首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structure-based elucidation of 2,4,6-tri-substituted phenols for their antioxidative and anti-peroxidative effects has been investigated using TX-1952 (2,6-diprenyl-4-iodophenol), TX-1961, TX-1980, BTBP and BHT. In the inhibition of mitochondrial lipid peroxidation, the inhibitory activity of 2,6-di-tert-butyl-4-bromophenol (BTBP) (IC(50)=0.17 microM) was twice as high as that of 2,6-di-tert-butyl-4-methylphenol (BHT) (IC(50)=0.31 microM). This result shows that the 4-halogen group increases inhibitory activity for mitochondrial lipid peroxidation. Besides, TX-1952 (IC(50)=0.60 microM) was the highest inhibitor among 2,6-diprenyl-4-halophenols, followed by TX-1961 (IC(50)=0.93 microM) and TX-1980 (IC(50)=1.2 microM). In 1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging experiments, the activity of TX-1952 (IC(0.200)=53.1 microM) was lower than that of BHT (IC(0.200)=33.7 microM) and BTBP (IC(0.200)=16.0 microM), but TX-1952 and BHT showed the same HOMO energy (-8.991 eV). These results suggest that the two prenyl groups at ortho position hinder the phenolic hydrogen abstraction by DPPH radical. These findings demonstrated that TX-1952 was a novel and potent inhibitor for lipid peroxidation.  相似文献   

2.
We have recently reported the discovery of orally active sulfonylalkylamide Factor Xa (FXa) inhibitors, as typified by compound 1 (FXa IC(50)=0.061 microM). Since the pyridylpiperidine moiety was not investigated in our previous study, we conducted detailed structure-activity relationship studies on this S4 binding element. This investigation led to the discovery of piperazinylimidazo[1,2-a]pyridine 2b as a novel and potent FXa inhibitor (FXa IC(50)=0.021 microM). Further modification resulted in the discovery of 2-hydroxymethylimidazo[1,2-a]pyridine 2e (FXa IC(50)=0.0090 microM), which was found to be a selective and orally bioavailable FXa inhibitor with reduced CYP3A4 inhibition.  相似文献   

3.
Some novel 1-methyl-4-(2-(2-substitutedphenyl-1H-benzimidazol-1-yl)acetyl)thiosemicarbazides (16a-20a), 5-[(2-(substitutedphenyl)-1H-benzimidazol-1-yl)methyl]-N-methyl-1,3,4-thiadiazol-2-amines (17b-20b), and 5-[(2-(substitutedphenyl)-1H-benzimidazol-1-yl)methyl-4-methyl-2H-1,2,4-triazole-3(4H)-thiones (16c-20c) were synthesized and tested for antioxidant properties by using various in vitro systems. Compounds 16a-20a were found to be a good scavenger of DPPH radical (IC(50), 26 microM; IC(50), 30 microM; IC(50), 43 microM; IC(50), 55 microM; IC(50), 74 microM, respectively) when compared to BHT (IC(50), 54 microM). Noteworthy results could not be found on superoxide radical. Compound 19b, which is the most active derivative inhibited slightly lipid peroxidation (28%) at 10(-3)M concentration. Compound 17c inhibited the microsomal ethoxyresorufin O-deethylase (EROD) activity with an IC(50)=4.5 x 10(-4)M which is similarly better than the specific inhibitor caffeine IC(50)=5.2 x 10(-4)M.  相似文献   

