首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have compared the in vitro regulatory properties of recombinant human cardiac troponin reconstituted using wild type troponin T with troponin containing the DeltaLys-210 troponin T mutant that causes dilated cardiomyopathy (DCM) and the R92Q troponin T known to cause hypertrophic cardiomyopathy (HCM). Troponin containing DeltaLys-210 troponin T inhibited actin-tropomyosin-activated myosin subfragment-1 ATPase activity to the same extent as wild type at pCa8.5 (>80%) but produced substantially less enhancement of ATPase at pCa4.5. The Ca(2+) sensitivity of ATPase activation was increased (DeltapCa(50) = +0.2 pCa units) and cooperativity of Ca(2+) activation was virtually abolished. Equimolar mixtures of wild type and DeltaLys-210 troponin T gave a lower Ca(2+) sensitivity than with wild type, while maintaining the diminished ATPase activation at pCa4.5 observed with 100% mutant. In contrast, R92Q troponin gave reduced inhibition at pCa8.5 but greater activation than wild type at pCa4.5; Ca(2+) sensitivity was increased but there was no change in cooperativity. In vitro motility assay of reconstituted thin filaments confirmed the ATPase results and moreover indicated that the predominant effect of the DeltaLys-210 mutation was a reduced sliding speed. The functional consequences of this DCM mutation are qualitatively different from the R92Q or any other studied HCM troponin T mutation, suggesting that DCM and HCM may be triggered by distinct primary stimuli.  相似文献   

2.
To understand the molecular mechanisms whereby cardiomyopathy-related cardiac troponin I (cTnI) mutations affect myofilament activity, we have investigated the Ca2+ binding properties of various assemblies of the regulatory components that contain one of the cardiomyopahty-related mutant cTnI. Acto-S1 ATPase activities in reconstituted systems were also determined. We investigated R145G and R145W mutations from the inhibitory region and D190H and R192H mutations from the second actin-tropomyosin-binding site. Each of the four mutations sensitized the acto-S1 ATPase to Ca2+. Whereas the mutations from the inhibitory region increased the basal level of ATPase activity, those from the second actin-tropomyosin-binding site did not. The effects on the Ca2+ binding properties of the troponin ternary complex and the troponin-tropomyosin complex with one of four mutations were either desensitization or no effect compared with those with wild-type cTnI. All of the mutations, however, affected the Ca2+ sensitivities of the reconstituted thin filaments in the same direction as the acto-S1 ATPase activity. Also the thin filaments with one of the mutant cTnIs bound Ca2+ with less cooperativity compared with those with wild-type cTnI. These data indicate that the mutations found in the inhibitory region and those from the second actin-tropomyosin site shift the equilibrium of the states of the thin filaments differently. Moreover, the increased Ca2+ bound to myofilaments containing the mutant cTnIs may be an important factor in triggered arrhythmias associated with the cardiomyopathy.  相似文献   

3.
Human cardiac Troponin I (cTnI) is the first sarcomeric protein for which mutations have been associated with restrictive cardiomyopathy. To determine whether five mutations in cTnI (L144Q, R145W, A171T, K178E, and R192H) associated with restrictive cardiomyopathy were distinguishable from hypertrophic cardiomyopathy-causing mutations in cTnI, actomyosin ATPase activity and skinned fiber studies were carried out. All five mutations investigated showed an increase in the Ca2+ sensitivity of force development compared with wild-type cTnI. The two mutations with the worst clinical phenotype (K178E and R192H) both showed large increases in Ca2+ sensitivity (deltapCa50 = 0.47 and 0.36, respectively). Although at least one of these mutations is not in the known inhibitory regions of cTnI, all of the mutations investigated caused a decrease in the ability of cTnI to inhibit actomyosin ATPase activity. Mixtures of wild-type and mutant cTnI showed that cTnI mutants could be classified into three different groups: dominant (L144Q, A171T and R192H), equivalent (K178E), or weaker (R145W) than wild-type cTnI in actomyosin ATPase assays in the absence of Ca2+. Although most of the mutants were able to activate actomyosin ATPase similarly to wild-type cTnI, L144Q had significantly lower maximal ATPase activities than any of the other mutants or wild-type cTnI. Three mutants (L144Q, R145W, and K178E) were unable to fully relax contraction in the absence of Ca2+. The inability of the five cTnI mutations investigated to fully inhibit ATPase activity/force development and the generally larger increases in Ca2+ sensitivity than observed for most hypertrophic cardiomyopathy mutations would likely lead to severe diastolic dysfunction and may be the major physiological factors responsible for causing the restrictive cardiomyopathy phenotype in some of the genetically affected individuals.  相似文献   

