首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
To discover potential new products for the atopic dermatitis treatment, lipids extracted from nacre from the oyster Pinctada margaritifera were tested on artificially dehydrated skin explants. Expression of filaggrin and transglutaminase 1 was investigated after treatment of dehydrated skin with P. margaritifera lipid extracts according to light microscopy after labelling with specific monoclonal antibodies. The lipids were extracted from the nacre with methanol/chloroform mixture at room temperature and the extract composition was determined according to TLC and densitometry measures. Relative to the dry nacre material, a yield of extraction in lipids of 0.54% (w/w) was determined. Fatty acids, triglycerides, cholesterol and ceramides were in low abundance. Then, application of lipid formulations on skin explants previously dehydrated gave after 3 h an overexpression of filaggrin and a decrease of transglutaminase expression as shown by light microscopy. Using immunofluorescence labelling, we showed that lipids extracted from the mother of pearl of P. margaritifera induced a reconstitution of the intercellular cement of the stratum corneum. The signaling properties of the nacre lipids could be used for a development of new active product treatment against the symptoms of the dermatitis.  相似文献   

3.
Deuterium NMR investigation of polymorphism in stratum corneum lipids   总被引:3,自引:0,他引:3  
The intercellular lipid lamellae of stratum corneum constitute the major barrier to percutaneous penetration. Deuterium magnetic resonance and freeze-fracture electron microscopic investigation of hydrated lipid mixtures consisting of ceramides, cholesterol, palmitic acid and cholesteryl sulfate and approximating the stratum corneum intercellular lipid composition, revealed thermally induced polymorphism. The transition temperature of bilayer to hexagonal transition decreased as the ratio of cholesterol to ceramides in these mixtures was lowered. Lipid mixtures in which the stratum corneum ceramides were replaced by synthetic dipalmitoylphosphatidylcholine did not show any polymorphism throughout the temperature range used in the present study. The ability of the ceramide-containing samples to form hexagonal structures establishes a plausible mechanism for the assembly of the stratum corneum intercellular lamellae during the final stages of epidermal differentiation. Also, the bilayer to hexagonal phase transition of these nonpolar lipid mixtures could be used to enhance the penetration of drugs through skin.  相似文献   

4.
A study on the thermal behavior of human stratum corneum and lipids is described. The use of high scanning rate DSC for both SC and extracted lipids allows the consistent determination of transition temperatures, including those of lower energy. Changes are found both at physiological and higher temperatures. There is a clear correspondence between the thermotropic behavior of these two systems. However, one of the transitions found in human SC (approximately 55 degrees C) is absent in extracted lipids and may be ascribed to those covalently-linked to corneocytes. Lipidic thermotropic behavior is clearly found above 100 degrees C, in which proteins do not play an exclusive role. Changes related to most transitions are observed directly by polarized light thermal microscopy in extracted lipids. This technique also allowed for the observation of large segregated domains in the extracted lipids. A drastic change is observed at approximately 60 degrees C, corresponding to the disruption of the lamellar structure.  相似文献   

5.
The skin protects the body from unwanted influences from the environment as well as excessive water loss. The barrier function of the skin is located in the stratum corneum (SC). The SC consists of corneocytes embedded in a lipid matrix. This lipid matrix is crucial for the lipid skin barrier function. This paper provides an overview of the reported SC lipid composition and organization mainly focusing on healthy and diseased human skin. In addition, an overview is provided on the data describing the relation between lipid modulations and the impaired skin barrier function. Finally, the use of in vitro lipid models for a better understanding of the relation between the lipid composition, lipid organization and skin lipid barrier is discussed. This article is part of a Special Issue entitled The Important Role of Lipids in the Epidermis and their Role in the Formation and Maintenance of the Cutaneous Barrier. This article is part of a Special Issue entitled The Important Role of Lipids in the Epidermis and their Role in the Formation and Maintenance of the Cutaneous Barrier. Guest Editors: Kenneth R. Feingold and Peter Elias.  相似文献   

