首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Zhang G  Qiao S  Li Q  Wang X  Duan Y  Wang L  Xiao Z  Xia C 《Immunogenetics》2006,58(10):845-849
Receptors for the Fc region (FcγRs) of immunoglobulin G (IgG) play a crucial role in the immune system and host protection against infection. In this study, we describe the cloning, sequencing, and expression of the high-affinity IgG receptor from pig. By screening a translated Expressed Sequence Tags database with the human FcγRI (CD64) protein sequence, we identified a putative porcine homologue. Subsequent polymerase chain reaction amplification confirmed that the identified full-length cDNA was expressed in porcine cells. Rosetting analysis shows that COS-7 cells transfected with a plasmid containing the cloned cDNA were able to bind chicken erythrocytes sensitized with porcine IgG. Scatchard analysis indicated that monomeric IgG bound to transiently transfected cells with an affinity of approximately 4×107 M−1. The porcine FcγRI cDNA is 1,038 nucleotides long and is predicted to encode a 346-amino-acid transmembrane glycoprotein composed of three Ig-like domains, a transmembrane region, and a short cytoplasmic tail. The overall identity of the porcine FcγRI to its human and mouse counterparts at the level of the amino acid sequence was 75% and 57%, respectively. Identification of porcine FcγRI will aid in the understanding of the molecular basis of the porcine immune system and further studies of the receptor function.Gaiping Zhang and Songlin Qiao contributed equally to this study.The GenBank accession number of the nucleotide sequence reported here is DQ026063.  相似文献   

2.
Fcγ receptors (FcγRs) bind the constant Fc region of IgG molecules. IgG/antigen-containing immune complexes elicit a variety of effector functions in cells that express activating FcγRs. Because activating FcγRs are present on cells from the innate immune system, such as dendritic cells, monocytes/macrophages and granulocytes, these IgG receptors form a crucial link between the innate and the acquired immune systems. Recently, the ability to detect the inhibitory FcγRIIb on cells has indicated an imbalance between activating and inhibitory FcγRs in rheumatoid arthritis. This progress offers an opportunity to study modulation of FcγR balance and could stimulate development of FcγR-directed immunotherapy.  相似文献   

3.
4.
Fcγ receptor III (FcγRIII), a low-affinity receptor for the Fc portion of immunoglobulin G (IgG Fc), targets antigen-antibody complexes in a variety of effector cells of the immune system. We have investigated FcγRIII and IgG Fc polymorphism and made comparative analysis of the functional and evolutionary implications of the interaction between these two molecules. Sequence analysis and comparison of the three-dimensional structure suggest that the C-terminal Ig domain of FcγRIII is associated with the binding of IgG. The polymorphic residues of FcγRIII are mainly located in the region of the C-terminal Ig domain that might be involved in IgG binding. Therefore, polymorphism and functional binding affinity seems to be related to each other as has been increasingly implicated in clinical observations. IgG Fcs, the natural ligand of FcγRs, also exhibit significant polymorphism. Three regions have been identified where polymorphism frequently occurs: the putative FcR binding site, the linker region, and the intermolecular domain-domain interface of the second Ig domain. The putative FcγR binding sites where polymorphic, and isotype-specific residues cluster are consistent with the regions that have been identified by mutagenesis and molecular modeling studies. The polymorphic residues of IgG Fc were mainly located in the molecular surface, which could be used in the recognition of other binding molecules. These observations suggest that polymorphic and isotype-specific residues in IgG Fc are closely related to their function and protein-protein interaction. Therefore, the colocalization of the polymorphic residues of FcγRIII and IgG Fcs at their docking sites implies that the polymorphic residues would affect the IgG-FcγRIII binding interactions to optimize their signaling through evolution. Received: 9 December 1999 / Accepted: 15 February 2001  相似文献   

