首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cetirizine, terfenadine, loratadine, astemizole and mizolastine were compared for their ability to inhibit marker activities for CYP1A2, CYP2C9, CYP2C19, CYP2D6, CYP3A4 and for some glucuronidation isoenzymes in human liver microsomes. The most pronounced effects were observed with terfenadine, astemizole and loratadine which inhibited CYP3A4-mediated testosterone 6beta-hydroxylation (IC50 of 23, 21 and 32 microM, respectively) and CYP2D6-mediated dextromethorphan O-demethylation (IC50 of 18, 36 and 15 microM, respectively). In addition, loratadine markedly inhibited the CYP2C19 marker activity, (S)-mephenytoin 4-hydroxylation (Ki of 0.17 microM). Furthermore, loratadine activated the CYP2C9-catalyzed tolbutamide hydroxylation (ca. 3-fold increase at 30 microM) and inhibited some glucuronidation enzymes. Mizolastine appeared to be a relatively weak and unspecific inhibitor of CYP2E1, CYP2C9, CYP2D6 and CYP3A4 (IC50Ss in the 100 micromolar range). Cetirizine demonstrated no effect on the investigated activities. A comparison of the inhibitory potencies of cetirizine, terfenadine, loratidine, astemizole and mizolastine with their corresponding plasma concentrations in humans suggests that these antihistamines are not likely to interfere with the metabolic clearance of coadministered drugs, with the exception of loratidine, which appears to inhibit CYP2C19 with sufficient potency to warrant additional investigation.  相似文献   

2.
Yao HT  Chang YW  Lan SJ  Chen CT  Hsu JT  Yeh TK 《Life sciences》2006,79(26):2432-2440
The inhibitory effect of saturated fatty acids (SFAs): palmitic acid (PA), stearic acid (SA) and polyunsaturated fatty acids (PUFAs): linoleic acid (LA), linolenic acid (LN), arachidonic acid (AA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on six human drug-metabolizing enzymes (CYP1A2, 2C9, 2C19, 2D6, 2E1 and 3A4) was studied. Supersomes from baculovirus-expressing single isoforms were used as the enzyme source. Phenacetin O-deethylation (CYP1A2), diclofenac 4-hydroxylation (CYP2C9), mephenytoin 4-hydroxylation (CYP2C19), dextromethorphan O-demethylation (CYP2D6), chlorzoxazone 6-hydroxylation (CYP2E1) and midazolam 1-hydroxylation (CYP3A4) were used as the probes. Results show that all the five examined PUFAs competitively inhibited CYP2C9- and CYP2C19-catalyzed metabolic reactions, with Ki values ranging from 1.7 to 4.7 microM and 2.3 to 7.4 microM, respectively. Among these, AA, EPA and DHA tended to have greater inhibitory potencies (lower IC(50) and Ki values) than LA and LN. In addition, these five PUFAs also competitively inhibited the metabolic reactions catalyzed by CYP1A2, 2E1 and 3A4 to a lesser extent (Ki values>10 microM). On the other hand, palmitic and stearic acids, the saturated fatty acids, had no inhibitory effect on the activities of six human CYP isozymes at concentrations up to 200 microM. Incubation of PUFAs with CYP2C9 or CYP2C19 in the presence of NADPH resulted in the decrease of PUFA concentrations in the incubation mixtures. These results indicate that the PUFAs are potent inhibitors as well as the substrates of CYP2C9 and CYP2C19.  相似文献   