4.
N-Acetyl-2-carboxybenzenesulfonamide (11), and a group of analogues possessing an appropriately substituted-phenyl substituent (4-F, 2,4-F(2), 4-SO(2)Me, 4-OCHMe(2)) attached to its C-4, or C-5 position, were synthesized for evaluation as selective cyclooxygenase-2 (COX-2) inhibitors. In vitro COX-1/COX-2 inhibition studies showed that 11 is a more potent inhibitor (COX-1 IC(50)=0.06microM; COX-2 IC(50)=0.25microM) than aspirin (COX-1 IC(50)=0.35microM; COX-2 IC(50)=2.4microM), and like aspirin [COX-2 selectivity index (S.I.)=0.14], 11 is a nonselective COX-2 inhibitor (COX-2 S.I.=0.23). Regioisomers having a 2,4-difluorophenyl substituent attached to the C-4 (COX-2 IC(50)=0.087microM; COX-2 S.I. >1149), or C-5 (COX-2 IC(50)=0.77microM, SI>130), position of 11 exhibited the most potent and selective COX-2 inhibitory activity relative to the reference drug celecoxib (COX-1 IC(50)=33.1microM; COX-2 IC(50)=0.07microM; COX-2 S.I.=472). N-Acetyl-2-carboxybenzenesulfonamide (11, ED(50)=49 mg/kg), and its C-4 2,4-difluorophenyl derivative (ED(50)=91 mg/kg), exhibited superior antiinflammatory activity (oral dosing) in a carrageenan-induced rat paw edema assay compared to aspirin (ED(50)=129 mg/kg). These latter compounds exhibited comparable analgesic activity to the reference drug diflunisal, and superior analgesic activity compared to aspirin, in a 4% NaCl-induced abdominal constriction assay. A molecular modeling (docking) study indicated that the SO(2)NHCOCH(3) substituent present in N-acetyl-2-carboxy-4-(2,4-fluorophenyl)benzenesulfonamide, like the acetoxy substituent in aspirin, is suitably positioned to acetylate the Ser(530) hydroxyl group in the COX-2 primary binding site. The results of this study indicate that the SO(2)NHCOCH(3) pharmacophore present in N-acetyl-2-carboxybenzenesulfonamides is a suitable bioisostere for the acetoxy (OCOMe) group in aspirin.  相似文献   

5.
Norcantharidin (3) is a potent PP1 (IC(50)=9.0+/-1.4 microM) and PP2A (IC(50)=3.0+/-0.4 microM) inhibitor with 3-fold PP2A selectivity and induces growth inhibition (GI(50) approximately 45 microM) across a range of human cancer cell lines including those of colorectal (HT29, SW480), breast (MCF-7), ovarian (A2780), lung (H460), skin (A431), prostate (DU145), neuroblastoma (BE2-C), and glioblastoma (SJ-G2) origin. Until now limited modifications to the parent compound have been tolerated. Surprisingly, simple heterocyclic half-acid norcantharidin analogues are more active than the original lead compound, with the morphilino-substituted (9) being a more potent (IC(50)=2.8+/-0.10 microM) and selective (4.6-fold) PP2A inhibitor with greater in vitro cytotoxicity (GI(50) approximately 9.6 microM) relative to norcantharidin. The analogous thiomorpholine-substituted (10) displays increased PP1 inhibition (IC(50)=3.2+/-0 microM) and reduced PP2A inhibition (IC(50)=5.1+/-0.41 microM), to norcantharidin. Synthesis of the analogous cantharidin analogue (19) with incorporation of the amine nitrogen into the heterocycle further increases PP1 (IC(50)=5.9+/-2.2 microM) and PP2A (IC(50)=0.79+/-0.1 microM) inhibition and cell cytotoxicity (GI(50) approximately 3.3 microM). These analogues represent the most potent cantharidin analogues thus reported.  相似文献   

6.
1,1-bis(4-Hydroxyphenyl)-2-phenylpent-1-ene (5) and 1,1,2-tris(4-hydroxyphenyl)pent-1-ene (6) derivatives with terminal CN (5a, 6a), NH(2) (5b, 6b), NHCOCH(3) (5c, 6c), NHCOC(2)H(5) (5d, 6d) groups at the C2-propyl chain were synthesized and assayed in vitro for estrogen receptor (ER) binding affinity (RBA) in a competition experiment with [3H]estradiol and for estrogenic and anti-estrogenic properties in a luciferase assay with ER-positive MCF-7-2a cells, stably transfected with the plasmid ERE(wtc)luc. The CN as well as the NH(2) group reduced the RBA-values (5: 2.09%; 5a: 1.50%; 5b: 0.07%; 6: 4.03%; 6a: 0.67%; 6b: 0.20%) and the antagonistic potency (5: IC(50)=0.05 microM; 5a: IC(50)=0.43 microM; 5b: IC(50)=1.50 microM; 6: IC(50)=0.07 microM; 6a: IC(50)=0.60 microM; 6b: IC(50)=2.00 microM). Derivatization of the amino function with acetic anhydride and propionic anhydride did not change the RBA-value but altered the antagonistic profile (5c: IC(50)=2.50 microM; 5d: IC(50)=not detectable; 6c: IC(50)=0.65 microM; 6d: IC(50)=1.00 microM). Agonistic effects were only detected for the amine 6b (34.2% activation of the luciferase expression). These data document that estrogen receptor binding and the antagonistic effects can be modified by terminal groups at the C2-propyl chain of the pure antagonists 5 and 6. The mode of action is unclear. However, it can be assumed that the elongation of the side chain causes a reorientation in the LBD in order to locate the side chain in a side pocket near the ligand binding domain.  相似文献   