4.
Cardiac diseases associated with mutations in troponin subunits include hypertrophic cardiomyopathy (HCM), dilated cardiomyopathy (DCM), and restrictive cardiomyopathy (RCM). Altered calcium handling in these diseases is evidenced by changes in the Ca2+ sensitivity of contraction. Mutations in the Ca2+ sensor, troponin C (TnC), were generated to increase/decrease the Ca2+ sensitivity of cardiac skinned fibers to create the characteristic effects of DCM, HCM, and RCM. We also used a reconstituted assay to determine the mutation effects on ATPase activation and inhibition. One mutant (A23Q) was found with HCM-like properties (increased Ca2+ sensitivity of force and normal levels of ATPase inhibition). Three mutants (S37G, V44Q, and L48Q) were identified with RCM-like properties (a large increase in Ca2+ sensitivity, partial loss of ATPase inhibition, and increased basal force). Two mutations were identified (E40A and I61Q) with DCM properties (decreased Ca2+ sensitivity, maximal force recovery, and activation of the ATPase at high [Ca2+]). Steady-state fluorescence was utilized to assess Ca2+ affinity in isolated cardiac (c)TnCs containing F27W and did not necessarily mirror the fiber Ca2+ sensitivity. Circular dichroism of mutant cTnCs revealed a trend where increased α-helical content correlated with increased Ca2+ sensitivity in skinned fibers and vice versa. The main findings from this study were as follows: 1) cTnC mutants demonstrated distinct functional phenotypes reminiscent of bona fide HCM, RCM, and DCM mutations; 2) a region in cTnC associated with increased Ca2+ sensitivity in skinned fibers was identified; and 3) the F27W reporter mutation affected Ca2+ sensitivity, maximal force, and ATPase activation of some mutants.  相似文献   

5.
We have studied functional consequences of the mutations R145G, S22A, and S23A of human cardiac troponin I (cTnI) and of phosphorylation of two adjacent N-terminal serine residues in the wild-type cTnI and the mutated proteins. The mutation R145G has been linked to the development of familial hypertrophic cardiomyopathy. Cardiac troponin was reconstituted from recombinant human subunits including either wild-type or mutant cTnI and was used for reconstitution of thin filaments with skeletal muscle actin and tropomyosin. The Ca(2+)-dependent thin filament-activated myosin subfragment 1 ATPase (actoS1-ATPase) activity and the in vitro motility of these filaments driven by myosin were measured as a function of the cTnI phosphorylation state. Bisphosphorylation of wild-type cTnI decreases the Ca(2+) sensitivity of the actoS1-ATPase activity and the in vitro thin filament motility by about 0.15-0.21 pCa unit. The nonconservative replacement R145G in cTnI enhances the Ca(2+) sensitivity of the actoS1-ATPase activity by about 0.6 pCa unit independent of the phosphorylation state of cTnI. Furthermore, it mimics a strong suppressing effect on both the maximum actoS1-ATPase activity and the maximum in vitro filament sliding velocity which has been observed upon bisphosphorylation of wild-type cTnI. Bisphosphorylation of the mutant cTnI-R145G itself had no such suppressing effects anymore. Differential analysis of the effect of phosphorylation of each of the two serines, Ser23 in cTnI-S22A and Ser22 in cTnI-S23A, indicates that phosphorylation of Ser23 may already be sufficient for causing the reduction of maximum actoS1-ATPase activity and thin filament sliding velocity seen upon phosphorylation of both of these serines.  相似文献   