3.
Or PM  Lam FF  Kwan YW  Cho CH  Lau CP  Yu H  Lin G  Lau CB  Fung KP  Leung PC  Yeung JH 《Phytomedicine》2012,19(6):535-544
The present study investigated the effects of Radix Astragali (RA) and Radix Rehmanniae (RR), the major components of an anti-diabetic foot ulcer herbal formula (NF3), on the metabolism of model probe substrates of human CYP isoforms, CYP1A2, CYP2C9, CYP2D6, CYP2E1 and CYP3A4, which are important in the metabolism of a variety of xenobiotics. The effects of RA or RR on human CYP1A2 (phenacetin O-deethylase), CYP2C9 (tolbutamide 4-hydroxylase), CYP2D6 (dextromethorphan O-demethylase), CYP2E1 (chlorzoxazone 6-hydroxylase) and CYP3A4 (testosterone 6β-hydroxylase) activities were investigated using pooled human liver microsomes. NF3 competitively inhibited activities of CYP2C9 (IC(50)=0.98mg/ml) and CYP3A4 (IC(50)=0.76mg/ml), with K(i) of 0.67 and 1.0mg/ml, respectively. With specific human CYP2C9 and CYP3A4 isoforms, NF3 competitively inhibited activities of CYP2C9 (IC(50)=0.86mg/ml) and CYP3A4 (IC(50)=0.88mg/ml), with K(i) of 0.57 and 1.6mg/ml, respectively. Studies on RA or RR individually showed that RR was more important in the metabolic interaction with the model CYP probe substrates. RR dose-dependently inhibited the testosterone 6β-hydroxylation (K(i)=0.33mg/ml) while RA showed only minimal metabolic interaction potential with the model CYP probe substrates studied. This study showed that RR and the NF3 formula are metabolized mainly by CYP2C9 and/or CYP3A4, but weakly by CYP1A2, CYP2D6 and CYP2E1. The relatively high K(i) values of NF3 (for CYP2C9 and CYP3A4 metabolism) and RR (for CYP3A4 metabolism) would suggest a low potential for NF3 to cause herb-drug interaction involving these CYP isoforms.  相似文献   

4.
Five compounds including furanocoumarin monomers (bergamottin, 6', 7'-dihydroxybergamottin (DHB)), furanocoumarin dimers (4-??6-hydroxy-71-?(1-hydroxy-1-methyl)ethyl-4-methyl-6-(7-oxo-7H- furo?3,2-g1benzopyran-4-yl)-4-hexenyl]oxy]-3,7-dimethyl- 2-octenyl]oxy]-7H-furo[3,2-g]?1benzopyran-7-one (GF-I-1) and 4-??6-hydroxy-7??4-methyl-1-(1-methylethenyl)-6-(7-oxo-7H-furo?3, 2-g1benzopyran-4-yl)-4-hexenyl?xy-3, 7-dimethyl-2-octenyl?xy-7H-furo?3,2-g1benzopyran-7-one (GF-I-4)), and a sesquiterpene nootkatone have been isolated from grapefruit juice and screened for their inhibitory effects toward human cytochrome P450 (P450) forms using selective substrate probes. Addition of ethyl acetate extract of grapefruit juice into an incubation mixture resulted in decreased activities of CYP3A4, CYP1A2, CYP2C9, and CYP2D6. All four furanocoumarins clearly inhibited CYP3A4-catalyzed nifedipine oxidation in concentration- and time-dependent manners, suggesting that these compounds are mechanism-based inhibitors of CYP3A4. Of the furanocoumarins investigated, furanocoumarin dimers, GF-I-1 and GF-I-4, were the most potent inhibitors of CYP3A4. Inhibitor concentration required for half-maximal rate of inactivation (K(I)) values for bergamottin, DHB, GF-I-1, and GF-I-4 were calculated, respectively, as 40.00, 5. 56, 0.31, and 0.13 microM, whereas similar values were observed on their inactivation rate constant at infinite concentration of inhibitor (k(inact), 0.05-0.08 min(-1)). Apparent selectivity toward CYP3A4 does occur with the furanocoumarin dimers. In contrast, bergamottin showed rather stronger inhibitory effect on CYP1A2, CYP2C9, CYP2C19, and CYP2D6 than on CYP3A4. DHB inhibited CYP3A4 and CYP1A2 activities at nearly equivalent potencies. Among P450 forms investigated, CYP2E1 was the least sensitive to the inhibitory effect of furanocoumarin components. A sesquiterpene nootkatone has no significant effect on P450 activities investigated except for CYP2A6 and CYP2C19 (K(i) = 0.8 and 0.5 microM, respectively).  相似文献   