5.
Human FcγRI (CD64) is an integral membrane glycoprotein functioning as a high-affinity receptor binding to monomeric IgG. In this study, the extracellular region of FcγRI, which is the actual part that interacts with IgG, was expressed as aglycosylated recombinant human FcγRI (rhFcγRI) in Escherichia coli. The soluble form of aglycosylated rhFcγRI was expressed in the periplasm of E. coli. The production of soluble aglycosylated rhFcγRI was increased by low induction levels. Furthermore, this production was increased by low translational efficiency, controlled by modification of the putative region between the ribosome binding site and initiation codon of rhFcγRI fusing signal peptide (MalE, PelB, or TorT) of the expression vector. By the optimization of induction and translational efficiency, the production of soluble aglycosylated rhFcγRI was up to approximately 0.8 mg/l of culture medium. Surface plasmon resonance analysis revealed that the binding affinities of aglycosylated rhFcγRI for human IgG1 (equilibrium dissociation constant K D = [1.7 ± 0.2] × 10−10 M) and IgG3 (K D = [1.1 ± 0.2] × 10−10 M) were similar to those of glycosylated rhFcγRI.  相似文献   

6.
 The mouse Fcgr1 gene encoding the high-affinity IgG receptor (FcγRI) exists as two known alleles, FcγRI-BALB and FcγRI-NOD, and these alleles exhibit functional differences. To determine whether other alleles exist in mouse strains, Fcgr1 coding regions from 35 strains of mice were sequenced and a further five alleles were identified. The FcγRI-BALB and NOD alleles are now designated the "a" and "d" alleles, respectively. Analysis of the five new alleles revealed that although no polymorphisms were observed in the two leader exons, nucleotide and subsequent amino acid changes were observed in the exons encoding the extracellular domains, and transmembrane and cytoplasmic tail. The cDNA of the seven alleles (a–g) were isolated and transiently transfected into COS cells, and IgG-binding studies were performed. Receptors encoded by four of the five new alleles (b, c, f, g) bound IgG2a with high affinity, displaying IgG binding characteristics similar to the a allele (previously FcγRI-BALB). The d allele (previously FcγRI-NOD) and the e allele [derived from Mus spretus (SPRET/Ei)] encoded receptors which showed broader specificity by binding monomeric IgG2a, IgG2b, and IgG3. Received: 26 May 1999 / Revised: 25 October 1999  相似文献   

7.
Neutrophils and macrophages in cattle express a novel class of immunoglobulin Fc receptor, specific for bovine IgG2, termed boFcγ2R. In cows, the ability of neutrophils to kill immunoglobulin-opsonized microorganisms appears to depend largely on this subclass. Although related to other mammalian FcγRs, boFcγ2R belongs to a novel gene family that includes the human killer Ig-like receptor and FcαRI (CD89) proteins. In this study, we describe the presence and characterization of this novel class of FcγR in sheep. The comparative analysis of this novel FcγR has allowed us to begin an exploration of some immunological characteristic of ruminants. The GenBank accession number of the nucleotide sequence reported here is EF541479 and FJ198054.  相似文献   

8.
The IgG1 Fc is a dimeric protein that mediates important antibody effector functions by interacting with Fcγ receptors (FcγRs) and the neonatal Fc receptor (FcRn). Here, we report the discovery of a monomeric IgG1 Fc (mFc) that bound to FcγRI with very high affinity, but not to FcγRIIIa, in contrast to wild-type (dimeric) Fc. The binding of mFc to FcRn was the same as that of dimeric Fc. To test whether the high-affinity binding to FcγRI can be used for targeting of toxins, a fusion protein of mFc with a 38 kDa Pseudomonas exotoxin A fragment (PE38), was generated. This fusion protein killed FcγRI-positive macrophage-like U937 cells but not FcγRI-negative cells, and mFc or PE38 alone had no killing activity. The lack of binding to FcγRIIIa resulted in the absence of Fc-mediated cytotoxicity of a scFv-mFc fusion protein targeting mesothelin. The pharmacokinetics of mFc in mice was very similar to that of dimeric Fc. The mFc''s unique FcγRs binding pattern and related functionality, combined with its small size, monovalency and the preservation of FcRn binding which results in relatively long half-life in vivo, suggests that mFc has great potential as a component of therapeutics targeting inflammation mediated by activated macrophages overexpressing FcγRI and related diseases, including cancer.  相似文献   

