首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The ThCAP gene, which encodes a cold acclimation protein, was isolated from a Tamarix hispida NaCl-stress root cDNA library; its expression patterns were then assayed by qRT-PCR in different T. hispida tissues treated with low temperature (4°C), salt (400 mM NaCl), drought (20% PEG6000) and exogenous abscisic acid (100 μM). Induction of ThCAP gene was not only responsive to different stress conditions but was also organ specific. When transgenic Populus (P. davidiana × P. bolleana) plants were generated, expressing ThCAP under regulation of the cauliflower mosaic virus CaMV 35S promoter, they had a greater resistance to low temperature than non-transgenic seedlings, suggesting that ThCAP might play an important role in cold tolerance.  相似文献   

4.
5.
Identifying a potential crop wild relative (CWR) of legumes, especially one with high abiotic stress tolerance, has been a priority of plant breeders for many decades. Traditionally CWRs have been selected based on biometrical traits observed in the field, however this methodology is insufficient for research into nonmorphological traits such as stress tolerance. Biochemical and molecular analysis of potential CWRs allows for more informed selection. Specifically, we focus on Cicer microphyllum Benth, a CWR of cultivated chickpea Cicer arietinum L., which is distributed in Trans Himalayan ranges adjacent to glaciers of India and Pakistan at the alpine altitude gradient between 2700 to 6000 m. The objective of this study is to begin characterization of the biochemical and molecular bases of adaptation of C. microphyllum to cold stress and compare it to its cultivated relative (Cold susceptible genotype ILC533). Significant differences were recorded in terms of malondialdehyde (MDA) concentration, electrolyte leakage and proline accumulation in C. microphyllum, as compared to C. arietinum, upon cold exposure (4°C/24h). C. microphyllum exhibits more membrane stability under cold stress. Furthermore, proline overaccumulation and an increase in the enzymatic activities of antioxidants including superoxide dismutase, catalase, and ascorbate peroxidase were also observed in C. microphyllum under cold stress treatment. Expression of pyrroline-5-carboxylate synthetase, chalcone reductase, flavonoid 3',5'-hydroxylase and flavonoid 3'-monooxygenase are all upregulated under cold treatment in C. microphyllum. The characteristics recommend C. microphyllum both as a model for plant response to cold stress and as a potential source for abiotic stress resistant germplasm for chickpea breeding programs.  相似文献   

6.
7.
8.
Chloris virgata Swartz (C. virgata) is a gramineous wild plant that is found in alkaline soil areas in northeast China and is highly tolerant to carbonate stress. We constructed a cDNA library from C. virgata seedlings treated with NaHCO3, and isolated a type1 metallothionein (MT1) gene (ChlMT1: AB294238) from the library. The amino acid sequence of ChlMT1 contained 12 cysteine residues that constituted the Cys-X-Cys (X = amino acid except Cys) motifs in the N- and C-terminal regions. Northern hybridization showed that expression of ChlMT1 was induced by several abiotic stresses, from salts (NaCl and NaHCO3), a ROS inducer (paraquat), and metals (CuSO4, ZnSO4, and CoCl2). ChlMT1 expression in leaf was induced by 200 mM NaCl and 100 mM NaHCO3. About 5 μM Paraquat, 500 μM Zn2+, and 500 μM Co2+ also induced expression of ChlMT1 in leaf after 6 h, and 100 μM Cu2+ induced it after 24 h. Saccharomyces cerevisiae when transformed with the ChlMT1 gene had dramatically increased tolerances to salts (NaCl and NaHCO3) and ROS.  相似文献   

9.
10.
11.
12.
13.
14.
15.
Cecropia peltata is popularly known as “guarumbo” in Mexico and is used in traditional medicine for treatment of diabetes mellitus. C. peltata plants were cultivated in a hydroponic system under controlled conditions. Gradients of light (20, 30 and 100 μmol m−2 s−1) and nitrate concentrations (13, 2 and 0.2 mM) were applied to estimate their effect on biomass allocation and accumulation of bioactive (chlorogenic acid and isoorientin) phenolic compounds over a 28-day period. According to carbon nutrient balance (CNB) hypothesis predictions, biomass accumulation in foliage was stimulated by the highest irradiance (100 μmol m−2 s−1); similarly, at highest irradiance in combination with lowest nitrate concentration (0.2 mM), root growth was stimulated (root-to-shoot ratio increased twofold with respect to the control). In these conditions, total phenolics (TP) and chlorogenic acid (CGA) contents were higher in aerial parts than in roots, with a 3.8-fold increase in TP and a 7.7-fold increase in CGA in foliage with respect to the control plants. Isoorientin was accumulated at very low levels. Antioxidant activity and total phenolic content showed a strong positive correlation. Phenylalanine ammonia-lyase activity (PAL) in aerial parts exhibited significant changes (>twofold) by highest irradiance. C. peltata plants allocate biomass and/or phenolic compounds to compensate the oxidative damage (increase in MDA levels) due to changes in light and nitrate restriction. The results are the basis for the establishment of a system of C. peltata culture in view of the potential use of C. peltata in therapeutic preparations for the treatment of diabetes mellitus.  相似文献   

16.
17.
This study was undertaken to evaluate the effect of Ephedra major Host, an important medicinal plant with various biological activities, on growth and aflatoxin (AF) production by Aspergillus parasiticus NRRL 2999. The fungus was cultured in yeast extract-sucrose (YES) broth, a conductive medium that supports AF production, in the presence of various concentrations of essential oil (EO), hexanic and methanolic extracts of plant aerial parts, fruits, and roots using microbioassay technique. After incubating for 96 h at 28°C in static conditions, mycelial dry weight was determined as an index of fungal growth, and aflatoxin B1 (AFB1) was measured using HPLC technique. Based on the obtained results, EO of plant aerial parts significantly inhibited fungal growth at the highest concentration of 1000 μg/ml without any obvious effect on AFB1 production at all concentrations used. Among plant extracts tested, only methanolic extract of aerial parts and roots were found to inhibit fungal growth and AFB1 production dose-dependently with an IC50 value of 559.74 and 3.98 μg/ml for AFB1, respectively. Based on the GC/MS data, the major components of E. major EO were bis (2-ethylhexyl) phthalate (42.48%), pentacosane (20.94%), docosane (14.64%), citronellol (5.15%), heptadecan (4.41%), cis-3-Hexen-1-ol benzoate (4.07%), and 7-Octen-2-ol (3.25%). With respect to the potent inhibition of fungal growth and AF production by E. major, this plant may be useful in protecting crops from both toxigenic fungal growth and AF contamination.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号