7.
In this study, we synthesized a series of hydroxychalcones and examined their tyrosinase inhibitory activity. The results showed that 2',4',6'-trihydroxychalcone (1), 2,2',3,4',6'-pentahydroxychalcone (4), 2',3,4,4',5,6'-hexahydroxychalcone (5), 2',4',6'-trihydroxy- 3,4-dimethoxychalcone (9) and 2,2',4,4',6'-pentahydroxychalcone (15) exhibited high inhibitory effects on tyrosinase with respect to l-tyrosine as a substrate. By the structure-activity relationship study, it was suggested that the 2',4',6'-trihydroxyl substructure in the chalcone skeleton were efficacious for the inhibition of tyrosinase activity. And also, the catechol structure on B-ring of chalcones was not advantageous for the inhibitory potency. Furthermore, 15 (IC(50)=1microM) was found to show the highest activity out of a set of 15 hydroxychalcones, even better than both 2,2',4,4'-tetrahydroxychalcone (13, IC(50)=5microM) and kojic acid (16, IC(50)=12microM), which were known as potent tyrosinase inhibitors. Kinetic study revealed that 15 acts as a competitive inhibitor of tyrosinase with K(i) value of 3.1microM.  相似文献   

8.
A series of 4-(6-(3-nitroguanidino)hexanamido)pyrrolidine derivatives were synthesized and evaluated for their abilities to inhibit inducible nitric oxide synthase (iNOS) isoform. All target compounds were prepared in 11 steps from commercially trans-4-hydroxy-L-proline. The preliminary pharmacological test showed that three compounds, 17, 21, and 30, have the good potency (IC(50)=2.36, 2.68, 2.5 microM, respectively) which are compared to the NOS inhibitor N(G)-nitroarginine(L-NNA) (IC(50)=14.74 microM), and could be used as lead compounds for exploring new iNOS inhibitors in the future.  相似文献   

9.
Linoleic acid was isolated from both the methanol extracts of proso and Japanese millet as a histone deacetylase inhibitor. It showed uncompetitive inhibitory activity toward histone deacetylase (IC(50)=0.51 mM) and potent cytotoxicity toward human leukemia K562 (IC(50)=68 microM) and prostate cancer LNCaP cells (IC(50)=193 microM). Millet containing linoleic acid might have anti-tumor activity.  相似文献   

10.
Polychlorobiphenylols (OH-PCBs) were reported as potent inhibitors of estrogen sulfotransferase, thyroid hormone and 3-hydroxybenzo(a)pyrene sulfotransferases. The aim of this study was to examine the effects of selected OH-PCBs on SULT1A1 activity in human liver cytosol, measured with 4microM 4-nitrophenol, a concentration considered to be diagnostic for selectively detecting SULT1A1. All the OH-PCBs studied inhibited the sulfonation of 4-nitrophenol in human liver cytosol. Among the eighteen OH-PCBs studied, 3'-OH-CB3 (4-chlorobiphenyl-3'-ol) was the most potent inhibitor (IC(50): 0.73+/-0.15microM, mean+/-S.D., n=3). The least potent inhibitor studied was 6'-OH-CB35 (3,3',4-trichlorobiphenyl-6'-ol) with IC(50): 49.1+/-10.8microM. The IC(50) values of the other OH-PCBs studied ranged from 0.78 to 3.76microM. Some OH-PCBs with various inhibitory potencies with human liver cytosol were selected for study with recombinant human SULT1A1 and SULT1B1. These OH-PCBs showed more potent inhibition of 4-nitrophenol sulfonation with SULT1A1 than with human liver cytosol. The IC(50) values with human liver cytosol showed a perfect linear correlation with those found with SULT1A1 (r(2)=1), but not with SULT1B1 (r(2)=0.21). The results suggested that in these human samples SULT1A1 was predominantly responsible for the sulfonation of 4-nitrophenol, with very little or no contribution from SULT1B1. The kinetics of inhibition were studied with 4'-OH-CB165, which is similar in structure to OH-PCBs found in human blood. The 4'-OH-CB165 was a mixed noncompetitive-uncompetitive inhibitor (K(i)=1.80+/-0.2microM, K(ies)=0.16+/-0.02microM). Finally, it was demonstrated that the tested OH-PCBs were themselves only slowly sulfonated by human sulfotransferases in the presence of (35)S-PAPS, as measured by the production of (35)S-labeled metabolites. Although this series of 18 OH-PCBs was too small to draw conclusions about structure-potency relationships, this work demonstrated that several OH-PCBs were potent inhibitors of 4-nitrophenol sulfonation but poor substrates in human liver cytosol, and suggested that OH-PCBs may inhibit the sulfation rate of those xenobiotics sulfated by SULT1A1.  相似文献   