6.
Human stratum corneum lipids: characterization and regional variations   总被引:14,自引:0,他引:14  
The lipids of mammalian stratum corneum are known to be important regulators of skin permeability. Since the human stratum corneum displays remarkable regional variations in skin permeability, we assessed the total lipid concentration, the distribution of all major lipid species, and the fatty acid composition in Bligh-Dyer extracts from four skin sites (abdomen, leg, face, and sole) that are known to display widely disparate permeability. Statistically significant differences in lipid weight were found at the four sites that were inversely proportional to their known permeability. In all four sites, among the polar lipids, the stratum corneum contained negligible phospholipids, but substantially more cholesterol sulfate (1-7%) than previously appreciated. As in the stratum corneum from other mammals, the bulk of the lipids consisted of neutral (60-80%) and sphingolipids (15-35%). Of the neutral lipids, free sterols (4- to 5-times greater than esterified sterols), free fatty acids, triglycerides, and highly nonpolar species (n-alkanes and squalene) predominated. n-Alkanes, which were present in greater quantities than previously appreciated, comprised a homologous series of odd- and even-chained compounds ranging from C19 to C34. The sphingolipids comprised over 80% ceramides vs. lesser quantities of glycosphingolipids. In all four sites, the sphingolipids were the major repository of long-chain, saturated fatty acids. The neutral lipid:sphingolipid ratio generally was proportional to the known permeability of each site: higher neutral lipids and lower sphingolipids generally were associated with superior barrier properties. These studies provide: 1) the first detailed, quantitative analysis of human stratum corneum lipids and 2) information about the variability in lipid composition at four skin sites with known differences in permeability. The latter results suggest that variations in neutral lipids, rather than sphingolipids, may underlie local variations in skin permeability.  相似文献   

7.
A new arrangement of proteins and lipids of stratum corneum (SC) cornified envelope (CE) is proposed. The chemical analysis of CE revealed the presence of free fatty acids (FFA), ceramides (Cer), and important percentages of glutamic acid/glutamine (Glx) and serine (Ser) residues. The molecular structure of these components suggests the existence of covalent links not only between Cer and Glx but also between FFA and Ser. The protein distribution of extracellular surface of CE, i.e., the proteins that could be involved in the bonds with lipids, was studied using post- and pre-embedding immunolabeling electron microscopy. Some loricrin (protein rich in Ser) was detected in the outermost part of the CE protein layer. The external arrangement of some domains of this protein may give rise to form linkages with FFA, yielding further insight into the CE arrangement in which Cer-Glx bonds and FFA-Ser bonds would be involved. Although the importance of fatty acids in the cohesion and barrier function of SC has been widely demonstrated, their role could be associated not only to the presence of these lipids in the intercellular lamellae but also in the CE, in the same way that Cer.  相似文献   

8.
A new arrangement of proteins and lipids of stratum corneum (SC) cornified envelope (CE) is proposed. The chemical analysis of CE revealed the presence of free fatty acids (FFA), ceramides (Cer), and important percentages of glutamic acid/glutamine (Glx) and serine (Ser) residues. The molecular structure of these components suggests the existence of covalent links not only between Cer and Glx but also between FFA and Ser. The protein distribution of extracellular surface of CE, i.e., the proteins that could be involved in the bonds with lipids, was studied using post- and pre-embedding immunolabeling electron microscopy. Some loricrin (protein rich in Ser) was detected in the outermost part of the CE protein layer. The external arrangement of some domains of this protein may give rise to form linkages with FFA, yielding further insight into the CE arrangement in which Cer-Glx bonds and FFA-Ser bonds would be involved. Although the importance of fatty acids in the cohesion and barrier function of SC has been widely demonstrated, their role could be associated not only to the presence of these lipids in the intercellular lamellae but also in the CE, in the same way that Cer.  相似文献   

