首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A torque meter has been developed for determining the power consumption in a bench stirred tank. The device has been bonded in the stirrer shaft inside a commercial bench fermentor, in order to avoid frictional losses in the mechanical seal. Power consumption measurements in ungassed and gassed systems were obtained at different agitation and aeration conditions, for Newtonian and non-Newtonian fluids. Also, a "simple modified sulfite method" for volumetric oxygen transfer coefficient (kLa) determination was developed and the experimental data were correlated with the gassed power (Pg) by using well-known correlations presented in the literature.  相似文献   

2.
Summary Power input measurements are carried out in a production bioreactor with a liquid volume up to 25 m3. The results show that the cavity formation principle is applicable to reactors at this scale. It can also be observed that empirical correlations are not useful to predict gassed power input accurately. It is found that at gas flow rates for normal production conditions (NQ =0.1), the gassed power input is about 30–40 % of the non gassed power input.Nomenclature Cp specific heat J/kgK - D impeller diameter m - Db1 impeller blade diameter m - d baffle diameter m - Fr Froude number - - g gravitation m/s2 - h impeller clearance m - H liquid height m - N stirrer speed s-1 - Np power number - - NQ gas flow (aeration) number - - NQ * critical gasflow number for 3 cavity formation - - Po ungassed power consumption W - Pg gassed power consumption W - Q gas flow rate (273 K, 105 N/m2) m3/s - Re Reynolds number - - T tankdiameter m temperature K - t time s - V liquid volume m3 - Vtip impeller tip speed m/s - Vs impeller correlated superficial gas flow rate m/s - W impeller blade width m - density kg/m3  相似文献   

3.
Recently we have described the design and operation of a miniature bioreactor system in which 4-16 fermentations can be performed (Gill et al., Biochem Eng J 39:164-176, 2008). Here we report on the use of thermal profiling techniques for parallel on-line monitoring of cell growth in these bioreactors based on the natural heat generated by microbial culture. Results show that the integrated heat profile during E. coli TOP10 pQR239 fermentations followed the same pattern as off-line optical density (OD) measurements. The maximum specific growth rates calculated from off-line OD and on-line thermal profiling data were in good agreement, at 0.66+/-0.04 and 0.69+/-0.05 h(-1) respectively. The combination of a parallel miniature bioreactor system with a non-invasive on-line technique for estimation of culture kinetic parameters provides a valuable approach for the rapid optimisation of microbial fermentation processes.  相似文献   

4.
Enzymatic oxidation of lactose to lactobionic acid (LBA) by a carbohydrate oxidase from Microdochium nivale was studied in a pilot-scale batch reactor of 600 L working volume using a rotary jet head (RJH) for mixing and mass transfer (Nordkvist et al., 2003, Chem Eng Sci 58:3877-3890). Both lactose and whey permeate were used as substrate, air was used as oxygen source, and catalase was added to eliminate the byproduct hydrogen peroxide. More than 98% conversion to LBA was achieved. Neither enzyme deactivation nor enzyme inhibition was observed under the experimental conditions. The dissolved oxygen tension (DOT) was constant throughout the tank for a given set of operating conditions, indicating that liquid mixing was sufficiently good to avoid oxygen gradients in the tank. However, at a given oxygen tension measured in the tank, the specific rate of reaction found in the RJH system was somewhat higher than previously obtained in a 1 L mechanically stirred tank reactor (Nordkvist et al., 2007, in this issue, pp. 694-707). This can be ascribed to a higher pressure in the recirculation loop which is part of the RJH system. Compared to mechanically stirred systems, high values of the volumetric mass transfer coefficient, k(L)a, were obtained when lactose was used as substrate, especially at low values of the specific power input and the superficial gas velocity. k(L)a was lower for experiments with whey permeate than with lactose due to addition of antifoam. The importance of mass transfer and of the saturation concentration of oxygen on the volumetric rate of reaction was demonstrated by simulations.  相似文献   

