hypertrophy in 4-days-old rats. Using the indices as before application of 1 microgram/kg caerulein for 10 days stimulated pancreatic growth and both (1 and 100 micrograms/kg) doses elicited glandular hypertrophy in 11-days-old rats. In 24-old-rats the 1 microgram/kg doses of caerulein given for 3 days stimulated pancreatic growth and induced pancreatic hypertrophy, the 100 micrograms/kg doses of the peptide given for 3 days, however, evoked pancreatic aplasia and atrophy.  相似文献   

15.
The primary free polyamines identified during growth and development of strawberry (Fragaria × ananassa Duch.) microcuttings cultivated in vitro were putrescine, spermidine and spermine. Polyamine composition differed according to tissue and stages of development; putrescine was predominant in aerial green tissues and roots. -DL-difluoromethylarginine (DFMA), a specific and irreversible inhibitor of the putrescine-synthesizing enzyme, arginine decarboxylase (ADC), strongly inhibited growth and development. Application of agmatine or putrescine to the inhibited system resulted in a reversal of inhibition, indicating that polyamines are involved in regulating the growth and development of strawberry microcuttings. -DL-difluoromethylornithine (DFMO), a specific and irreversible inhibitor of putrescine biosynthesis by ornithine decarboxylase, promoted growth and development. We propose that ADC regulates putrescine biosynthesis during microcutting development. The application of exogenous polyamines (agmatine, putrescine, spermidine) stimulated development and growth of microcuttings, suggesting that the endogenous concentrations of these polyamines can be growth limiting.Abbreviations ADC arginine decarboxylase - ODC ornithine decarboxylase - DFMA -difluoromethylarginine - DFMO -difluoromethylornithine - Put putrescine - Spd spermidine - Sp spermine - DW dry weight - PA polyamine - PPF photosynthetic photon flux  相似文献   

16.
We have tested the notion that polyamines, particularly putrescine, mediate the response of mouse kidney to androgens. Hormonal effects were measured in female mice maintained on the ornithine decarboxylase (ODC) inhibitor alpha-difluoromethylornithine (DFMO), which results in a 85-90% reduction of ODC enzyme levels and a depletion of putrescine concentrations in kidney. These animals exhibited normal kidney cell hypertrophy in response to testosterone. In addition, androgen-inducibility of the RP2 gene was indistinguishable from that in normal mice. These results indicate that an increase in putrescine levels is not a prerequisite for androgen effects in mouse kidney and that putrescine does not mediate the hormonal response.  相似文献   

17.
The present study investigates the inhibitory effect of the novel potent benzodiazepine-related CCK-antagonist L-364,718 on pancreatic growth in the rat induced by chronic administration of caerulein and bombesin-like peptides. Caerulein, injected s.c. twice daily at a dose of 1 microgram/kg body weight, and bombesin (10 micrograms/kg) induced a similar increase (1.5-3-fold) in pancreatic wet weight, total protein, amylase, trypsin, putrescine and spermidine content after 14 days of treatment. Growth induced by caerulein showed a significant increase in total DNA content suggesting cellular hyperplasia, whereas bombesin-like peptides led to cellular hypertrophy. In comparison to bombesin the decapeptide neuromedin C (10 micrograms/kg) was found to be 30-50% less potent. In the same dose range, neuromedin B and the tachykinins neurokinin A and B, all structurally related to bombesin, had no significant trophic effect on the rat pancreas. Administration of the CCK-antagonist L-364,718 twice daily at a dose of 0.1 mg/kg or at 1.0 mg/kg, either s.c. or orally, led dose-dependently to a near-complete inhibition of the caerulein-induced trophic effect. In contrast, L-364,718 administered at identical dosages, did not affect pancreatic hypertrophy induced by bombesin and neuromedin C. It is concluded that both peptides mediate their effect on the rat pancreas directly and not via release of endogenous cholecystokinin. Tachykinins are not involved in the regulation of pancreatic growth. Caerulein- and bombesin-like peptides have comparable effects on the stimulation of protein and polyamine synthesis.  相似文献   

18.
A transitory increase in ornithine decarboxylase (ODC) activity is shown not to be a prerequisite for the differentiation induced by hexamethylene bisacetamide (HMBA) in murine erythroleukemic (MEL) cells. On the contrary, conditions are described, where inhibition of the ODC activity with alpha-difluoromethyl ornithine (DFMO) stimulated the induced differentiation. Polyamine analysis demonstrated that a reduction in intracellular putrescine and spermidine occurred in MEL cells before commitment to erythrodifferentiation. The presence of DFMO increased the rapidity and the amplitude of these changes. No effect of dexamethasone on these changes in ODC activity or intracellular polyamines was observed.  相似文献   

19.
The objective of this study was to evaluate induction of ornithine decarboxylase (ODC), the rate-limiting enzyme in polyamine biosynthesis, and subsequent polyamine accumulation in interleukin-2 (IL-2)- and interleukin-3 (IL-3)-dependent growth. The CTLL-20 and FDC-P1 cell lines, which have been shown to be absolutely dependent on IL-2 and IL-3, respectively, were used in these studies. The CTLL-20 and FDC-P1 cells each had different temporal patterns of ODC induction following lymphokine stimulation. ODC levels increased rapidly in the FDC-P1 cells, peaking 4 hr after stimulation with IL-3. In contrast, peak ODC activity in the CTLL-20 cells occurred 18 hr following stimulation with IL-2 and reached eightfold higher levels than those observed in the FDC-P1 cells. Treatment with D,L-alpha-difluoromethylornithine X HCl X H2O (DFMO), a specific irreversible inhibitor of ODC activity, completely abrogated lymphokine-dependent ODC induction in both the CTLL-20 and FDC-P1 cell lines. Similarly, intracellular levels of the polyamines putrescine and spermidine were reduced in both cell lines following DFMO treatment. DFMO treatment reduced both IL-2- and IL-3-dependent proliferation in a dose-dependent manner. However, this inhibition could be reversed by the addition of exogenous putrescine. DFMO treatment had no effect on cell viability. Polyamine-depleted CTLL-20 and FDC-P1 cells showed decreased absorption of IL-2 and IL-3 activity, respectively. However, the addition of exogenous putrescine restored the ability of the cells to absorb the appropriate lymphokine. These data are the first to demonstrate that ODC induction and polyamine biosynthesis are required in lymphokine dependent growth.  相似文献   

20.
DFMO reduced mycelial growth of the ectomycorrhizal fungus Paxillus involutus . This was accompanied by reduced activities of ornithine decarboxylase, S-adenosylmethionine decarboxylase and diamine oxidase, and unchanged polyamine oxidase activity. Although DFMO treatment did not alter putrescine or spermidine concentrations significantly, spermine concentration was substantially reduced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号