11.
The discovery, synthesis and in vitro activity of a novel series of rhodanine based phosphodiesterase-4 (PDE4) inhibitors is described. Structure-activity relationship studies directed toward improving potency led to the development of submicromolar inhibitors 2n and 3i (IC(50)=0.89 & 0.74 microM). The replacement of rhodanine with structurally related heterocycles was also investigated and led to the synthesis of pseudothiohydantoin 7 (IC(50)=0.31 microM).  相似文献   

12.
Simple modifications to the anhydride moiety of norcantharidin have lead to the development of a series of analogues displaying modest PP1 inhibition (low muM IC(50)s) comparable to that of norcantharidin (PP1 IC(50)=10.3+/-1.37 microM). However, unlike norcantharidin, which is a potent inhibitor of PP2A (IC(50)=2.69+/-1.37 microM), these analogues show reduced PP2A inhibitory action resulting in the development of selective PP1 inhibitory compounds. Data indicates that the introduction of two ortho-disposed substituents on an aromatic ring, or para-substituent favours PP1 inhibition over PP2A inhibition. Introduction of a p-morphilinoaniline substituent, 35, affords an inhibitor displaying PP1 IC(50)=6.5+/-2.3 microM; and PP2A IC(50)=7.9+/-0.82 microM (PP1/PP2A=0.82); and a 2,4,6-trimethylaniline, 23, displaying PP1 IC(50)=48+/-9; and PP2A IC(5) 85+/-3 microM (PP1/PP2A=0.56). The latter shows a 7-fold improvement in PP1 versus PP2A selectivity when compared with norcantharidin. Subsequent analysis of 23 and 35 as potential PP2B inhibitors revealed modest inhibition with IC(50)s of 89+/-6 and 42+/-3 microM, respectively, and returned with PP1/PP2B selectivities of 0.54 and 0.15. Thus, these analogues are the simplest and most selective PP1 inhibitors retaining potency reported to date.  相似文献   

13.
Investigations determined that the cell matrix-associated prekallikrein (PK) activator is prolylcarboxypeptidase. PK activation on human umbilical vein endothelial cell (HUVEC) matrix is inhibited by antipain (IC(50)=50 microM) but not anti-factor XIIa antibody, 3 mM benzamidine, 5 mM iodoacetic acid or iodoacetamide, or 3 mM N-ethylmaleimide. Corn trypsin inhibitor (IC(50)=100 nM) or Fmoc-aminoacylpyrrolidine-2-nitrile (IC(50)=100 microM) blocks matrix-associated PK activation. Angiotensin II (IC(50)=100 microM) or bradykinin (IC(50)=3 mM), but not angiotensin 1-7 or bradykinin 1-5, inhibits matrix-associated PK activation. ECV304 cell matrix PK activator also is blocked by 100 microM angiotensin II, 1 microM corn trypsin inhibitor, and 50 microM antipain, but not angiotensin 1-7. 1 mM angiotensin II or 300 microM Fmoc-aminoacylpyrrolidine-2-nitrile indirectly blocks plasminogen activation by inhibiting kallikrein formation for single chain urokinase activation. On immunoblot, prolylcarboxypeptidase antigen is associated with HUVEC matrix. These studies indicate that prolylcarboxypeptidase is the matrix PK activator.  相似文献   