5.
A double helical-ribbon impeller (HRI) bioreactor with a 11-L working volume was developed to grow high-density Catharanthus roseus cell suspensions. The rheological behavior of this suspension was found to be shear-thinning for concentrations higher than 12 to 15 g DW . L(-1). A granulated agar suspension of similar rheological properties was used as a model fluid for these suspensions. Mixing studies revealed that surface baffling and bottom profiling of the bioreactor and impeller speeds of 60 to 150 rpm ensured uniform mixing of suspensions. The HRI power requirement was found to increase singnificantly for agar suspensions higher than 13 g DW . L(-1), in conjunction with the effective viscosity increase. Oxygen transfer studies showed high apparent surface oxygen transfer coefficients (k(L)a approximately 4 to 45 h(-1)) from agar suspensions of 30 g DW . L(-1) to water and for mixing speeds ranging from 120 to 150 rpm. These high surface k(I)a values were ascribed to the flow pattern of this bioreactor configuration combined with surface bubble generation and entrainment in the liquid phase caused by the presence of the surface baffles. High-density C. roseus cell suspension cultures were successfully grown in this bioreactor without gas sparging. Up to 70% oxygen enrichment of the head space was required to ensure sufficient oxygen supply to the cultures so that dissolved oxygen concentration would remain above the critical level (>/=10% air saturation). The best mixing speed was 120 rpm. These cultures grew at the same rate ( approximately 0.4 d(-1)) and attained the same high biomass concentrations ( approximately 25 to 27 g DW . L(-1), 450 to 500 g filtered wet biomass . L(-1), and 92% to 100% settled wet biomass volume) as shake flask cultures. The scale-up potential of this bioreactor configuration is discussed.  相似文献   

6.
This communication proposes a mechanistic modification to a recently published method for analyzing oxygen mass transfer in two-phase partitioning bioreactors (Nielsen et al., 2003), and corrects an oversight in that paper. The newly proposed modification replaces the earlier empirical approach, which treated the two liquid phases as a single, homogeneous liquid phase, with a two-phase mass transfer model of greater fundamental rigor. Additionally, newly developed empirical models are presented that predict the mass transfer coefficient of oxygen absorption in both aqueous medium and an organic phase (n-hexadecane) as a function of bioreactor operating conditions. Experimental values and theoretical predictions of mass transfer coefficients in two-phase dispersions, k(L)a(TP), are compared. The revised approach more clearly demonstrates the potential for oxygen mass transfer enhancement by organic phase addition, one of the motivations for employing a distinct second phase in a partitioning bioreactor.  相似文献   

7.
The multiple-impeller agitated systems are compared with single-impeller agitated systems with a special focus on its applications for bioreactors. Correlations reported in the literature for gas phase hold-up, mass transfer coefficient and power consumption under gassed and ungassed conditions are compared and recommendations have been made regarding their suitability for design and scale-up of bioreactors. The multiple-impeller systems are found to be superior as compared to single-impeller systems in all the above mentioned aspects, except liquid mixing. For all kinds of reactors where the sole purpose is mass transfer, multiple-impeller systems are advantageous and there would be large savings on an industrial scale, especially for the bioreactors where the reaction periods are long and the power consumption cost could be a significant component to the overall production costs.  相似文献   

8.
Scale-up from shake flasks to fermenters has been hampered by the lack of knowledge concerning the influence of operating conditions on mass transfer, hydromechanics, and power input. However, in recent years the properties of shake flasks have been described with empirical models. A practical scale-up strategy for everyday use is introduced for the scale-up of aerobic cultures from shake flasks to fermenters in batch and continuous mode. The strategy is based on empirical correlations of the volumetric mass transfer coefficient (k(L) a) and the pH. The accuracy of the empirical k(L) a correlations and the assumptions required to use these correlations for an arbitrary biological medium are discussed. To determine the optimal pH of the culture medium a simple laboratory method based on titration curves of the medium and a mechanistic pH model, which is solely based on the medium composition, is applied. The effectiveness of the scale-up strategy is demonstrated by comparing the behavior of Corynebacterium glutamicum on lactic acid in shake flasks and fermenters in batch and continuous mode. The maximum growth rate (micro(max) = 0.32 h(-1)) and the oxygen substrate coefficient (Y O2 /S= 0.0174 mol/l) of C. glutamicum on lactic acid were equal for shake flask, fermenter, batch, and continuous cultures. The biomass substrate yield was independent of the scale, but was lower in batch cultures (Y(X/S) = 0.36 g/g) than in continuous cultures (Y(X/S) = 0.45 g/g). The experimental data (biomass, respiration, pH) could be described with a simple biological model combined with a mechanistic pH model.  相似文献   