9.
 Splenectomy and corticosteroids are the treatment of choice for patients with immune thrombocytopenic purpura (ITP). However, for the 10%–15% of patients who do not respond to conventional therapy, high-dose i.v. IgG can induce life-saving transient responses. The benefits of i.v. IgG have been attributed to Fc receptor blockade; however, the involvement of the individual Fc receptors for IgG (FcγR) in ITP remain to be more completely defined. Recently a mAb, designated mAb H22, which recognizes an epitope on FcγRI (CD64) outside the ligand-binding domain, was humanized. Because mAb H22 is a human IgG1 and FcγRI has a high affinity for human IgG1 antibodies, we predicted that mAb H22 would bind to the FcγRI ligand-binding site through its Fc domain and to its external FcγRI epitope through both Fab domains. These studies demonstrate that mAb H22 blocked FcγRI-mediated phagocytosis of opsonized red blood cells more effectively than an irrelevant IgG. Moreover, cross-linking FcγRI with mAb H22 down-modulated FcγRI expression on monocytes, an effect seen within 2 h. Accepted: 14 October 1997  相似文献   

10.
Human cytomegalovirus (HCMV) establishes lifelong infection with recurrent episodes of virus production and shedding despite the presence of adaptive immunological memory responses including HCMV immune immunoglobulin G (IgG). Very little is known how HCMV evades from humoral and cellular IgG-dependent immune responses, the latter being executed by cells expressing surface receptors for the Fc domain of IgG (FcγRs). Remarkably, HCMV expresses the RL11-encoded gp34 and UL119-118-encoded gp68 type I transmembrane glycoproteins which bind Fcγ with nanomolar affinity. Using a newly developed FcγR activation assay, we tested if the HCMV-encoded Fcγ binding proteins (HCMV FcγRs) interfere with individual host FcγRs. In absence of gp34 or/and gp68, HCMV elicited a much stronger activation of FcγRIIIA/CD16, FcγRIIA/CD32A and FcγRI/CD64 by polyclonal HCMV-immune IgG as compared to wildtype HCMV. gp34 and gp68 co-expression culminates in the late phase of HCMV replication coinciding with the emergence of surface HCMV antigens triggering FcγRIII/CD16 responses by polyclonal HCMV-immune IgG. The gp34- and gp68-dependent inhibition of HCMV immune IgG was fully reproduced when testing the activation of primary human NK cells. Their broad antagonistic function towards FcγRIIIA, FcγRIIA and FcγRI activation was also recapitulated in a gain-of-function approach based on humanized monoclonal antibodies (trastuzumab, rituximab) and isotypes of different IgG subclasses. Surface immune-precipitation showed that both HCMV-encoded Fcγ binding proteins have the capacity to bind trastuzumab antibody-HER2 antigen complexes demonstrating simultaneous linkage of immune IgG with antigen and the HCMV inhibitors on the plasma membrane. Our studies reveal a novel strategy by which viral FcγRs can compete for immune complexes against various Fc receptors on immune cells, dampening their activation and antiviral immunity.  相似文献   

11.
Activating Fc gamma receptors (FcγRs) have been identified as having important roles in the inflammatory joint reaction in rheumatoid arthritis (RA) and murine models of arthritis. However, the role of the inhibitory FcγRIIb in the regulation of the synovial inflammation in RA is less known. Here we have investigated synovial tissue from RA patients using a novel monoclonal antibody (GB3) specific for the FcγRIIb isoform. FcγRIIb was abundantly expressed in synovia of RA patients, in sharp contrast to the absence or weak staining of FcγRIIb in synovial biopsies from healthy volunteers. In addition, the expression of FcγRI, FcγRII and FcγRIII was analyzed in synovia obtained from early and late stages of RA. Compared with healthy synovia, which expressed FcγRII, FcγRIII but not FcγRI, all activating FcγRs were expressed and significantly up-regulated in RA, regardless of disease duration. Macrophages were one of the major cell types in the RA synovium expressing FcγRIIb and the activating FcγRs. Anti-inflammatory treatment with glucocorticoids reduced FcγR expression in arthritic joints, particularly that of FcγRI. This study demonstrates for the first time that RA patients do not fail to up-regulate FcγRIIb upon synovial inflammation, but suggests that the balance between expression of the inhibitory FcγRIIb and activating FcγRs may be in favour of the latter throughout the disease course. Anti-inflammatory drugs that target activating FcγRs may represent valuable therapeutics in this disease.  相似文献   