5.
p-Nitrophenol hydroxylation is widely used as a probe for microsomal CYP2E1. Several drugs are known as CYP2E1 inhibitors because of their capability to inhibit p-nitrophenol hydroxylation. Our results suggest further participation of CYP2A6 and CYP2C19 enzymes in p-nitrophenol hydroxylation. Moreover, CYP2A6 and CYP2C19 may be considered as the primary catalysts, whereas CYP2E1 can also contribute to the hydroxylation of p-nitrophenol. Further aim of our study was to evaluate the selectivity of p-nitrophenol hydroxylase inhibitors towards cytochrome P450 enzymes. The effects of antifungals: bifonazole, econazole, clotrimazole, ketoconazole, miconazole; CNS-active drugs: chlorpromazine, desipramine, fluphenazine, thioridazine; and the non-steroidal anti-inflammatory drug: diclofenac were investigated on the enzyme activities selective for CYP2A6, CYP2C9, CYP2C19, CYP2E1 and CYP3A4. None of the drugs could be considered as a potent inhibitor of CYP2E1. Strong inhibition was observed for CYP3A4 by antifungals with IC(50) values in submicromolar range. However, ketoconazole was the only imidazole derivative that could be considered as a selective inhibitor of CYP3A4. The CNS-active drugs investigated were found to be weak inhibitors of CYP2A6, CYP2C9, CYP2C19, CYP2E1 and CYP3A4. Diclofenac efficiently inhibited CYP2C9 and to a less extent CYP3A4 enzyme.  相似文献   

6.
Perfluorooctane sulfonate (PFOS) is a chemically stable compound extensively used as oil and water repellent, surface active agents in our daily life. Accumulative research evidence gradually appears the toxicity of PFOS against mammals, but the whole figure remains to be elucidated. The present study was conducted to know the effects of PFOS on human hepatic drug metabolizing-type cytochrome P450 (CYP) isoenzymes such as CYP1A2 (7-ethoxyresorufin as a substrate), CYP2A6 (coumarin), CYP2B6 (7-ethoxy-4-trifluoromethylcoumarin), CYP2C8 (paclitaxel), CYP2C9 (diclofenac), CYP2C19 (S-mephenytoin), CYP2D6 (bufuralol), CYP2E1 (chlorzoxazone) and CYP3A4 (testosterone) in human livers employing their typical substrates. Although all of the oxidation reactions tested were more or less inhibited by PFOS, diclofenac 4'-hydroxylation mediated mainly by CYP2C9 was most strongly inhibited (K(i) value of 40 nM), followed by paclitaxel 6α-hydroxylation mediated mainly by CYP2C8 (K(i) value of 4 μM). The substrate oxidation reactions catalyzed by CYP2A6, CYP2B6, CYP2C19 and CYP3A4 were moderately (K(i) values of 35 to 45 μM), and those by CYP1A2, CYP2D6 and CYP2E1 were weakly inhibited by PFOS (K(i) values of 190-300 μM). The inhibition by PFOS for coumarin 7-hydroxylation mainly catalyzed by human liver microsomal CYP2A6 as well as by the recombinant enzyme was found to be enhanced by the preincubation of PFOS with human liver microsomes and NADPH as compared to the case without preincubation. The inhibition of the human liver microsomal cumarin 7-hydroxylation was PFOS concentration-dependent, and exhibited pseudo-first-order kinetics with respect to preincubation time, yielding K(inact) and K(I) values of 0.06 min(-1) and 23 μM, respectively. These results suggest that the metabolism of medicines which are substrates for CYP2C9 may be altered by PFOS in human bodies, and that PFOS is a mechanism-based inhibitor of CYP2A6.  相似文献   