6.
Familial hypertrophic cardiomyopathy has been associated with several mutations in the gene encoding human cardiac troponin I (HCTnI). A missense mutation in the inhibitory region of TnI replaces an arginine residue at position 145 with a glycine and cosegregates with the disease. Results from several assays indicate that the inhibitory function of HCTnI(R145G) is significantly reduced. When HCTnI(R145G) was incorporated into whole troponin, Tn(R145G) (HCTnT small middle dotHCTnI(R145G) small middle dotHCTnC), only partial inhibition of the actin-tropomyosin-myosin ATPase activity was observed in the absence of Ca(2+) compared with wild type Tn (HCTnT small middle dotHCTnI small middle dotHCTnC). Maximal activation of actin-tropomyosin-myosin ATPase in the presence of Ca(2+) was also decreased in Tn(R145G) when compared with Tn. Using skinned cardiac muscle fibers, we determined that in comparison with the wild type complex 1) the complex containing HCTnI(R145G) only inhibited 84% of Ca(2+)-unregulated force, 2) the recovery of Ca(2+)-activated force was decreased, and 3) there was a significant increase in the Ca(2+) sensitivity of force development. Computer modeling of troponin C and I variables predicts that the primary defect in TnI caused by these mutations would lead to diastolic dysfunction. These results suggest that severe diastolic dysfunction and somewhat decreased contractility would be prominent clinical features and that hypertrophy could arise as a compensatory mechanism.  相似文献   

7.
To study the functional consequences of various cardiomyopathic mutations in human cardiac alpha-tropomyosin (Tm), a method of depletion/reconstitution of native Tm and troponin (Tn) complex (Tm-Tn) in cardiac myofibril preparations has been developed. The endogenous Tm-Tn complex was selectively removed from myofibrils and replaced with recombinant wild-type or mutant proteins. Successful depletion and reconstitution steps were verified by SDS-gel electrophoresis and by the loss and regain of Ca2+-dependent regulation of ATPase activity. Five Tm mutations were chosen for this study: the hypertrophic cardiomyopathy (HCM) mutations E62Q, E180G, and L185R and the dilated cardiomyopathy (DCM) mutations E40K and E54K. Through the use of this new depletion/reconstitution method, the functional consequences of these mutations were determined utilizing myofibrillar ATPase measurements. The results of our studies showed that 1) depletion of >80% of Tm-Tn from myofibrils resulted in a complete loss of the Ca2+-regulated ATPase activity and a significant loss in the maximal ATPase activity, 2) reconstitution of exogenous wild-type Tm-Tn resulted in complete regain in the calcium regulation and in the maximal ATPase activity, and 3) all HCM-associated Tm mutations increased the Ca2+ sensitivity of ATPase activity and all had decreased abilities to inhibit ATPase activity. In contrast, the DCM-associated mutations both decreased the Ca2+ sensitivity of ATPase activity and had no effect on the inhibition of ATPase activity. These findings have demonstrated that the mutations which cause HCM and DCM disrupt discrete mechanisms, which may culminate in the distinct cardiomyopathic phenotypes.  相似文献   

8.
We have previously shown that mutations in troponin T (TnT), which is associated with familial hypertrophic cardiomyopathy (HCM), cause an increase in the Ca(2+) sensitivity and a potentiation of cardiac muscle contraction. To gain further insight into the patho-physiological role of these mutations, four mutations (Arg92Gln, Phe110Ile, Glu244Asp, Arg278Cys) were introduced into recombinant human cardiac TnT, and the mutants were exchanged into isolated porcine cardiac myofibrils. The effects of mutations were tested on maximal ATPase activity, the inhibitory function of troponin I (TnI) in the absence of troponin C (TnC), and the neutralizing function of TnC. Arg92Gln, Phe110Ile, and Glu244Asp markedly impaired the inhibitory function of TnI. Arg278Cys also impaired the inhibitory function of TnI, but the effect was much smaller. Phe110Ile and Glu244Asp markedly enhanced the neutralizing function of TnC and potentiated the maximum ATPase activity. Arg92Gln and Arg278Cys only slightly enhanced the neutralizing function of TnC, and they conferred no potentiation on the maximum ATPase activity. These results indicate that mutations in TnT impair multiple processes of Ca(2+) regulation by troponin, and there are marked differences in the degree of impairment from mutation to mutation.  相似文献   