9.
The main problem with topical application of compounds to administer drugs to and regulate drug levels in a human body, is the barrier formed by the intercellular lipid matrix of the stratum corneum (SC). In a search for possibilities to overcome this barrier function, a good understanding of the organization and phase behavior of these lipids is required. SC lipid model studies especially provide a wealth of information with respect to the lipid organization and the importance of certain subclasses of lipids for the structure. Previously, we have shown that electron diffraction (ED) provides detailed information on the lateral lipid packing in both intact SC (G.S.K. Pilgram et al., J. Invest. Dermatol. 113 (1999) 403) and SC lipid models (G.S.K. Pilgram et al., J. Lipid Res. 39 (1998) 1669). In the present study, we used ED to examine the influence of two azones and sebaceous lipids on the lateral phase behavior of lipids isolated from human SC. We established that human SC lipids are arranged in an orthorhombic packing pattern. Upon mixing with the two enhancers the orthorhombic packing pattern was still observed; however, an additional fluid phase became more apparent. In mixtures with sebaceous lipids, the presence of the hexagonal lattice increased. These findings provide a basis for the mechanism by which these enhancers and sebaceous lipids interact with human SC lipids.  相似文献   

10.
The lipids found in the bilayers of the stratum corneum fulfill the vital barrier role of mammalian bodies. The main classes of lipids found in stratum corneum are ceramides, cholesterol, and free fatty acids. For an investigation of their phase behavior, mixed Langmuir-Blodgett monolayers of these lipids were prepared. Atomic force microscopy was used to investigate the structure of the monolayers as a function of the monolayer composition. Three different types of ceramide were used: ceramide extracted from pigskin, a commercially available ceramide with several fatty acid chain lengths, and two synthetic ceramides that have only one fatty acid chain length. In pigskin ceramide-cholesterol mixed monolayers phase separation was observed. This phase separation was also found for the commercially available type III Sigma ceramide-cholesterol mixed monolayers with molar ratios ranging from 1:0.1 to 1:1. These monolayers separated into two phases, one composed of the long fatty acid chain fraction of Sigma ceramide III and the other of the short fatty acid chain fraction of Sigma ceramide III mixed with cholesterol. Mixtures with a higher cholesterol content consisted of only one phase. These observations were confirmed by the results obtained with synthetic ceramides, which have only one fatty acid chain length. The synthetic ceramide with a palmitic acid (16:0) chain mixed with cholesterol, and the synthetic ceramide with a lignoceric acid (24:0) chain did not. Free fatty acids showed a preference to mix with one of these phases, depending on their fatty acid chain lengths. The results of this investigation suggest that the model system used in this study is in good agreement with those of other studies concerning the phase behavior of the stratum corneum lipids. By varying the composition of the monolayers one can study the role of each lipid class in detail.  相似文献   

11.
The ultrastructure of naked neck epidermis from the ostrich (Struthio camelus) and ventral apterium from watered, and water-deprived, Zebra finches (Taeniopygia [Poephila] guttata castanotis) is presented. The form and distribution of the fully differentiated products of the lipid-enriched multigranular bodies are compared in biopsies post-fixed with osmium tetroxide or ruthenium tetroxide. The fine structure of ostrich epidermis suggests it is a relatively poor barrier to cutaneous water loss (CWL). The fine structure from watered, and 16-hr water-deprived Zebra finches, considered in conjunction with measurements of CWL, confirms previous reports of “facultative waterproofing,” and emphasizes the rapidity of tissue response to dehydration. The seemingly counterintuitive facts that one xerophilic avian species, the ostrich, lacks a “good barrier” to CWL, whereas another, the Zebra finch, is capable of forming a good barrier, but does not always express this capability, are discussed. An explanation of these data in comparison to mammals centers on the dual roles of the integument of homeotherms in thermoregulation and conserving body water. It is concluded that birds, whose homeothermic control depends so much on CWL, cannot possess a permanent “good barrier,” as such would compromise the heat loss mechanism. Facultative waterproofing (also documented in lizards) protects the organism against sudden reductions in water availability. In birds, and probably in snakes and lizards, facultative waterproofing involves qualititative changes in epidermal cell differentiation. Possible control mechanisms are discussed. © 1996 Wiley-Liss, Inc.  相似文献   