7.
1. The inhibitory effects of tranylcypromine, a nonselective irreversible inhibitor of monoamine oxidase (MAO), on three cytochrome P450 (CYP) enzymes, namely CYP2C9, CYP2C19, and CYP2D6, have been evaluated in vitro. 2. The studies were conducted using cDNA-expressed human CYP enzymes and probe substrates. 3. A range of substrate concentrations was coincubated with a range of tranylcypromine concentrations in the presence of each of the CYP enzymes at 37 degrees C for a predetermined period of time. Product concentrations were quantified by HPLC with UV detection. 4. The results demonstrated that tranylcypromine is a competitive inhibitor of CYP2C19 (Ki = 32 microM) and CYP2D6 (Ki = 367 microM) and a noncompetitive inhibitor of CYP2C9 (Ki = 56 microM). 5. None of these inhibitory effects are considered clinically significant at usual therapeutic doses. However, in certain situations such as high dose tranylcypromine therapy, or in poor metabolizers of CYP2C19 substrates, clinically significant interactions might occur, particularly when tranylcypromine is coadministered with drugs with a narrow therapeutic index.  相似文献   

8.
We newly developed 10 Salmonela typhimurium TA1538 strains each co-expressing a form of human cytochrome P450s (P450 or CYP) together with NADPH-cytochrome P450 reductase (CPR) for highly sensitive detection of mutagenic activation of mycotoxins, polycyclic aromatic hydrocarbons, heterocyclic amines, and aromatic amines at low substrate concentrations. Each form of P450 (CYP1A1, CYP1A2, CYP2A6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, CYP3A4 or CYP3A5) expressed in the TA1538 cells efficiently catalyzed the oxidation of a representative substrate. Aflatoxin B1 was mutagenically activated effectively by CYP1A1, CYP1A2, and CYP3A4 and weakly by CYP2A6 and CYP2C8 expressed in S. typhimurium TA1538. CYP1A1 and CYP1A2 were responsible for the mutagenic activation of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) and 2-acetylaminofluorene. Benzo[a]pyrene was also activated efficiently by CYP1A1 and weakly by CYP1A2, CYP2C9, CYP2C19, and CYP3A4 expressed in TA1538. These results suggest that the newly developed S. typhimurium TA1538 strains are applicable for detecting the activation of promutagens of which mutagenic activation is not or weakly detectable with N-nitrosamine-sensitive YG7108 strains expressing human P450s.  相似文献   

9.
Drug oxidation activities of 12 recombinant human cytochrome P450s (P450) coexpressed with human NADPH-P450 reductase (NPR) in bacterial membranes (P450/NPR membranes) were determined and compared with those of other recombinant systems and those of human liver microsomes. Addition of exogenous membrane-bound NPR to the P450/NPR membranes enhanced the catalytic activities of CYP2C8, CYP2C9, CYP2C19, CYP3A4, and CYP3A5. Enhancement of activities of CYP1A1, CYP1A2, CYP1B1, CYP2A6, CYP2B6, CYP2D6, and CYP2E1 in membranes was not observed after the addition of NPR (4 molar excess to each P450). Exogenous purified human cytochrome b5 (b5) further enhanced catalytic activities of CYP2A6, CYP2B6, CYP2C8, CYP2E1, CYP3A4, and CYP3A5/NPR membranes. Catalytic activities of CYP2C9 and CYP2C19 were enhanced by addition of b5 in reconstituted systems but not in the P450/NPR membranes. Apo b5 (devoid of heme) enhanced catalytic activities when added to both membrane and reconstituted systems, except for CYP2E1/NPR membranes and the reconstituted system containing purified CYP2E1 and NPR. Catalytic activities in P450/NPR membranes fortified with b5 were roughly similar to those measured with microsomes of insect cells coexpressing P450 with NPR (and b5) and/or human liver microsomes, based on equivalent P450 contents. These results suggest that interactions of P450 and NPR coexpressed in membranes or mixed in reconstituted systems appear to be different in some human CYP2 family enzymes, possibly due to a conformational role of b5. P450/NPR membrane systems containing b5 are useful models for prediction of the rates for liver microsomal P450-dependent drug oxidations.  相似文献   

