首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sodium channel gating currents in frog skeletal muscle   总被引:7,自引:5,他引:2       下载免费PDF全文
Charge movements similar to those attributed to the sodium channel gating mechanism in nerve have been measured in frog skeletal muscle using the vaseline-gap voltage-clamp technique. The time course of gating currents elicited by moderate to strong depolarizations could be well fitted by the sum of two exponentials. The gating charge exhibits immobilization: at a holding potential of -90 mV the proportion of charge that returns after a depolarizing prepulse (OFF charge) decreases with the duration of the prepulse with a time course similar to inactivation of sodium currents measured in the same fiber at the same potential. OFF charge movements elicited by a return to more negative holding potentials of -120 or -150 mV show distinct fast and slow phases. At these holding potentials the total charge moved during both phases of the gating current is equal to the ON charge moved during the preceding prepulse. It is suggested that the slow component of OFF charge movement represents the slower return of charge "immobilized" during the prepulse. A slow mechanism of charge immobilization is also evident: the maximum charge moved for a strong depolarization is approximately doubled by changing the holding potential from -90 to -150 mV. Although they are larger in magnitude for a -150-mV holding potential, the gating currents elicited by steps to a given potential have similar kinetics whether the holding potential is -90 or -150 mV.  相似文献   

2.
3.
Effect of low pH on single skeletal muscle myosin mechanics and kinetics   总被引:1,自引:0,他引:1  
Acidosis (low pH) is the oldest putative agent of muscular fatigue, but the molecular mechanism underlying its depressive effect on muscular performance remains unresolved. Therefore, the effect of low pH on the molecular mechanics and kinetics of chicken skeletal muscle myosin was studied using in vitro motility (IVM) and single molecule laser trap assays. Decreasing pH from 7.4 to 6.4 at saturating ATP slowed actin filament velocity (V(actin)) in the IVM by 36%. Single molecule experiments, at 1 microM ATP, decreased the average unitary step size of myosin (d) from 10 +/- 2 nm (pH 7.4) to 2 +/- 1 nm (pH 6.4). Individual binding events at low pH were consistent with the presence of a population of both productive (average d = 10 nm) and nonproductive (average d = 0 nm) actomyosin interactions. Raising the ATP concentration from 1 microM to 1 mM at pH 6.4 restored d (9 +/- 3 nm), suggesting that the lifetime of the nonproductive interactions is solely dependent on the [ATP]. V(actin), however, was not restored by raising the [ATP] (1-10 mM) in the IVM assay, suggesting that low pH also prolongs actin strong binding (t(on)). Measurement of t(on) as a function of the [ATP] in the single molecule assay suggested that acidosis prolongs t(on) by slowing the rate of ADP release. Thus, in a detachment limited model of motility (i.e., V(actin) approximately d/t(on)), a slowed rate of ADP release and the presence of nonproductive actomyosin interactions could account for the acidosis-induced decrease in V(actin), suggesting a molecular explanation for this component of muscular fatigue.  相似文献   

4.
The effect of the plant alkaloid aconitine on sodium channel kinetics, ionic selectivity, and blockage by protons and tetrodotoxin (TTX) has been studied in frog skeletal muscle. Treatment with 0.25 or 0.3 mM aconitine alters sodium channels so that the threshold of activation is shifted 40-50 mV in the hyperpolarized direction. In contrast to previous results in frog nerve, inactivation is complete for depolarizations beyond about -60 mV. After aconitine treatment, the steady state level of inactivation is shifted approximately 20 mV in the hyperpolarizing direction. Concomitant with changes in channel kinetics, the relative permeability of the sodium channel to NH4,K, and Cs is increased. This altered selectivity is not accompanied by altered block by protons or TTX. The results suggest that sites other than those involved in channel block by protons and TTX are important in determining sodium channel selectivity.  相似文献   

5.
Insulin produces a statistically significant elevation of intracellular pH in frog sartorius muscle. Ouabain, 1 mM, does not inhibit the elevation of intracellular pH by insulin. Neither serum albumin nor growth hormone, at the same concentration as insulin, produces a significant effect upon intracellular pH.  相似文献   

6.
7.
8.
Strophanthidin-sensitive and insensitive unidirectional fluxes of Na were measured in fog sartorius muscles whose internal Na levels were elevated by overnight storage in the cold. ATP levels were lowered, and ADP levels raised, by metabolic poisoning with either 2,4-dinitrofluorobenzene or iodoacetamide. Strophanthidin-sensitive Na efflux and influx both increased after poisoning, while strophanthidin-insensitives fluxes did not. The increase in efflux did not require the presence of external K but was greatly attenuated when Li replaced Na as the major external cation. Membrane potential was not markedly altered by 2,4-dinitrofluorobenzene. These observations indicate that the sodium pump of frog skeletal muscle resembles that of squid giant axon and human erythrocyte in its ability to catalyze Na-Na exchange to an extent determined by intracellular ATP/ADP levels.  相似文献   