9.
Lindhout DA  Li MX  Schieve D  Sykes BD 《Biochemistry》2002,41(23):7267-7274
Cardiac troponin I (cTnI) is the inhibitory component of the troponin complex, and its interaction with cardiac troponin C (cTnC) plays a critical role in transmitting the Ca(2+) signal to the other myofilament proteins in heart muscle contraction. The switch between contraction and relaxation involves a movement of the inhibitory region of cTnI (cIp) from cTnC to actin-tropomyosin. This region of cTnI is prone to missense mutations in heart disease, and a specific mutation, R145G, has been associated with familial hypertrophic cardiomyopathy. It also contains the unique cardiac PKC phosphorylation site at residue T142. To determine the structural consequences of the mutation R145G and the T142 phosphorylation on the interaction of cIp with cTnC, we have utilized 2D [(1)H, (15)N]-HSQC NMR spectroscopy to monitor the binding of native cIp, cIp-R (R145G), and cIp-P (phosphorylated T142), respectively, to the Ca(2+)-saturated C-domain of cTnC (cCTnC.2Ca(2+)). We also report a strategy for cloning, expression, and purification of cTnI peptide, and both synthetic and recombinant peptides are used in this study. NMR chemical shift mapping indicates that the binding epitope of cIp on cCTnC.2Ca(2+) is not greatly affected, but the affinity is reduced by approximately 14-fold by the T142 phosphorylation and approximately 4-fold by the mutation R145G, respectively. This suggests that these modifications of cIp have an adverse effect on the binding of cIp to cCTnC.2Ca(2+). These perturbations may correlate with the impairment or loss of cTnI function in heart muscle contraction.  相似文献   

10.
We examined four cardiomyopathy-causing mutations of troponin I that appear to disturb function by altering the distribution of thin filament states. The R193H (mouse) troponin I mutant had greater than normal actin-activated myosin-S1 ATPase activity in both the presence and absence of calcium. The rate of ATPase activity was the same as that of the wild-type at near-saturating concentrations of the activator, N-ethylmaleimide-S1. This mutant appeared to function by stabilizing the active state of thin filaments. Mutations D191H, R146G, and R146W had lower ATPase activities in the presence of calcium, but higher activities in the absence of calcium. These effects were most pronounced with mutations at position 146. For all three mutants the rates were similar to those of the wild-type at near-saturating concentrations of N-ethylmaleimide-S1. These results, combined with previous results, show that any alteration in the normal distribution of actomyosin states is capable of producing cardiomyopathy. The results of the D191H, R146G, and R146W mutations are most readily explained if the intermediate state of regulated actin has a unique function. The intermediate state appears to have an ability to accelerate the rate of ATP hydrolysis by myosin that exceeds that of the inactive state.  相似文献   

11.
To study the effect of troponin (Tn) T mutations that cause familial hypertrophic cardiomyopathy (FHC) on cardiac muscle contraction, wild-type, and the following recombinant human cardiac TnT mutants were cloned and expressed: I79N, R92Q, F110I, E163K, R278C, and intron 16(G(1) --> A) (In16). These TnT FHC mutants were reconstituted into skinned cardiac muscle preparations and characterized for their effect on maximal steady state force activation, inhibition, and the Ca(2+) sensitivity of force development. Troponin complexes containing these mutants were tested for their ability to regulate actin-tropomyosin(Tm)-activated myosin-ATPase activity. TnT(R278C) and TnT(F110I) reconstituted preparations demonstrated dramatically increased Ca(2+) sensitivity of force development, while those with TnT(R92Q) and TnT(I79N) showed a moderate increase. The deletion mutant, TnT(In16), significantly decreased both the activation and the inhibition of force, and substantially decreased the activation and the inhibition of actin-Tm-activated myosin-ATPase activity. ATPase activation was also impaired by TnT(F110I), while its inhibition was reduced by TnT(R278C). The TnT(E163K) mutation had the smallest effect on the Ca(2+) sensitivity of force; however, it produced an elevated activation of the ATPase activity in reconstituted thin filaments. These observed changes in the Ca(2+) regulation of force development caused by these mutations would likely cause altered contractility and contribute to the development of FHC.  相似文献   

12.
In order to determine the functional consequences of the Arg145Gly mutation in troponin I found in familial hypertrophic cardiomyopathy, human cardiac troponin I and its mutant were expressed in Escherichia coli and purified, and then their effects on the ATPase activity of porcine cardiac myofibrillar preparations from which both troponins C and I had been depleted were examined. Both the wild-type and mutant troponin Is suppressed the ATPase activity of the troponin C.I-depleted myofibrils, but the maximum inhibition caused by mutant troponin I was weaker than that by wild-type troponin I. In the Ca(2)(+)-activation profile of the myofibrillar ATPase activity after reconstitution with both troponins I and C, the Ca(2)(+)-sensitivity with mutant troponin I was higher than that with wild-type troponin I, whereas the maximum level of the ATPase activity with mutant troponin I was lower than that with wild-type troponin I. These findings strongly suggest that the Arg145Gly mutation in human cardiac troponin I modulates the Ca(2)(+)-regulation of contraction by impairing the interaction of troponin I with both actin-tropomyosin and troponin C.  相似文献   