10.
The human cytochrome P450 (CYP) enzymes play a major role in the metabolism of endobiotics and numerous xenobiotics including drugs. Therefore it is the standard procedure to test new drug candidates for interactions with CYP enzymes during the preclinical development phase. The purpose of this study was to determine in vitro CYP inhibition potencies of a set of isoquinoline alkaloids to gain insight into interactions of novel chemical structures with CYP enzymes. These alkaloids (n = 36) consist of compounds isolated from the Papaveraceae family (n = 20), synthetic analogs (n = 15), and one commercial compound. Their inhibitory activity was determined towards all principal human drug metabolizing CYP enzymes: 1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6 and 3A4. All alkaloids were assayed in vitro in a 96-well plate format using pro-fluorescent probe substrates and recombinant human CYP enzymes. Many of these alkaloids inhibited the CYP3A4 form, with 30/36 alkaloids inhibiting CYP3A4 with at least moderate potency (IC50 < 10 μM) and 15/36 inhibiting CYP3A4 potently (IC50 < 1 μM). Among them corydine, parfumine and 8-methyl-2,3,10,11-tetraethoxyberbine were potent and selective inhibitors for CYP3A4. CYP2D6 was inhibited with at least moderate potency by 26/34 alkaloids. CYP2C19 was inhibited by 15/36 alkaloids at least moderate potently, whereas CYP1A2, CYP2B6, CYP2C8, and CYP2C9 were inhibited to a lesser degree. CYP2A6 was not significantly inhibited by any of the alkaloids. The results provide initial structure-activity information about the interaction of isoquinoline alkaloids with major human xenobiotic-metabolizing CYP enzymes, and illustrate potential novel structures as CYP form-selective inhibitors.  相似文献   

11.
Two in vitro studies assessed the potential of daptomycin (Cubicin), a newly marketed antibiotic, to affect the cytochrome P450 (CYP450) isoforms in primary cultured human hepatocytes. Both induction and inhibition of isoforms 1A2, 2A6, 2C9, 2C19, 2D6, 2E1, and 3A4 were evaluated. The highest concentrations of daptomycin used in both the induction and inhibition assays were approximately eight-fold higher than the peak total drug concentration (50-60 microg/mL), or the peak free drug concentration (estimated 5-6 microg/mL), in plasma at the clinical dose regimen of 4 mg/kg qd. Results in primary human hepatocytes indicate that daptomycin, at concentrations up to 400 microg total drug/mL, demonstrated no biologically significant induction of any of the CYP450 isoform activities in comparison with the negative control or known inducers. At daptomycin concentrations up to 40 microg free drug/mL, no biologically significant inhibition of the activities of these CYP450 isoforms was observed as compared with known inhibitors. The human hepatocyte results demonstrate that daptomycin has no effects on hepatic CYP450-mediated drug metabolism and, therefore, suggest that daptomycin is unlikely to show potential for pharmacokinetic interactions with concomitantly administered drugs that are metabolized by CYP450 isoforms.  相似文献   

12.
Chamomile extracts and tea are widely used herbal preparations for the treatment of minor illnesses (e.g. indigestion, inflammation). In this study the inhibitory effect of chamomile essential oil and its major constituents on four selected human cytochrome P450 enzymes (CYP1A2, CYP2C9, CYP2D6 and CYP3A4) was investigated. Increasing concentrations of the test compounds were incubated with individual, recombinant CYP isoforms and their effect on the conversion of surrogate substances was measured fluorometrically in 96-well plates; enzyme inhibition was expressed as IC50 and Ki value in relation to positive controls. Crude essential oil demonstrated inhibition of each of the enzymes, with CYP1A2 being more sensitive than the other isoforms. Three constituents of the oil, namely chamazulene (IC50 = 4.41 microM), cis-spiroether (IC50 = 2.01 microM) and trans-spiroether (IC50 = 0.47 microM) showed to be potent inhibitors of this enzyme, also being active towards CYP3A4. CYP2C9 and CYP2D6 were less inhibited, only chamazulene (IC50 = 1.06 microM) and alpha-bisabolol (IC50 = 2.18 microM) revealed a significant inhibition of the latter. As indicated by these in vitro data, chamomile preparations contain constituents inhibiting the activities of major human drug metabolizing enzymes; interactions with drugs whose route of elimination is mainly via cytochromes (especially CYP1A2) are therefore possible.  相似文献   