12.
13.
The outermost layer of skin, stratum corneum (SC), functions as the major barrier to diffusion. SC has the architecture of dead keratin filled cells embedded in a lipid matrix. This work presents a detailed study of the hydration process in extracted SC lipids, isolated corneocytes and intact SC. Using isothermal sorption microcalorimetry and relaxation and wideline (1)H NMR, we study these systems at varying degrees of hydration/relative humidities (RH) at 25 degrees C. The basic findings are (i) there is a substantial swelling both of SC lipids, the corneocytes and the intact SC at high RH. At low RHs corneocytes take up more water than SC lipids do, while at high RHs swelling of SC lipids is more pronounced than that of corneocytes. (ii) Lipids in a fluid state are present in both extracted SC lipids and in the intact SC. (iii) The fraction of fluid lipids is lower at 1.4% water content than at 15% but remains virtually constant as the water content is further increased. (iv) Three exothermic phase transitions are detected in the SC lipids at RH=91-94%, and we speculate that the lipid re-organization is responsible for the hydration-induced variations in SC permeability. (v) The hydration causes swelling in the corneocytes, while it does not affect the mobility of solid components (keratin filaments).  相似文献   

14.
One of the key challenges in lipidomics is to quantify lipidomes of interest, as it is practically impossible to collect all authentic materials covering the targeted lipidomes. For diverse ceramides (CER) in human stratum corneum (SC) that play important physicochemical roles in the skin, we developed a novel method for quantification of the overall CER species by improving our previously reported profiling technique using normal-phase liquid chromatog­raphy-electrospray ionization-mass spectrometry (NPLC-ESI-MS). The use of simultaneous selected ion monitoring measurement of as many as 182 kinds of molecular-related ions enables the highly sensitive detection of the overall CER species, as they can be analyzed in only one SC-stripped tape as small as 5 mm × 10 mm. To comprehensively quantify CERs, including those not available as authentic species, we designed a procedure to estimate their levels using relative responses of representative authentic species covering the species targeted, considering the systematic error based on intra-/inter-day analyses. The CER levels obtained by this method were comparable to those determined by conventional thin-layer chromatography (TLC), which guarantees the validity of this method. This method opens lipidomics approaches for CERs in the SC.  相似文献   

15.
Characterization of overall ceramide species in human stratum corneum   总被引:1,自引:0,他引:1  
Ceramides (CERs) in human stratum corneum (SC) play physicochemical roles in determining barrier and water-holding functions of the skin, and specific species might be closely related to the regulation of keratinization, together with other CER-related lipids. Structures of those diverse CER species, however, have not been comprehensively revealed. The aim of this study was to characterize overall CER species in the SC. First, we constructed 3D multi-mass chromatograms of the overall CER species, based on normal-phase liquid chromatography (NPLC) connected to electrospray ionization-mass spectrometry (ESI-MS) using a gradient elution system and a postcolumn addition of a volatile salt-containing polar solvent. The CERs targeted from the 3D chromatograms were structurally analyzed using NPLC-ESI-tandem mass spectrometry (MS/MS), which resulted in the identification of 342 CER species in the inner forearm SC. This led to the discovery of a new CER class consisting of alpha-hydroxy fatty acid and dihydrosphingosine moieties, in addition to the 10 classes generally known. The results also revealed that those CERs contain long-chain (more than C(18))-containing sphingoids and a great number of isobaric species. These novel results will contribute not only to physiochemical research on CERs in the SC but also to lipidomics approaches to CERs in the skin.  相似文献   