12.
Herpes simplex virus (HSV) glycoproteins gE and gI form an immunoglobulin G (IgG) Fc receptor (FcγR) that binds the Fc domain of human anti-HSV IgG and inhibits Fc-mediated immune functions in vitro. gE or gI deletion mutant viruses are avirulent, probably because gE and gI are also involved in cell-to-cell spread. In an effort to modify FcγR activity without affecting other gE functions, we constructed a mutant virus, NS-gE339, that has four amino acids inserted into gE within the domain homologous to mammalian IgG FcγRs. NS-gE339 expresses gE and gI, is FcγR, and does not participate in antibody bipolar bridging since it does not block activities mediated by the Fc domain of anti-HSV IgG. In vivo studies were performed with mice because the HSV-1 FcγR does not bind murine IgG; therefore, the absence of an FcγR should not affect virulence in mice. NS-gE339 causes disease at the skin inoculation site comparably to wild-type and rescued viruses, indicating that the FcγR mutant virus is pathogenic in animals. Mice were passively immunized with human anti-HSV IgG and then infected with mutant or wild-type virus. We postulated that the HSV-1 FcγR should protect wild-type virus from antibody attack. Human anti-HSV IgG greatly reduced viral titers and disease severity in NS-gE339-infected animals while having little effect on wild-type or rescued virus. We conclude that the HSV-1 FcγR enables the virus to evade antibody attack in vivo, which likely explains why antibodies are relatively ineffective against HSV infection.  相似文献   

13.
We investigated the role of Fcγ receptors (FcγRs) on synovial macrophages in immune-complex-mediated arthritis (ICA). ICA elicited in knee joints of C57BL/6 mice caused a short-lasting, florid inflammation and reversible loss of proteoglycans (PGs), moderate chondrocyte death, and minor erosion of the cartilage. In contrast, when ICA was induced in knee joints of Fc receptor (FcR) γ-chain-/- C57BL/6 mice, which lack functional FcγRI and RIII, inflammation and cartilage destruction were prevented. When ICA was elicited in DBA/1 mice, a very severe, chronic inflammation was observed, and significantly more chondrocyte death and cartilage erosion than in arthritic C57BL/6 mice. The synovial lining and peritoneal macrophages of na?ve DBA/1 mice expressed a significantly higher level of FcγRs than was seen in C57BL/6 mice. Moreover, elevated and prolonged expression of IL-1 was found after stimulation of these cells with immune complexes. Zymosan or streptococcal cell walls caused comparable inflammation and only mild cartilage destruction in all strains. We conclude that FcγR expression on synovial macrophages may be related to the severity of synovial inflammation and cartilage destruction during ICA.  相似文献   

14.
IgG has a long half-life through engagement of its Fc region with the neonatal Fc receptor (FcRn). The FcRn binding site on IgG1 has been shown to contain I253 and H310 in the CH2 domain and H435 in the CH3 domain. Altering the half-life of IgG has been pursued with the aim to prolong or reduce the half-life of therapeutic IgGs. More recent studies have shown that IgGs bind differently to mouse and human FcRn. In this study we characterize a set of hu3S193 IgG1 variants with mutations in the FcRn binding site. A double mutation in the binding site is necessary to abrogate binding to murine FcRn, whereas a single mutation in the FcRn binding site is sufficient to no longer detect binding to human FcRn and create hu3S193 IgG1 variants with a half-life similar to previously studied hu3S193 F(ab')2 (t1/2β, I253A, 12.23 h; H310A, 12.94; H435A, 12.57; F(ab')2, 12.6 h). Alanine substitutions in S254 in the CH2 domain and Y436 in the CH3 domain showed reduced binding in vitro to human FcRn and reduced elimination half-lives in huFcRn transgenic mice (t1/2β, S254A, 37.43 h; Y436A, 39.53 h; wild-type, 83.15 h). These variants had minimal effect on half-life in BALB/c nu/nu mice (t1/2β, S254A, 119.9 h; Y436A, 162.1 h; wild-type, 163.1 h). These results provide insight into the interaction of human Fc by human FcRn, and are important for antibody-based therapeutics with optimal pharmacokinetics for payload strategies used in the clinic.  相似文献   