13.
Because little is known about the interactions between herbal products and standard medications, the effects of seven ginsenosides and two eleutherosides (active components of the ginseng root) on the catalytic activity of c-DNA expressed cytochrome P450 isoforms were studied in in vitro experiments. Increasing concentrations of ginsenosides Rb1, Rb2, Rc, Rd, Re, Rf, and Rg1 and eleutherosides B and E were incubated with a panel of recombinant human CYP isoforms (CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A4) and their effects on the conversion of specific surrogate substrates measured fluorometrically in a 96-well plate format. For each test substance, the IC50 (the concentration required to inhibit the metabolism of the surrogate substrates by 50%) was estimated and this value compared with that obtained for positive control inhibitory drugs furafylline, sulfaphenazole, tryanylcypromine, quinidine, and ketoconizole. Of the components tested, three ginsenosides (Rd, Rc, and Rf) modified the activity of the recombinant enzymes. Ginsenoside Rd produced weak inhibitory activity against the surrogate substrates for CYP3A4 and CYP2D6 and even weaker inhibitory activity against the surrogate substrates for CYP2C19 and CYP2C9. The IC50 values of 58 and 74 uM for the two substrates for CYP3A4 are orders of magnitude higher than that for the potent inhibitor ketoconazole used as a positive control. Ginsenoside Rc produced an increase in the activity of CYP2C9 (70% at 200 uM) and ginsenoside Rf produced an increase in the activity of CYP3A4 (54% at 200 uM). The biological significance of this is unclear at this time. Enzyme "activation", the process by which direct addition of one compound to an enzyme enhances the rate of reaction of the substrate, has been observed in a number of cases with P450 enzymes; however, a matrix effect caused by the test compound fluorescing at the same wavelength as the metabolite of the marker substrate cannot be ruled out. In summary, these studies suggest that the ginsenosides and eleutherosides tested are not likely to inhibit the metabolism of coadministered medications in which the primary route of elimination is via cytochrome P450; the potential of ginsenosides to enhance the catalysis of certain substrates requires further investigation.  相似文献   

14.
Zou L  Harkey MR  Henderson GL 《Life sciences》2002,71(13):1579-1589
We evaluated the effects of 25 purified components of commonly used herbal products on the catalytic activity of cDNA-expressed cytochrome P450 isoforms in in vitro experiments. Increasing concentrations of the compounds were incubated with a panel of recombinant human CYP isoforms (CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A4) and their effects on the conversion of specific surrogate substrates measured fluorometrically in a 96-well plate format. For each test substance, the IC50 (the concentration required to inhibit metabolism of surrogate substrates by 50%) was estimated and compared with IC50's for the positive control inhibitory drugs furafylline, sulfaphenazole, tranylcypromine, quinidine, and ketoconazole. Constituents of Ginkgo biloba (ginkgolic acids I and II), kava (desmethoxyyangonin, dihydromethysticin, and methysticin), garlic (allicin), evening primrose oil (cis-linoleic acid), and St. John's wort (hyperforin and quercetin) significantly inhibited one or more of the cDNA human P450 isoforms at concentrations of less than 10 uM. Some of the test compounds (components of Ginkgo biloba, kava, and St. John's wort) were more potent inhibitors of the isoforms 1A2, 2C19, and 2C19 than the positive controls used in each assay (furafylline, sulfaphenazole, and tranylcypromine, respectively), which are known to produce clinically significant drug interactions. The enzyme most sensitive to the inhibitory of effects of these compounds was CYP2C19, while the isoform least effected was CYP2D6. These data suggest that herbal products containing evening primrose oil, Ginkgo biloba, kava, and St. John's Wort could potentially inhibit the metabolism of co-administered medications whose primary route of elimination is via cytochrome P450.  相似文献   