9.
10.
The low intracellularpH and membrane depolarization associated with repeated skeletal musclestimulation could impair the function of the transverse tubular (ttubule) voltage sensor and result in a decreased sarcoplasmic reticulumCa2+ release and muscle fatigue. We therefore examined theeffects of membrane depolarization and low intracellular pH on thet-tubular charge movement. Fibers were voltage clamped in a doubleVaseline gap, at holding potential (HP) of 90 or 60 mV, and studiedat an internal pH of 7.0 and 6.2. Decreasing intracellular pH did notsignificantly alter the maximum amount of charge moved, transition voltage, or steepness factor at either HP. Depolarizing HPsignificantly decreased steepness factor and maximum charge moved andshifted the transition voltage to more positive potentials. Elevatedextracellular Ca2+ decreased the depolarization-inducedreduction in the charge movement. These results indicate that, althoughthe decrease in intracellular pH seen in fatigued muscle does notimpair the t-tubular charge movement, the membrane depolarizationassociated with muscle fatigue may be sufficient to inactivate asignificant fraction of the t-tubular charge. However, if t-tubularCa2+ increases, some of the charge may be stabilized in theactive state and remain available to initiate sarcoplasmic reticulum Ca2+ release.

  相似文献   

11.
12.
13.
14.
15.
16.
When a frog's sartorius is immersed in sodium-free lithium-substituted solution at 0 degree C, the tissue sodium content declines in two distinct phases. The rate of the slow phase has a temperature dependence expected for a process dependent on metabolism (Q10, ca. 3), and sodium content (51.5 mmol/kg dry weight) equal to that measured by others using electron microprobe microanalysis. The rate of the rapid phase has a temperature dependence (Q10, 0.3-1) expected for a passive process, and a sodium content equal to that in the sorbitol space. It was concluded that incubation of a muscle at 0 degree C for 45 min in sodium-free solution will wash out almost all of the sodium in the extracellular space but will leave almost all the sodium in the intracellular space. The unidirectional sodium influx was measured by incubating a muscle in 22Na-containing Ringer's solution for a timed interval at 23 degrees C, then in sodium-free lithium-substituted solution at 0 degree C for 45 min, before analysis for ion content and radioactivity. The ratio of the specific activity of sodium in the muscle to that in the radioactive bathing solution was calculated, and the time course of its rise was used to calculate an influx rate coefficient. The use of the specific activity minimizes the error due to the loss of intracellular sodium and radiosodium which occurs during the wash in cold solution. It was found that the rate of the radiosodium uptake varied as the uptake proceeded, in a manner similar to that previously shown for the rate of the radiosodium efflux and attributed to the existence of a diversity of cell size in this muscle.  相似文献   

17.
The ionic selectivity of the Na channel to a variety of metal and organic cations is studied in frog semitendinosus muscle. Na channel currents are measured under voltage clamp conditions in fibers bathed in solutions with all Na+ replaced by a test ion. Permeability ratios are calculated from measured reversal potentials using the Goldman-Hodgkin-Katz equation. The permeability sequence was Na+ approximately Li+ approximately hydroxylammonium greater than hydrazinium greater than ammonium greater than guanidinium greater than K+ greater than aminoguanidinium in the ratios 1:0.96:0.94:0.31:0.11:0.093:0.048:0.031. No inward currents were observed for Ca++, methylammonium, methylguanidinium, tetraethylammonium, and tetramethylammonium. The results are consistent with the Hille model of the Na channel selectivity filter of the node of Ranvier and suggest that the selectivity filter of the two channels is the same.  相似文献   

18.
The effect of Bistramide A, a toxin isolated from Bistratum lissoclinum Sluiter (Urochordata), on the peak sodium current (INa) of frog skeletal muscle fibres was studied with the double sucrose gap voltage clamp technique. External or internal application of Bistramide A inhibited INa without alteration of the kinetic parameters of the current nor of the apparent reversal potential for Na. The steady-state activation curve of INa was unchanged while the steady-state inactivation curve of INa was shifted towards more negative membrane potentials. Dose-response curves indicated an apparent dissociation constant for Bistramide A of 3.3 microM and a Hill coefficient of 1.2 which suggested a one to one relation between the toxin and Na channel. The inhibition of INa occurred at rest, and was more important at more positive holding potentials. Bistramide A exhibited only a weak frequency-dependent effect. The toxin did not interact with the use-dependent effect of lidocaine. It mainly blocked Na channels at more depolarized holding potentials. The toxin blocked Na channels when it was internally applyed and when the inactivation gating system has been previously destroyed by internal diffusion of iodate. The data suggest that Bistramide A inhibited the Na channel both at rest and in the inactivated state and occupied a site which was not located on the inactivation gate.  相似文献   

19.
A means of measuring pH spectrophotometrically with two pH-sensitive indicators, neutral red (NR) and bromcresol purple (BCP), is presented. Theoretical calculations and experimental measurements of pH in solution correspond in a satisfactory manner for both dyes. Spectrophotometric determinations of pH were made of dye-equilibrated frog sartorius muscles. A more accurate indication of shifting intracellular pH (pHi) was obtained with NR than with BCP, since only the spectra of NR-equilibrated muscles were insensitive to changes in external pH over the range 7.0–6.0. Muscles were stimulated in oxygenated Ringer's and the latent phase of acidification correlated with lactic acid production by analysis of tissue frozen after spectral determination of ΔpHi. Buffering capacities were calculated to be 0.041 to 0.048 g equiv per liter of strong acid or base per resultant ΔpH for a pHi range covering 0.25 unit.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号