13.
Two novel mutations (G159D and L29Q) in cardiac troponin C (CTnC) associate their phenotypic outcomes with dilated (DCM) and hypertrophic cardiomyopathy (HCM), respectively. Current paradigms propose that sarcomeric mutations associated with DCM decrease the myofilament Ca2+ sensitivity, whereas those associated with HCM increase it. Therefore, we incorporated the mutant CTnCs into skinned cardiac muscle in order to determine if their effects on the Ca2+ sensitivities of tension and ATPase activity coincide with the current paradigms and phenotypic outcomes. The G159D-CTnC decreases the Ca2+ sensitivity of tension and ATPase activation and reduces the maximal ATPase activity when incorporated into regulated actomyosin filaments. Under the same conditions, the L29Q-CTnC has no effect. Surprisingly, changes in the apparent G159D-CTnC Ca2+ affinity measured by tension in fibers do not occur in the isolated CTnC, and large changes measured in the isolated L29Q-CTnC do not manifest in the fiber. These counterintuitive findings are justified through a transition in Ca2+ affinity occurring at the level of cardiac troponin and higher, implying that the true effects of these mutations become apparent as the hierarchical level of the myofilament increases. Therefore, the contractile apparatus, representing a large cooperative machine, can provide the potential for a change (G159D) or no change (L29Q) in the Ca2+ regulation of contraction. In accordance with the clinical outcomes and current paradigms, the desensitization of myofilaments from G159D-CTnC is expected to weaken the contractile force of the myocardium, whereas the lack of myofilament changes from L29Q-CTnC may preserve diastolic and systolic function.  相似文献   

14.
We examined the cardiomyopathy-causing tropomyosin mutations E180G, D175N, and V95A to determine their effects on actomyosin regulation. V95A reduced the ATPase rate when filaments were saturated with regulatory proteins both in the presence and absence of calcium, indicating either a stabilization of the inactive state or an inability to fully populate the active state. Effects of E180G and D175N were more complex. These two mutations increased ATPase rates at sub-saturating concentrations of troponin and tropomyosin as compared to wild type tropomyosin. At higher concentrations of regulatory proteins, ATPase rates became similar to wild type. Normal activation was achieved with the tight-binding myosin analog N-ethylmaleimide-S1, at saturating regulatory protein concentrations. These results suggest that the E180G and D175N mutations reduce the affinity of tropomyosin for actin and also destabilize troponin binding to the actin thin filaments.  相似文献   

15.
To understand the molecular function of troponin T (TnT) in the Ca(2+) regulation of muscle contraction as well as the molecular pathogenesis of familial hypertrophic cardiomyopathy (FHC), eight FHC-linked TnT mutations, which are located in different functional regions of human cardiac TnT (HCTnT), were produced, and their structural and functional properties were examined. Circular dichroism spectroscopy demonstrated different secondary structures of these TnT mutants. Each of the recombinant HCTnTs was incorporated into porcine skinned fibers along with human cardiac troponin I (HCTnI) and troponin C (HCTnC), and the Ca(2+) dependent isometric force development of these troponin-replaced fibers was determined at pH 7.0 and 6.5. All eight mutants altered the contractile properties of skinned cardiac fibers. E244D potentiated the maximum force development without changing Ca(2+) sensitivity. In contrast, the other seven mutants increased the Ca(2+) sensitivity of force development but not the maximal force. R92L, R92W, and R94L also decreased the change in Ca(2+) sensitivity of force development observed on lowering the pH from 7 to 6.5, when compared with wild type TnT. The examination of additional mutants, H91Q and a double mutant H91Q/R92W, suggests that mutations in a region including residues 91-94 in HCTnT can perturb the proper response of cardiac contraction to changes in pH. These results suggest that different regions of TnT may contribute to the pathogenesis of TnT-linked FHC through different mechanisms.  相似文献   