15.
Tetrahydropalmatine (THP), with one chiral center, is an alkaloid that possesses analgesic and many other pharmacological actives. The aim of the present study is to investigate stereoselective metabolism of THP enantiomers in human liver microsomes (HLM) and elucidate which cytochrome P450 (CYP) isoforms contribute to the stereoselective metabolism in HLM. Additionally, the inhibitions of THP enantiomers on activity of CYP enzymes are also investigated. The results demonstrated that (+)‐THP was preferentially metabolized by HLM. Ketoconazole (inhibitor of CYP3A4/5) inhibited metabolism of (?)‐THP or (+)‐THP at same degree, whereas the inhibition of fluvoxamine (inhibitor of CYP1A2) on metabolism of (+)‐THP was greater than that of (?)‐THP; moreover, the metabolic rate of (+)‐THP was 5.3‐fold of (?)‐THP in recombinant human CYP1A2. Meanwhile, THP enantiomers did not show obvious inhibitory effect on the activity of various CYP isoforms (CYP1A2, 2A6, 2C8, 2C9, 2C19, 2E1, and 3A4/5), whereas (?)‐THP, but not (+)‐THP, significantly inhibited the activity of CYP2D6 with the Ki value of 6.42 ± 0.38 μM. The results suggested that THP enantiomers were predominantly metabolized by CYP3A4/5 and CYP1A2 in HLM, and (+)‐THP was preferentially metabolized by CYP1A2, whereas CYP3A4/5 contributed equally to metabolism of (?)‐THP or (+)‐THP. Besides, the inhibition of CYP2D6 by (?)‐THP may cause drug–drug interaction, which should be considered. Chirality 25:43–47, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

16.
Yeung JH  Or PM 《Phytomedicine》2012,19(5):457-463
Polysaccharide peptide (PSP), isolated from COV-1 strain of Coriolus versicolor, is commonly used as an adjunct in cancer chemotherapy or health supplement in China. Previous studies have shown that PSP decreased antipyrine clearance and inhibited rat CYP2C11-mediated tolbutamide 4-hydroxylation and in human CYP2C9. In this study, the effects of the water extractable fraction of PSP on the metabolism of model CYP1A2, CYP2D6, CYP2E1 and CYP3A4 probe substrates were investigated in pooled human liver microsomes. PSP (1.25-20μM) dose-dependently decreased CYP1A2-mediated metabolism of phenacetin to paracetamol (IC(50) 19.7μM) and CYP3A4-mediated metabolism of testosterone to 6β-hydroxytestosterone (IC(20) 7.06μM). Enzyme kinetics studies showed the inhibition of CYP1A2 activity was competitive and concentration-dependent (K(i)=18.4μM). Inhibition of testosterone to 6β-hydroxytestosterone was also competitive and concentration-dependent (K(i)=31.8μM). Metabolism of dextromethorphan to dextrorphan (CYP2D6-mediated) and chlorzoxazone to 6-hydroxychlorzoxazone (CYP2E1-mediated) was only minimally inhibited by PSP, with IC(20) values at 15.6μM and 11.9μM, respectively. This study demonstrated that PSP competitively inhibited the CYP1A2- and CYP3A4-mediated metabolism of model probe substrates in human liver microsomes in vitro. The relatively high K(i) values for CYP1A2 and CYP3A4 would suggest a low potential for PSP to cause herb-drug interaction related to these CYP isoforms.  相似文献   