9.
The aim of this study was to characterize the engineering environment of an instrumented 10 mL miniature stirred-tank bioreactor and evaluate its potential as a scale-down device for microbial fermentation processes. Miniature bioreactors such as the one detailed in this work have been developed by several research groups and companies and seek to address the current bottleneck at the screening stage of bioprocess development. The miniature bioreactor was characterized in terms of overall volumetric oxygen transfer coefficient and mixing time over a wide range of impeller speeds. Power input to the miniature bioreactor was directly measured, and from this the power number of each impeller was calculated and specific power input estimated, allowing the performance of the miniature bioreactor to be directly compared with that of a conventional 7 L bioreactor. The capability of the miniature bioreactor to carry out microbial fermentations was also investigated. Replicate batch fermentations of Escherichia coli DH5alpha producing plasmid DNA were performed at equal specific power input, under fully aerobic and oxygen-limiting conditions. The results showed a high degree of equivalence between the two scales with regard to growth and product kinetics. This was underlined by the equal maximum specific growth rate and equal specific DNA product yield on biomass obtained at the two scales of operation, demonstrating the feasibility of scaling down to 10 mL on the basis of equivalent specific power input.  相似文献   

10.
AIMS: To evaluate the contribution of oxygen transfer and consumption in a sulfoxidizing system to increase the elemental sulfur yield from thiosulfate oxidation. METHODS AND RESULTS: A 10 l thiosulfate oxidizing bioreactor with suspended cells operating under microaerophilic conditions and a separated aerator with a variable volume of 0.8--1.7 l were operated with a consortium containing mainly Thiobacillus sp. that oxidizes several sulfide species to elemental sulfur and sulfate. From the gas-liquid oxygen balance, the k(L)a was estimated under different operation conditions. A k(L)a of around 200 h(-1) favoured elemental sulfur production and can serve as scale-up criterion. It was further shown that more than 50% of the oxygen fed to the system was consumed in the aerator. CONCLUSIONS: The performance of the sulfoxidizing system can be improved by controlling oxygen transfer. SIGNIFICANCE AND IMPACT OF THE STUDY: The proposed method for the k(L)a determination was based on the oxygen balance, which incorporates the oxygen concentrations measured in the liquid in steady state, reducing the interference of the response time in the traditional non-steady state methods. This approach can be used to optimize reactors where microaerophilic conditions are desirable.  相似文献   

11.
Abstract

Most of the reported bioprocesses carried out by the methylotrophic yeast Pichia pastoris have been performed at laboratory scale using high power inputs and pure oxygen, such conditions are not feasible for industrial large-scale processes. In this study, volumetric mass transfer (kLa) and volumetric gassed power input (Pg/V) were evaluated within values attainable in large-scale production as scale-up criteria for recombinant dextranase production by MutS P. pastoris strain. Cultures were oxygen limited when the volumetric gassed power supply was limited to 2?kW m?3. Specific growth rate, and then dextranase production, increased as kLa and Pg/V did. Meanwhile, specific production and methanol consumption rates were constant, due to the limited methanol condition also achieved at 2?L bioprocesses. The specific dextranase production rate was two times higher than the values previously reported for a Mut+ strain. After a scale-up process, at constant kLa, the specific growth rate was kept at 30?L bioprocess, whereas dextranase production decreased, due to the effect of methanol accumulation. Results obtained at 30?L bioprocesses suggest that even under oxygen-limited conditions, methanol saturated conditions are not adequate to express dextranase with the promoter alcohol oxidase. Bioprocesses developed within feasible and scalable operational conditions are of high interest for the commercial production of recombinant proteins from Pichia pastoris.  相似文献   

12.
This case study focuses on the scale-up of a Sp2/0 mouse myeloma cell line based fed-batch bioreactor process, from the initial 3-L bench scale to the 2,500-L scale. A stepwise scale-up strategy that involved several intermediate steps in increasing the bioreactor volume was adopted to minimize the risks associated with scale-up processes. Careful selection of several available mixing models from literature, and appropriately applying the calculated results to our settings, resulted in successful scale-up of agitation speed for the large bioreactors. Consideration was also given to scale-up of the nutrient feeding, inoculation, and the set-points of operational parameters such as temperature, pH, dissolved oxygen, dissolved carbon dioxide, and aeration in an integrated manner. It has been demonstrated through the qualitative and the quantitative side-by-side comparison of bioreactor performance as well as through a panel of biochemical characterization tests that the comparability of the process and the product was well controlled and maintained during the process scale-up. The 2,500-L process is currently in use for the routine clinical production of Epratuzumab in support of two global Phase III clinical trials in patients with lupus. Today, the 2,500 L, fed-batch production process for Epratuzumab has met all scheduled batch releases, and the quality of the antibody is consistent and reproducible, meeting all specifications, thus confirming the robustness of the process.  相似文献   