16.
The key events in regulating cardiac muscle contraction involve Ca(2+) binding to and release from cTnC (troponin C) and structural changes in cTnC and other thin filament proteins triggered by Ca(2+) movement. Single mutations L29Q and G159D in human cTnC have been reported to associate with familial hypertrophic and dilated cardiomyopathy, respectively. We have examined the effects of these individual mutations on structural transitions in the regulatory N-domain of cTnC triggered by Ca(2+) binding and dissociation. This study was carried out with a double mutant or triple mutants of cTnC, reconstituted into troponin with tryptophanless cTnI and cTnT. The double mutant, cTnC(L12W/N51C) labeled with 1,5-IAEDANS at Cys-51, served as a control to monitor Ca(2+)-induced opening and closing of the N-domain by F?rster resonance energy transfer (FRET). The triple mutants contained both L12W and N51C labeled with 1,5-IAEDANS, and either L29Q or G159D. Both mutations had minimal effects on the equilibrium distance between Trp-12 and Cys-51-AEDANS in the absence or presence of bound Ca(2+). L29Q had no effect on the closing rate of the N-domain triggered by release of Ca(2+), but reduced the Ca(2+)-induced opening rate. G159D reduced both the closing and opening rates. Previous results showed that the closing rate of cTnC N-domain triggered by Ca(2+) dissociation was substantially enhanced by PKA phosphorylation of cTnI. This rate enhancement was abolished by L29Q or G159D. These mutations alter the kinetics of structural transitions in the regulatory N-domain of cTnC that are involved in either activation (L29Q) or deactivation (G159D). Both mutations appear to be antagonistic toward phosphorylation signaling between cTnI and cTnC.  相似文献   

17.
The objective of this work was to investigate the effect of hypertrophic cardiomyopathy-linked A8V and E134D mutations in cardiac troponin C (cTnC) on the response of reconstituted thin filaments to calcium upon phosphorylation of cardiac troponin I (cTnI) by protein kinase A. The phosphorylation of cTnI at protein kinase A sites was mimicked by the S22D/S23D double mutation in cTnI. Our results demonstrate that the A8V and E134D mutations had no effect on the extent of calcium desensitization of reconstituted thin filaments induced by cTnI pseudophosphorylation. However, the A8V mutation enhanced the effect of cTnI pseudophosphorylation on the rate of dissociation of calcium from reconstituted thin filaments and on the calcium dependence of actomyosin ATPase. Consequently, while the A8V mutation still led to a slower rate of dissociation of calcium from reconstituted thin filaments upon pseudophosphorylation of cTnI, the ability of the A8V mutation to decrease the rate of calcium dissociation was weakened. In addition, the ability of the A8V mutation to sensitize actomyosin ATPase to calcium was weakened after cTnI was replaced by the phosphorylation mimetic of cTnI. Consistent with the hypothesis that the E134D mutation is benign, it exerted a minor to no effect on the rate of dissociation of calcium from reconstituted thin filaments or on the calcium sensitivity of actomyosin ATPase, regardless of the cTnI phosphorylation status. In conclusion, our study enhances our understanding of how cardiomyopathy-linked cTnC mutations affect the response of reconstituted thin filaments to calcium upon cTnI phosphorylation.  相似文献   

18.
Cardiac troponin (cTn) is a key molecule in the regulation of human cardiac muscle contraction. The N-terminal cardiac-specific peptide of the inhibitory subunit of troponin, cTnI (cTnI1-39), is a target for phosphorylation by protein kinase A (PKA) during β-adrenergic stimulation. We recently presented evidence indicating that this peptide interacts with the inhibitory peptide (cTnl137–147) when S23 and S24 are phosphorylated. The inhibitory peptide is also the target of the point mutation cTnI-R145G, which is associated with hypertrophic cardiomyopathy (HCM), a disease associated with sudden death in apparently healthy young adults. It has been shown that both phosphorylation and this mutation alter the cTnC-cTnI (C-I) interaction, which plays a crucial role in modulating contractile activation. However, little is known about the molecular-level events underlying this modulation. Here, we computationally investigated the effects of the cTnI-R145G mutation on the dynamics of cTn, cTnC Ca2+ handling, and the C-I interaction. Comparisons were made with the cTnI-R145G/S23D/S24D phosphomimic mutation, which has been used both experimentally and computationally to study the cTnI N-terminal specific effects of PKA phosphorylation. Additional comparisons between the phosphomimic mutations and the real phosphorylations were made. For this purpose, we ran triplicate 150 ns molecular dynamics simulations of cTnI-R145G Ca2+-bound cTnC1-161-cTnI1-172-cTnT236-285, cTnI-R145G/S23D/S24D Ca2+-bound cTnC1-161-cTnI1-172-cTnT236-285, and cTnI-R145G/PS23/PS24 Ca2+-bound cTnC1-161-cTnI1-172-cTnT236-285, respectively. We found that the cTnI-R145G mutation did not impact the overall dynamics of cTn, but stabilized crucial Ca2+-coordinating interactions. However, the phosphomimic mutations increased overall cTn fluctuations and destabilized Ca2+ coordination. Interestingly, cTnI-R145G blunted the intrasubunit interactions between the cTnI N-terminal extension and the cTnI inhibitory peptide, which have been suggested to play a crucial role in modulating troponin function during β-adrenergic stimulation. These findings offer a molecular-level explanation for how the HCM mutation cTnI-R145G reduces the modulation of cTn by phosphorylation of S23/S24 during β-adrenergic stimulation.  相似文献   