15.
Antibody-dependent cellular cytotoxicity (ADCC) is one of the important mechanisms of action of the targeting of tumor cells by therapeutic monoclonal antibodies (mAbs). Among the human Fcγ receptors (FcγRs), FcγRIIIa is well known as the only receptor expressed in natural killer (NK) cells, and it plays a pivotal role in ADCC by IgG1-subclass mAbs. In addition, the contributions of FcγRIIa to mAb-mediated cytotoxicity have been reported. FcγRIIa is expressed in myeloid effector cells including neutrophils and macrophages, and it is involved in the activation of these effector cells. However, the measurement of the cytotoxicity via FcγRIIa-expressing effector cells is complicated and inconvenient for the characterization of therapeutic mAbs. Here we report the development of a cell-based assay using a human FcγRIIa-expressing reporter cell line. The FcγRIIa reporter cell assay was able to estimate the activation of FcγRIIa by antigen-bound mAbs by a very simple method in vitro. The usefulness of this assay for evaluating the activity of mAbs with different abilities to activate FcγRIIa was confirmed by the examples including the comparison of the activity of the anti-CD20 mAb rituximab and its Fc-engineered variants, and two anti-EGFR mAbs with different IgG subclasses, cetuximab (IgG1) and panitumumab (IgG2). We also applied this assay to the characterization of a force-oxidized mAb, and we observed that oxidation significantly decreased the FcγRIIa activation by EGFR-bound cetuximab. These results suggest that our FcγRIIa reporter assay is a promising tool for the characterization of therapeutic mAbs, including Fc-engineered mAbs, IgG2-subclass mAbs, and their product-related variants.  相似文献   

16.
Anti-glucose-6-phosphate isomerase (GPI) antibodies are known to be arthritogenic autoantibodies in K/B×N mice, although some groups have reported that few healthy humans retain these antibodies. The expression of Fcγ receptors (FcγRs) is genetically regulated and has strong implications for the development of experimental arthritis. The interaction between immune complexes and FcγRs might therefore be involved in the pathogenesis of some arthritic conditions. To explore the relationship between functional polymorphisms in FcγRs (FCGR3A-158V/F and FCGR2A-131H/R) and arthritis in individuals positive for anti-GPI antibodies, we evaluated these individuals with respect to FCGR genotype. Genotyping for FCGR3A-158V/F and FCGR2A-131H/R was performed by PCR amplification of the polymorphic site, followed by site specific restriction digestion using the genome of 187 Japanese patients with rheumatoid arthritis (including 23 who were anti-GPI antibody positive) and 158 Japanese healthy individuals (including nine who were anti-GPI antibody positive). We report here on the association of FCGR3A-158V/F functional polymorphism with anti-GPI antibody positive status. Eight out of nine healthy individuals who were positive for anti-GPI antibodies possessed the homozygous, low affinity genotype FCGR3A-158F (odds ratio = 0.09, 95% confidence interval 0.01–0.89; P = 0.0199), and probably were 'protected' from arthritogenic antibodies. Moreover, among those who were homozygous for the high affinity genotype FCGR3A-158V/V, there were clear differences in anti-human and anti-rabbit GPI titres between patients with rheumatoid arthritis and healthy subjects (P = 0.0027 and P = 0.0015, respectively). Our findings provide a molecular model of the genetic regulation of autoantibody-induced arthritis by allele-specific affinity of the FcγRs.  相似文献   