16.
The outermost layer of skin, stratum corneum (SC), functions as the major barrier to diffusion. SC has the architecture of dead keratin filled cells embedded in a lipid matrix. This work presents a detailed study of the hydration process in extracted SC lipids, isolated corneocytes and intact SC. Using isothermal sorption microcalorimetry and relaxation and wideline 1H NMR, we study these systems at varying degrees of hydration/relative humidities (RH) at 25 °C. The basic findings are (i) there is a substantial swelling both of SC lipids, the corneocytes and the intact SC at high RH. At low RHs corneocytes take up more water than SC lipids do, while at high RHs swelling of SC lipids is more pronounced than that of corneocytes. (ii) Lipids in a fluid state are present in both extracted SC lipids and in the intact SC. (iii) The fraction of fluid lipids is lower at 1.4% water content than at 15% but remains virtually constant as the water content is further increased. (iv) Three exothermic phase transitions are detected in the SC lipids at RH = 91-94%, and we speculate that the lipid re-organization is responsible for the hydration-induced variations in SC permeability. (v) The hydration causes swelling in the corneocytes, while it does not affect the mobility of solid components (keratin filaments).  相似文献   

17.
18.
We have spin labeled the stratum corneum (SC) with a lysine specific reagent, succinimidyl-2,2,5,5-tetramethyl-3-pirroline-1-oxyl-carboxylate spin label (SSL), to assess the dynamics and hydration degree of SC proteins by electron paramagnetic resonance (EPR) spectroscopy taking measurements directly from the intact tissue. Treating the SC with two percutaneous penetration enhancers, 8 M urea or 20% (v/v) 1-methyl-2-pyrrolidone (1 MP), destabilizes the proteins thus promoting more mobile and solvent-exposed protein conformations. Upon SC lipid depletion the nitroxide side chain becomes more solvent exposed, suggesting that the removal of hygroscopic substances in the extraction process favors more hydrated protein conformations. On the other hand, the treatments with 8 M urea or 40% (v/v) 1 MP did not alter significantly the fluidity in the SC lipid domain as assessed by the probe 5-doxyl stearic acid; these permeation enhancers, specially 1 MP, seem to increase the probe solubility in the solvent leading to a considerable fraction of spin label to be removed from the lipid domain.  相似文献   

19.
The lipid matrix of the stratum corneum (SC), the outer layer of the epidermis of mammals and birds, constitutes the barrier to diffusion of water vapor through the skin. The lipids of the SC are structured in the intercellular spaces of the mammalian epidermis in ordered layers, called lamellae, which have been postulated to prevent water loss. Lipids in the mammalian SC are mainly cholesterol, free fatty acids and ceramides, the latter forming the structural support for the lamellae. However, knowledge on how the lipid composition of the SC alters cutaneous water loss (CWL) in mammals is rudimentary, and is largely derived from studies on laboratory animals and humans. We measured CWL of individuals of two species of syntopic bats, Tadarida brasiliensis and Myotis velifer. In the first study of its kind on wild mammals, we correlated CWL with the lipid composition of the SC, measured using thin layer chromatography and high performance liquid chromatography coupled with atmospheric pressure photoionization mass spectrometry. Surface-specific CWL was 20.6% higher in M. velifer than in T. brasiliensis, although differences were not significant. Compared with individuals of M. velifer, individuals of T. brasiliensis had more classes, and a higher proportion, of polar ceramides in the SC, a feature associated with lower CWL. Individuals of T. brasiliensis also had a class of non-polar ceramides that presumably spans the lamellae and gives more cohesiveness to the lipid matrix of the SC. We conclude that qualitative and quantitative modifications of the lipid composition of the SC contribute to regulate CWL of these two species of bats.  相似文献   

20.
A model for the hydration behavior of human stratum corneum has been developed from measurements on in vitro samples isolated in a manner which minimized tissue treatment and trauma. Water sorption/desorption rate measurements as a function of water activity, temperature, and tissue integrity are reported. These data, together with thermodynamic data (infrared and nmr results reported earlier) are consistent with a model in which rapidly sorbed/desorbed water (ca. 0.5 mg water/mg stratum corneum) is associated with (“bound” by) the tissue, while slowly sorbed/desorbed “free” water (up to 12 mg water/mg stratum corneum) is kinetically restricted and probably intracellular in location. Both equilibrium water binding and desorption kinetic data suggest structural changes of this cellular water barrier upon hydration. Evidence for hysteresis in water sorption isotherms (reported by others) could not be reproduced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号