13.
Influence of impeller type on power input in fermentation vessels   总被引:2,自引:2,他引:0  
Prior investigations comparing radial flow Rushton impellers with axial flow hydrofoil impellers (Maxflo T and A315) were extended at the pilot scale. Six types of impellers (disk-style Rushton, Prochem Maxflo T hydrofoils of three diameters pumping downwards and A315 hydrofoils pumping upwards and downwards) were compared for qualitative differences in power number behavior with Reynolds' number, single versus double impeller power draw, gassed power reduction with aeration number and gas hold-up. Power measurements were obtained using watt transducers which, although limited in accuracy and prone to interferences, were able to provide useful qualitative monitoring results. Measurements were conducted using three model liquid systems: water, glycerol and Melojel (soluble starch). Apparent viscosities for actual Streptomyces cultivations were estimated using measured gassed power values and the experimental relationships obtained for gassed/ungassed power to aeration number and power number to Reynolds' number for the glycerol model system. Results confirmed the lower power number and lower shear environment for hydrofoil impellers, yet suggested useful trends for various process parameters and process fluids.  相似文献   

14.
Cell culture scale-up is a challenging task due to the simultaneous change of multiple hydrodynamic process characteristics and their different dependencies on the bioreactor size as well as variation in the requirements of individual cell lines. Conventionally, the volumetric power input is the most common parameter to select the impeller speed for scale-up, however, it is well reported that this approach fails when there are huge differences in bioreactor scales. In this study, different scale-up criteria are evaluated. At first, different hydrodynamic characteristics are assessed using computational fluid dynamics data for four single-use bioreactors, the Mobius® CellReady 3 L, the Xcellerex™ XDR-10, the Xcellerex™ XDR-200, and the Xcellerex™ XDR-2000. On the basis of this numerical data, several potential scale-up criteria such as volumetric power input, impeller tip speed, mixing time, maximum hydrodynamic stress, and average strain rate in the impeller zone are evaluated. Out of all these criteria, the latter is found to be most appropriate, and the successful scale-up from 3 to 10 L bioreactor and to 200 L bioreactor is confirmed with cell culture experiments using Chinese Hamster Ovary cell cultivation.  相似文献   

15.
Miniaturized bioreactors for suspension cultures of animal cells, such as Chinese Hamster Ovary (CHO) cells, could improve bioprocess development through the ability to cheaply explore a wide range of bioprocess operating conditions. A miniaturized pressure-cycled bioreactor for animal cell cultures, described previously (Diao et al., 2008), was tested with a suspension CHO cell line producing commercially relevant quantities of human IgG. Results from the suspended CHO cell line showed that the cell growth was comparable to conventional flask controls and the target protein production was enhanced in the minibioreactor, which may be due to the relatively high oxygen transfer rate and the moderate shear stress, measured and simulated previously. Microcarrier culture using an anchorage-dependent CHO cell line and Cytodex 3 also showed a similar result: comparable growth and enhanced production of a model protein (secreted alkaline phosphatase or SEAP). Various fed-batch schemes were applied to the CHO cells producing human IgG, yielding cell numbers (1.1 × 10(7) /mL) at day 8 and titers of human IgG (2.3 g/L) at day 14 that are typical industrial values for CHO cell fed-batch cultures. The alteration of the volumetric oxygen transfer coefficient is a key parameter for viability of the CHO cell line producing human IgG. We conclude that the minibioreactor can provide favorable cell culture environments; oxygen transfer coefficient and mixing time can be altered to mimic values in a larger scale system allowing for potential prediction of response during scale-up.  相似文献   

16.
This paper reports the optimization of a perfusion bioreactor system previously reported by us (Chouinard et al., 2009). The implementation of a proportional-integral (PI) controller algorithm to control oxygen concentration and pH is presented and discussed. P and I values used by the controller were first estimated using a First-Order-Plus-Dead-Time (FOPDT, Matlab Simulink) and then tuned manually. A new gas exchanger design compatible with the PI controller was introduced and validated to decrease interaction between the injected gases and overall inertia of the system. The gas exchanger was used to adjust both pH and dissolved oxygen (DO) concentration. This new bioreactor system allowed real-time PI control over pH and DO concentration at different flow rates (from 2 to 70 mL min(-1)). Cell viability and proliferation were investigated to validate the updated bioreactor design and performance.  相似文献   