17.
Human IgG4, normally the least abundant of the four subclasses of IgG in serum, displays a number of unique biological properties. It can undergo heavy-chain exchange, also known as Fab-arm exchange, leading to the formation of monovalent but bispecific antibodies, and it interacts poorly with FcγRII and FcγRIII, and complement. These properties render IgG4 relatively “non-inflammatory” and have made it a suitable format for therapeutic monoclonal antibody production. However, IgG4 is also known to undergo Fc-mediated aggregation and has been implicated in auto-immune disease pathology. We report here the high-resolution crystal structures, at 1.9 and 2.35 Å, respectively, of human recombinant and serum-derived IgG4-Fc. These structures reveal conformational variability at the CH3–CH3 interface that may promote Fab-arm exchange, and a unique conformation for the FG loop in the CH2 domain that would explain the poor FcγRII, FcγRIII and C1q binding properties of IgG4 compared with IgG1 and -3. In contrast to other IgG subclasses, this unique conformation folds the FG loop away from the CH2 domain, precluding any interaction with the lower hinge region, which may further facilitate Fab-arm exchange by destabilisation of the hinge. The crystals of IgG4-Fc also display Fc–Fc packing contacts with very extensive interaction surfaces, involving both a consensus binding site in IgG-Fc at the CH2–CH3 interface and known hydrophobic aggregation motifs. These Fc–Fc interactions are compatible with intact IgG4 molecules and may provide a model for the formation of aggregates of IgG4 that can cause disease pathology in the absence of antigen.  相似文献   

18.
 Our aim is to treat patients with B cell malignancies with radioimmunotherapy using monoclonal antibodies (mAb) such as CD19, CD20 and CD22. In this study we investigated the rate of internalization and catabolism of these mAb. After 24 h at 37°C, 20% – 25% of initially cell-bound 125I-CD19 mAb and 125I-CD22 mAb was degraded in B cells, whereas almost no degradation occurred after binding of 125I-CD20 mAb. For B cells expressing Fcγ receptor II (FcγRII), isotype-dependent degradation was noted as the CD19 IgG1 mAb showed an enhanced degradation rate compared to the switch variant IgG2a. The effect of various pharmaceutical agents that delay the internalization or subsequent degradation of mAb was evaluated. The degradation was inhibited most effectively by a combination of etoposide and vinblastine, resulting in accumulation of radioactivity in the target cell. Also the simultaneous application of CD20 or CD22 with 125I-CD19 mAb or of CD20 with 125I-CD22 mAb proved to be a potent inhibitor of the rapid degradation of these mAb, by inhibiting internalization via an FcγRII-mediated mechanism. Both methods of reducing the degradation of radioiodinated mAb are expected to prolong irradiation of malignant B cells and consequently result in an enhanced therapeutic effect in vivo. Received: 22 September 1995 / Accepted: 13 November 1995  相似文献   