19.
When phosphorylated, the inhibitory subunit of troponin (TnI) causes a loss in calcium sensitivity and a decrease in actomyosin ATPase. To examine this process, we bacterially expressed wild type TnI and TnI mutants in which serine 22 and 23, a putative protein kinase A (PKA) site, and threonine 143, a putative protein kinase C (PKC) site, were replaced by alanine S22A/23A and T143A. PKA dependent phosphorylation was ~90% reduced in the S22A/23A mutant and unaffected in T143A. PKC dependent phosphorylation was markedly reduced in T143A relative both to a wild type construct and to S22A/23A, although some residual phosphorylation (likely at sites other than T143) was seen. The calcium sensitivity (i.e. inhibition of actomyosin ATPase in the presence of EGTA) and regulation of the reconstituted actomyosin system was preserved in the absence of phosphorylation using wild type TnI or either mutant. Calcium sensitivity was decreased by both PKA and PKC with the wild type TnI but was unaffected by PKA when the S22A/23A mutant was employed and by PKC when the T143A mutant was reconstituted. The calcium dependency of the ATPase curve was substantially right shifted when PKC phosphorylated wild type TnI was employed for regulation, and this was markedly attenuated when T143 A was reassociated (although a slight rightward shift and a reduction in maximal ATPase activity was still seen). These data confirm that phosphorylation of TnI by regulatory kinases plays a major role in the regulation of myofibrillar ATPase. The N-terminal serines (22 and 23) appear to be uniquely important for the PKA response whereas threonine 143 is involved in the PKC response although other residues may also have functional significance.  相似文献   

20.
In this study, we addressed the functional consequences of the human cardiac troponin I (hcTnI) hypertrophic cardiomyopathy R145G mutation in transgenic mice. Simultaneous measurements of ATPase activity and force in skinned papillary fibers from hcTnI R145G transgenic mice (Tg-R145G) versus hcTnI wild type transgenic mice (Tg-WT) showed a significant decrease in the maximal Ca(2+)-activated force without changes in the maximal ATPase activity and an increase in the Ca(2+) sensitivity of both ATPase and force development. No difference in the cross-bridge turnover rate was observed at the same level of cross-bridge attachment (activation state), showing that changes in Ca(2+) sensitivity were not due to changes in cross-bridge kinetics. Energy cost calculations demonstrated higher energy consumption in Tg-R145G fibers compared with Tg-WT fibers. The addition of 3 mm 2,3-butanedione monoxime at pCa 9.0 showed that there was approximately 2-4% of force generating cross-bridges attached in Tg-R145G fibers compared with less than 1.0% in Tg-WT fibers, suggesting that the mutation impairs the ability of the cardiac troponin complex to fully inhibit cross-bridge attachment under relaxing conditions. Prolonged force and intracellular [Ca(2+)] transients in electrically stimulated intact papillary muscles were observed in Tg-R145G compared with Tg-WT. These results suggest that the phenotype of hypertrophic cardiomyopathy is most likely caused by the compensatory mechanisms in the cardiovascular system that are activated by 1) higher energy cost in the heart resulting from a significant decrease in average force per cross-bridge, 2) slowed relaxation (diastolic dysfunction) caused by prolonged [Ca(2+)] and force transients, and 3) an inability of the cardiac TnI to completely inhibit activation in the absence of Ca(2+) in Tg-R145G mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号