首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Sodium channel gating currents in frog skeletal muscle   总被引:2,自引:5,他引:2       下载免费PDF全文
Charge movements similar to those attributed to the sodium channel gating mechanism in nerve have been measured in frog skeletal muscle using the vaseline-gap voltage-clamp technique. The time course of gating currents elicited by moderate to strong depolarizations could be well fitted by the sum of two exponentials. The gating charge exhibits immobilization: at a holding potential of -90 mV the proportion of charge that returns after a depolarizing prepulse (OFF charge) decreases with the duration of the prepulse with a time course similar to inactivation of sodium currents measured in the same fiber at the same potential. OFF charge movements elicited by a return to more negative holding potentials of -120 or -150 mV show distinct fast and slow phases. At these holding potentials the total charge moved during both phases of the gating current is equal to the ON charge moved during the preceding prepulse. It is suggested that the slow component of OFF charge movement represents the slower return of charge "immobilized" during the prepulse. A slow mechanism of charge immobilization is also evident: the maximum charge moved for a strong depolarization is approximately doubled by changing the holding potential from -90 to -150 mV. Although they are larger in magnitude for a -150-mV holding potential, the gating currents elicited by steps to a given potential have similar kinetics whether the holding potential is -90 or -150 mV.  相似文献   

2.
3.
The effect of the plant alkaloid aconitine on sodium channel kinetics, ionic selectivity, and blockage by protons and tetrodotoxin (TTX) has been studied in frog skeletal muscle. Treatment with 0.25 or 0.3 mM aconitine alters sodium channels so that the threshold of activation is shifted 40-50 mV in the hyperpolarized direction. In contrast to previous results in frog nerve, inactivation is complete for depolarizations beyond about -60 mV. After aconitine treatment, the steady state level of inactivation is shifted approximately 20 mV in the hyperpolarizing direction. Concomitant with changes in channel kinetics, the relative permeability of the sodium channel to NH4,K, and Cs is increased. This altered selectivity is not accompanied by altered block by protons or TTX. The results suggest that sites other than those involved in channel block by protons and TTX are important in determining sodium channel selectivity.  相似文献   

4.
Insulin produces a statistically significant elevation of intracellular pH in frog sartorius muscle. Ouabain, 1 mM, does not inhibit the elevation of intracellular pH by insulin. Neither serum albumin nor growth hormone, at the same concentration as insulin, produces a significant effect upon intracellular pH.  相似文献   

5.
Strophanthidin-sensitive and insensitive unidirectional fluxes of Na were measured in fog sartorius muscles whose internal Na levels were elevated by overnight storage in the cold. ATP levels were lowered, and ADP levels raised, by metabolic poisoning with either 2,4-dinitrofluorobenzene or iodoacetamide. Strophanthidin-sensitive Na efflux and influx both increased after poisoning, while strophanthidin-insensitives fluxes did not. The increase in efflux did not require the presence of external K but was greatly attenuated when Li replaced Na as the major external cation. Membrane potential was not markedly altered by 2,4-dinitrofluorobenzene. These observations indicate that the sodium pump of frog skeletal muscle resembles that of squid giant axon and human erythrocyte in its ability to catalyze Na-Na exchange to an extent determined by intracellular ATP/ADP levels.  相似文献   

6.
7.
8.
9.
When a frog's sartorius is immersed in sodium-free lithium-substituted solution at 0 degree C, the tissue sodium content declines in two distinct phases. The rate of the slow phase has a temperature dependence expected for a process dependent on metabolism (Q10, ca. 3), and sodium content (51.5 mmol/kg dry weight) equal to that measured by others using electron microprobe microanalysis. The rate of the rapid phase has a temperature dependence (Q10, 0.3-1) expected for a passive process, and a sodium content equal to that in the sorbitol space. It was concluded that incubation of a muscle at 0 degree C for 45 min in sodium-free solution will wash out almost all of the sodium in the extracellular space but will leave almost all the sodium in the intracellular space. The unidirectional sodium influx was measured by incubating a muscle in 22Na-containing Ringer's solution for a timed interval at 23 degrees C, then in sodium-free lithium-substituted solution at 0 degree C for 45 min, before analysis for ion content and radioactivity. The ratio of the specific activity of sodium in the muscle to that in the radioactive bathing solution was calculated, and the time course of its rise was used to calculate an influx rate coefficient. The use of the specific activity minimizes the error due to the loss of intracellular sodium and radiosodium which occurs during the wash in cold solution. It was found that the rate of the radiosodium uptake varied as the uptake proceeded, in a manner similar to that previously shown for the rate of the radiosodium efflux and attributed to the existence of a diversity of cell size in this muscle.  相似文献   

10.
The ionic selectivity of the Na channel to a variety of metal and organic cations is studied in frog semitendinosus muscle. Na channel currents are measured under voltage clamp conditions in fibers bathed in solutions with all Na+ replaced by a test ion. Permeability ratios are calculated from measured reversal potentials using the Goldman-Hodgkin-Katz equation. The permeability sequence was Na+ approximately Li+ approximately hydroxylammonium greater than hydrazinium greater than ammonium greater than guanidinium greater than K+ greater than aminoguanidinium in the ratios 1:0.96:0.94:0.31:0.11:0.093:0.048:0.031. No inward currents were observed for Ca++, methylammonium, methylguanidinium, tetraethylammonium, and tetramethylammonium. The results are consistent with the Hille model of the Na channel selectivity filter of the node of Ranvier and suggest that the selectivity filter of the two channels is the same.  相似文献   