19.
The recycling of immunoglobulins by the neonatal Fc receptor (FcRn) is of crucial importance in the maintenance of antibody levels in plasma and is responsible for the long half-lives of endogenous and recombinant monoclonal antibodies. From a therapeutic point of view there is great interest in understanding and modulating the IgG–FcRn interaction to optimize antibody pharmacokinetics and ultimately improve efficacy and safety. Here we studied the interaction between a full-length human IgG1 and human FcRn via hydrogen/deuterium exchange mass spectrometry and targeted electron transfer dissociation to map sites perturbed by binding on both partners of the IgG–FcRn complex. Several regions in the antibody Fc region and the FcRn were protected from exchange upon complex formation, in good agreement with previous crystallographic studies of FcRn in complex with the Fc fragment. Interestingly, we found that several regions in the IgG Fab region also showed reduced deuterium uptake. Our findings indicate the presence of hitherto unknown FcRn interaction sites in the Fab region or a possible conformational link between the IgG Fc and Fab regions upon FcRn binding. Further, we investigated the role of IgG glycosylation in the conformational response of the IgG–FcRn interaction. Removal of antibody glycans increased the flexibility of the FcRn binding site in the Fc region. Consequently, FcRn binding did not induce a similar conformational stabilization of deglycosylated IgG as observed for the wild-type glycosylated IgG. Our results provide new molecular insight into the IgG–FcRn interaction and illustrate the capability of hydrogen/deuterium exchange mass spectrometry to advance structural proteomics by providing detailed information on the conformation and dynamics of large protein complexes in solution.Antibodies and variants thereof constitute the fastest growing category of therapeutic agents, and currently more than 30 immunoglobulins (Igs)1 have been approved for the treatment of cancer, immunological diseases, and infectious diseases (1). The success of therapeutic monoclonal antibodies (mAbs) is based on the ability to specifically target diverse antigens and activate immunological effector responses. An Ig is a “dimer of a dimer” consisting of light chains and heavy chains in which each light chain is linked to a heavy chain and the light–heavy dimers are connected by disulfide bridges to form the intact antibody. IgG is the most prevalent Ig isotype in plasma and is the most commonly used isotype for therapeutic antibodies because of its strong ability to induce antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity (2). The IgG1 subtype is a 150 kDa Y-shaped glycoprotein. Its stem and arms are referred to as the fragment crystallizable (Fc) and fragment antigen binding (Fab) regions, respectively. The Fab region is composed of a variable (V) and constant (C) domain from both the light chain and the heavy chain (VL, CL, VH, CH1). Antigen binding is achieved through three highly variable complementary determining regions in each variable domain (VL and VH) of the Fab region. The Fc region is composed of additional constant domains of the heavy chain (CH2 and CH3); it mediates antibody-dependent cellular cytotoxicity through interaction with Fcγ receptors (3, 4) and activates complement-dependent cytotoxicity through interaction with C1q (5). The Fc region also interacts with the neonatal Fc receptor (FcRn), which regulates the maintenance of antibody levels in plasma and thus the half-life of endogenous and recombinant monoclonal antibodies (6). The interaction between IgG and FcRn displays a characteristic pH dependence that is the basis for the function of FcRn in IgG recycling (7). FcRn rescues and recycles IgG from lysosomal degradation by binding with low micromolar affinity to internalized IgG in the slightly acidic late endosome of, for example, vascular endothelial cells (pH < 6.5). The IgG is rescued from intracellular degradation as the IgG–FcRn complex returns to the cell surface, where the IgG is released into circulation as FcRn binding is abolished in the neutral pH of plasma (6). FcRn-mediated IgG recycling contributes to the long catabolic half-life of endogenous and therapeutic antibodies of ∼22 days (8).The FcRn is a heterodimer of an MHC-class-I-like heavy chain and a β2-microglobulin (β2m) light chain. The FcRn heavy chain (α-chain) is composed of three structural domains, α1, α2, and α3, followed by a transmembrane region and a cytoplasmic domain. The three-dimensional structure of FcRn is similar to that of MHC class I molecules in which domains α1 and α2 are stacked against domain α3 and β2m (9, 10). The pH dependence of the IgG–FcRn interaction is attributed to highly conserved residues in both FcRn and IgG (10). The first crystal structures of rat FcRn and rat Fc revealed that FcRn binds to the CH2 and CH3 domains of the IgG Fc region—specifically, CH2 residues 252–254 and 309–311, as well as CH3 residues 434–436 (11, 12). Several positively charged histidines in the IgG CH2 and CH3 domains (H310, H433, H435, and H436; the latter is not found in humans) interact with acidic residues E117, E132, W133, E135, and D137 in the FcRn α2 domain, accounting for the pH-sensitive nature of the IgG–FcRn interaction. The interface is also composed of a hydrophobic core