17.
This work describes the engineering characterization of miniature (2 mL) and laboratory-scale (100 mL) bubble column bioreactors useful for the cultivation of microbial cells. These bioreactors were constructed of glass and used a range of sintered glass gas diffusers with differently sized pores to disperse humidified air within the liquid biomedium. The effect of the pressure of this supplied air on the breakthrough point for gas diffusers with different pore sizes was examined and could be predicted using the Laplace-Young equation. The influence of the superficial gas velocity (u(g)) on the volumetric mass transfer coefficient (k(L)a) was determined, and values of up to 0.09 s(-1) were observed in this work. Two modeling approaches were considered in order to predict and provide comparison criteria. The first related the volumetric power consumption (P/V) to the k(L)a and a good correlation was obtained for differently sized reactors with a given pore size, but this correlation was not satisfactory for bubble columns with different gas diffusers. Values for P/V ranged from about 10 to 400 W.m(-3). Second, a model was developed predicting bubble size (d(b)), bubble rising velocity (u(b)), gas hold-up (phi), liquid side mass transfer coefficient (k(L)), and thus the k(L)a using established theory and empirical correlations. Good agreement was found with our experimental data at different scales and pore sizes. Values for d(b) varied from 0.1 to 0.6 mm, and k(L) values between 1.7 and 9.8 x 10(-4) m.s(-1) were determined. Several E. coli cultivations were performed in the miniature bubble column at low and high k(L)a values, and the results were compared to those from a conventional stirred tank operated under identical k(L)a values. Results from the two systems were similar in terms of biomass growth rate and carbon source utilization.  相似文献   

18.
Deep pressure ulcers are caused by sustained mechanical loading and involve skeletal muscle tissue injury. The exact underlying mechanisms are unclear, and the prevalence is high. Our hypothesis is that the aetiology is dominated by cellular deformation (Bouten et al. in Ann Biomed Eng 29:153-163, 2001; Breuls et al. in Ann Biomed Eng 31:1357-1364, 2003; Stekelenburg et al. in J App Physiol 100(6):1946-1954, 2006) and deformation-induced ischaemia. The experimental observation that mechanical compression induced a pattern of interspersed healthy and dead cells in skeletal muscle (Stekelenburg et al. in J App Physiol 100(6):1946-1954, 2006) strongly suggests to take into account the muscle microstructure in studying damage development. The present paper describes a computational model for deformation-induced hypoxic damage in skeletal muscle tissue. Dead cells stop consuming oxygen and are assumed to decrease in stiffness due to loss of structure. The questions addressed are if these two consequences of cell death influence the development of cell injury in the remaining cells. The results show that weakening of dead cells indeed affects the damage accumulation in other cells. Further, the fact that cells stop consuming oxygen after they have died, delays cell death of other cells.  相似文献   

19.
Paclitaxel and baccatin III-producing cells of Taxus baccata were immobilized within Ca(2+)-alginate beads. Under established optimum conditions for the biosynthesis of both taxanes, the yields of paclitaxel and baccatin III in shake-flask cultures of free cells increased by factors of up to 3 and 2, respectively, in the corresponding cultures of immobilized cells. Although the scale-up from shake-flask to bioreactor culture usually results in reduced productivities when both free and immobilized cells were grown in the same optimum conditions in three different bioreactor types (Stirred, Airlift, and Wave) running for 24 days in a batch mode and with the system optimized in each case, there was a considerable increase in the yields of paclitaxel and baccatin III. Among the reactors, the Stirred bioreactor was the most efficient in promoting immobilized cell production of paclitaxel, giving a content of 43.43 mg.L(-1) at 16 days of culture, equivalent to a rate of 2.71 mg.L(-1).day(-1). To our knowledge, the paclitaxel productivity obtained in this study is one of the highest reported so far by academic laboratories for Taxus species cultures in bioreactors.  相似文献   

20.
采自云南热带雨林的中国多孔菌两新记录种   总被引:4,自引:0,他引:4  
余长军  李娟  戴玉成 《菌物学报》2008,27(1):145-150
<正>1 INTRODUCTION Wood-rotting fungi have been intensively studied in China (Dai & Niemel? 2002; Dai et al. 2003, 2004a, 2004b; Dai & Penttil? 2006), and some new species and new records were found from  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号