11.
The effect of Bistramide A, a toxin isolated from Bistratum lissoclinum Sluiter (Urochordata), on the peak sodium current (INa) of frog skeletal muscle fibres was studied with the double sucrose gap voltage clamp technique. External or internal application of Bistramide A inhibited INa without alteration of the kinetic parameters of the current nor of the apparent reversal potential for Na. The steady-state activation curve of INa was unchanged while the steady-state inactivation curve of INa was shifted towards more negative membrane potentials. Dose-response curves indicated an apparent dissociation constant for Bistramide A of 3.3 microM and a Hill coefficient of 1.2 which suggested a one to one relation between the toxin and Na channel. The inhibition of INa occurred at rest, and was more important at more positive holding potentials. Bistramide A exhibited only a weak frequency-dependent effect. The toxin did not interact with the use-dependent effect of lidocaine. It mainly blocked Na channels at more depolarized holding potentials. The toxin blocked Na channels when it was internally applyed and when the inactivation gating system has been previously destroyed by internal diffusion of iodate. The data suggest that Bistramide A inhibited the Na channel both at rest and in the inactivated state and occupied a site which was not located on the inactivation gate.  相似文献   

12.
A means of measuring pH spectrophotometrically with two pH-sensitive indicators, neutral red (NR) and bromcresol purple (BCP), is presented. Theoretical calculations and experimental measurements of pH in solution correspond in a satisfactory manner for both dyes. Spectrophotometric determinations of pH were made of dye-equilibrated frog sartorius muscles. A more accurate indication of shifting intracellular pH (pHi) was obtained with NR than with BCP, since only the spectra of NR-equilibrated muscles were insensitive to changes in external pH over the range 7.0–6.0. Muscles were stimulated in oxygenated Ringer's and the latent phase of acidification correlated with lactic acid production by analysis of tissue frozen after spectral determination of ΔpHi. Buffering capacities were calculated to be 0.041 to 0.048 g equiv per liter of strong acid or base per resultant ΔpH for a pHi range covering 0.25 unit.  相似文献   

13.
The alpha subunit of the human skeletal muscle Na(+) channel recorded from cell-attached patches yielded, as expected for Xenopus oocytes, two current components that were stable for tens of minutes during 0.2 Hz stimulation. Within seconds of applying sustained stretch, however, the slower component began decreasing and, depending on stretch intensity, disappeared in 1-3 min. Simultaneously, the faster current increased. The resulting fast current kinetics and voltage sensitivity were indistinguishable from the fast components 1) left after 10 Hz depolarizations, and 2) that dominated when alpha subunit was co-expressed with human beta1 subunit. Although high frequency depolarization-induced loss of slow current was reversible, the stretch-induced slow-to-fast conversion was irreversible. The conclusion that stretch converted a single population of alpha subunits from an abnormal slow to a bona fide fast gating mode was confirmed by using gigaohm seals formed without suction, in which fast gating was originally absent. For brain Na(+) channels, co-expressing G proteins with the channel alpha subunit yields slow gating. Because both stretch and beta1 subunits induced the fast gating mode, perhaps they do so by minimizing alpha subunit interactions with G proteins or with other regulatory molecules available in oocyte membrane. Because of the possible involvement of oocyte molecules, it remains to be determined whether the Na(+) channel alpha subunit was directly or secondarily susceptible to bilayer tension.  相似文献   

14.
15.
J B Patlak  M Ortiz    R Horn 《Biophysical journal》1986,49(3):773-777
Single voltage-activated Na+ channel currents were obtained from membrane patches on internally dialyzed skeletal muscle segments of adult frogs. The high channel density in these membranes permitted frequent observation of the "bursting mode" of individual Na+ channels during 400-ms records. We examined the opentimes within and between bursts on individual membrane patches. We used a new nonparametric statistical procedure to test for heterogeneity in the opentime distributions. We found that although 80% of all bursts consisted of opentimes drawn from a single distribution, the opentime distribution varied significantly from burst to burst. Significant heterogeneity was also detected within the remaining 20% of individual bursts. Our results indicate that the gating kinetics of individual Na+ channels are heterogeneous, and that they may occasionally change in a single channel.  相似文献   

16.
17.
18.
19.
20.
The effects of phlorizin (2 X 10(-3) mol X l-1) on the Na transport of frog (Rana esculenta) sartorius muscle were investigated in glucose-free medium. Phlorizin decreased the rate coefficient of 24Na efflux by about 40%. The degree of inhibition was comparable to that caused by ouabain (10(-4) mol X l-1). Phlorizin could evoke a further reduction in the 24Na efflux also in the presence of ouabain. The intracellular Na content of the phlorizin-treated muscles remained unchanged, in contrast to a 60% increase induced by ouabain. 42K uptake was not affected by phlorizin. Data indicate that the ouabain-sensitive Na-K pump was not involved in the action of phlorizin. At the same time, phlorizin failed to alter the residual 24Na efflux measured in Li-Ringer solution containing ouabain. When Na: Na exchange was restored by replacing Na into the washout solution in the presence of ouabain, the increase of 24Na efflux was significantly diminished by phlorizin. Phlorizin reduced the 24Na uptake into a compartment with a half time of 6 min by about 40% without affecting the intracellular compartment. The results suggest that phlorizin inhibits the ouabain-insensitive Na: Na exchange in a superficial Na compartment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号