around Fc I253 that interacts with FcRn W133 and the N-terminal I1 residue of the β2m, which has been proposed to contact Fc residues 309–311. The interaction of FcRn and IgG occurs in a 2:1 stoichiometry, where two FcRn molecules bind to one IgG through binding sites on each heavy chain (12). Two distinct binding modes have been suggested in which the FcRn molecules bind in a symmetric or asymmetric fashion to the Fc. In symmetric models FcRns bind to opposite sites on the Fc, whereas in the asymmetric models two FcRn molecules form a homodimer with only one FcRn molecule binding the Fc directly (6, 11). The extracellular domains of rat and human FcRn have 68% sequence identity and are structurally similar (9, 10). The first crystal structure of human FcRn in complex with an engineered human Fc fragment (Fc-YTE) as well as human serum albumin was published recently (13) and showed a binding mode similar to that of rodent IgG–FcRn variants, with the exception of the additional interaction sites caused by substitutions in the Fc domain. To the best of our knowledge, no crystal structures of full-length human IgG and human FcRn are currently available.From a therapeutic point of view there is great interest in understanding and modulating the IgG–FcRn interaction to optimize the pharmacokinetics and thus ultimately the efficacy of therapeutic monoclonal antibodies. The goal of FcRn modulation is typically prolongation of the in vivo half-life in order to reduce dosing frequency and ultimately the cost of treatment. However, a shorter half-life can also be desirable, for example, for antibody–toxin conjugates or antibodies used in bioimaging (6). Several engineered therapeutic mAb variants with improved in vitro FcRn binding affinity and extended in vivo half-life have been generated via mutation of residues in the Fc domain (1419). For example, the engineered variants of palivizumab (M252Y/S254T/T256E) (15, 16) and bevacizumab (M428L/N434S) (17) show 10- and 11-fold increases in relative FcRn affinity that result in increases of the in vivo half-life in cynomolgus monkeys of 4- and 3-fold, respectively. Mutation can also impact half-life negatively: mAb engineering can improve FcRn affinity at both pH 6 and 7.5 such that the pH-dependent release of IgGs is prohibited, leading to increased IgG clearance (16). Interestingly, post-translational modifications such as oxidation of conserved methionines in the CH2 and CH3 domains of IgG1 and IgG2 have been shown to affect FcRn affinity negatively. Antibody oxidation that can occur during production or storage significantly reduces FcRn binding in vitro (20, 21), which also translates to a reduced in vivo half-life in human FcRn transgenic mice models (22). The molecular origins of the effect of post-translational modifications on the IgG–FcRn interaction are, however, unclear. Further, the impact of FcRn binding on the conformational properties and dynamics of IgG in solution is currently not well understood.In this study we investigated the interaction between human FcRn and two variants of a full-length IgG1 by means of hydrogen/deuterium exchange monitored by mass spectrometry (HDX-MS). HDX-MS has become a popular approach for studying protein dynamics and interactions (2327), as the technique provides access to proteins at native solution conditions with modest sample requirements. Amide HDX rates in native proteins are highly influenced by higher order structure: fully solvated (non-hydrogen-bonded) amides exchange rapidly, whereas structurally protected (hydrogen-bonded) amides exchange up to 7 orders of magnitude slower (28, 29). Protein interactions can be studied and mapped via HDX-MS, as binding events can perturb HDX rates as solvation and hydrogen bonding changes directly in the binding interface or indirectly in conformationally linked regions. The structural resolution of a classic peptide-level HDX-MS experiment is dependent on the generation of overlapping peptides by acid-stable proteases, such as pepsin, typically used in HDX-MS workflows. More recently, the use of gas-phase fragmentation of deuterated peptides with ETD (3033) has become a viable option for sublocalizing deuterium uptake to short peptide stretches or even individual amino acids, thus increasing the spatial resolution of the classical bottom-up HDX-MS method.Here, we used HDX-MS to probe the solution-phase interactions of human FcRn with a full-length recombinant human IgG1 and its deglycosylated variant. Our results allowed us to map antibody and FcRn regions that displayed changes in HDX upon complex formation and examine the impact of antibody glycosylation on FcRn binding. Additionally, by coupling ETD to the HDX-MS workflow in a targeted manner, we obtained high-resolution information on the HDX of individual sites that became protected upon IgG1–FcRn complex formation.  相似文献   

20.
Summary In this paper, we extend the study of the IGHG gene RFLPs in black African persons and in some other individuals characterized by a Negroid admixture. We demonstrate a polymorphism that is much more important in black Africans, that in Caucasoids, mainly for the IGHG3 and G1 genes, the most 5 members of the IGHG multigene family. These genes encode for the IgG3 and IgG1 subclasses, which are of crucial biological importance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号