17.
Meranzin hydrate (MH), an absorbed bioactive compound from the Traditional Chinese Medicine (TCM) Chaihu-Shugan-San (CSS), was first isolated in our laboratory and was found to possess anti-depression activity. However, the role of cytochrome P450s (CYPs) in the metabolism of MH was unclear. In this study, we screened the CYPs for the metabolism of MH in vitro by human liver microsomes (HLMs) or human recombinant CYPs. MH inhibited the enzyme activities of CYP1A2 and CYP2C19 in a concentration-dependent manner in the HLMs. The Km and Vmax values of MH were 10.3±1.3 µM and 99.1±3.3 nmol/mg protein/min, respectively, for the HLMs; 8.0±1.6 µM and 112.4±5.7 nmol/nmol P450/min, respectively, for CYP1A2; and 25.9±6.6 µM and 134.3±12.4 nmol/nmol P450/min, respectively, for CYP2C19. Other human CYP isoforms including CYP2A6, CYP2C9, CYP2D6, CYP2E1 and CYP3A4 showed minimal or no effect on MH metabolism. The results suggested that MH was simultaneously a substrate and an inhibitor of CYP1A2 and CYP2C9, and MH had the potential to perpetrate drug-drug interactions with other CYP1A2 and CYP2C19 substrates.  相似文献   

18.
Troglitazone (TRO) was developed for the treatment of type II diabetes. It was withdrawn from use due to idiosyncratic liver damage and failure. The mechanism of toxicity is still not determined, moreover, it is still not clear whether toxicity is due to the parent compound or its metabolite(s). The cytotoxicity of TRO was evaluated in human hepatocytes using previously cryopreserved hepatocyte suspensions from 27 human donors. Cellular adenosine triphosphate content was used as a viability endpoint. To investigate the role of xenobiotic metabolism in TRO toxicity, the correlation between the drug metabolism activities of the hepatocytes from each donor to EC(50) values TRO cytotoxicity. The activities examined were cytochrome P450 (CYP) isoform activities (CYP2A6, CYP2D6, CYP2C19, CYP1A2, CYP2E1, CYP3A4 and CYP2C9) and phase 2 conjugation enzyme activities (phenol sulfotransferase (PST) and glucuronyl transferase (UGT)). Taken individually, none of the phase 1 or 2 enzyme activities correlated to the EC(50). However, when three enzyme activities ((CYP3A4 x UGT)/PST) were taken into account, a correlation was made (r(2)=0.53). Based on the correlation, we hypothesize that TRO and TRO sulfate are direct acting toxicants, whereas CYP3A4 oxidation and glucuronidation are detoxification pathways.  相似文献   

19.
Affecting hepatic cytochrome (CYP) activity is one of the major concerns in drug–drug interaction. Thus the testing of drug candidates on their impact on these enzymes is an essential step in early drug discovery. We tested a collection of 480 in-house phthalimide derivatives against different CYP450s using a high throughput inhibition assay. In initial tests with the isoform CYP2C19 about 57.5% of the tested phthalimide derivatives showed significantly enhanced inhibitory effects against this enzyme. In addition similar patterns of phthalimide inhibition for CYP2C9 and CYP2C19 were found, whereas the unrelated isoforms CYP2D6 and CYP3A4 were not specifically affected. Also less than 10% of randomly chosen substances inhibited CYP2C9. Analyses of structure-function relationships revealed that the substituent at the nitrogen atom in the isoindole ring is of crucial impact for the activity of CYP2C9/19.  相似文献   

20.
Human hepatocytes cultured serum-free for up to 6 weeks were used to study expression and induction of enzymes and membrane transport proteins involved in drug metabolism. Phase I drug metabolizing enzymes cytochrome P450 (CYP)1A1, CYP1A2, CYP2C9, CYP2C19, CYP2E1, and CYP3A4 were detected by Western blot analyses and, when appropriate, by enzymatic assays for ethoxyresorufin-O-deethylase(EROD)-activity and testosterone-6beta-hydroxylase(T6H)-activity. Expression of the membrane transporter multi-drug resistance protein (P-glycoprotein, MDR-1), multidrug resistance-associated protein (MRP-1), and lung-resistance protein (LRP) was maintained during the culture as detected by RT-PCR and Western blot analyses. Model inducers like rifampicin, phenobarbital, or 3-methylcholanthrene and beta-naphtoflavone were able to induce CYP1A or CYP3A4 as well as EROD or T6H activities for up to 30 days. CYP2C9, CYP2C19 and CYP2E1 expression was maintained but not inducible for 48 days. Also, rifampicin and phenobarbital were unable to increase MDR-1 and MRP-1 protein levels significantly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号