14.
Plasmodium falciparum thioredoxin reductase (PfTrxR: NADPH+Trx(S)2+H+<-->NADP++Trx(SH)2) is a high Mr flavin-dependent TrxR that reduces thioredoxin (Trx) via a CysXXXXCys pair located penultimately to the C-terminal Gly. In this respect, PfTrxR differs significantly from its human counterpart which bears a Cys-Sec redox pair at the same position. PfTrxR is essentially involved in antioxidant defense and redox regulation of the parasite and has been previously validated by knock-out studies as a potential drug target for malaria chemotherapy. Moreover, human TrxR is present in most cancer cells at levels tenfold higher than in normal cells. Here we report the discovery of a series of potent inhibitors of PfTrxR. The three most promising inhibitors, 3(IC50(PfTrxR)=2 microM and IC50(hTrxR)=50 microM), 7(IC50(PfTrxR)=2 microM and IC50(hTrxR)=140 microM), and 11(IC50(PfTrxR)=0.5 microM and IC50(hTrxR)=4 microM) were selective for the parasite enzyme. Detailed mechanistic characterization of the effects of these compounds on the PfTrxR-catalyzed reaction showed clear uncompetitive inhibition with respect to both substrate and cofactor. For the most specific PfTrxR inhibitor 7, an alkylation mechanism study based on a thiol conjugation model was performed. Furthermore, all three compounds were active in the lower micromolar range on the chloroquine-resistant P. falciparum strain K1 in vitro.  相似文献   

15.
Pyridine and benzene bioisosteres of amiloride were synthesized and evaluated for their inhibitory potency against the sodium-hydrogen exchanger (NHE) involved in intracellular pH regulation. The inhibition of NHE was determined by using the platelet swelling assay (PSA) in which the swelling of human platelets was induced by their incubation in an acid buffer (pH 6.7). Additionally, the inhibitory potency of the most active compounds was assessed by measuring the inhibition of the EIPA-sensitive (22)Na(+) uptake (UIA) by human platelets after intracellular acidosis. The results indicated that several benzene derivatives and compounds bearing an carbonylguanidine moiety in the meta position of the pyridine nitrogen were much more potent than amiloride (PSA:IC(50)=43.5 microM; UIA:IC(50)=100.1 microM), but less than EIPA, a pyrazine NHE inhibitor (PSA:IC(50)=0.08 microM; UIA:IC(50)=0.5 microM). In both biological assays (2-amino-5-bromo-pyridine-3-carbonyl)guanidine (32) was the most active molecule (PSA: IC(50)=0.8 microM, UIA : IC(50)=0.8 microM). Our investigations demonstrated that the replacement of the pyrazine ring of amiloride by a pyridine or a phenyl ring improved the NHE inhibitory potency (phenyl >pyridine >pyrazine).  相似文献   

16.
This study examined the cytochrome P450 (CYP) enzyme selectivity of in vitro bioactivation of lynestrenol to norethindrone and the further metabolism of norethindrone. Screening with well-established chemical inhibitors showed that the formation of norethindrone was potently inhibited by CYP3A4 inhibitor ketoconazole (IC(50)=0.02 microM) and with CYP2C9 inhibitor sulphaphenazole (IC(50)=2.13 microM); the further biotransformation of norethindrone was strongly inhibited by ketoconazole (IC(50)=0.09 microM). Fluconazole modestly inhibited both lynestrenol bioactivation and norethindrone biotransformation. Lynestrenol bioactivation was mainly catalysed by recombinant human CYP2C9, CYP2C19 and CYP3A4; rCYP3A4 was responsible for the hydroxylation of norethindrone. A significant correlation was observed between norethindrone formation and tolbutamide hydroxylation, a CYP2C9-selective activity (r=0.63; p=0.01). Norethindrone hydroxylation correlated significantly with model reactions of CYP2C19 and CYP3A4. The greatest immunoinhibition of lynestrenol bioactivation was seen in incubations with CYP2C-Ab. The CYP3A4-Ab reduced norethindrone hydroxylation by 96%. Both lynestrenol and norethindrone were weak inhibitors of CYP2C9 (IC(50) of 32 microM and 46 microM for tolbutamide hydroxylation, respectively). In conclusion, CYP2C9, CYP2C19 and CYP3A4 are the primary cytochromes in the bioactivation of lynestrenol in vitro, while CYP3A4 catalyses the further metabolism of norethindrone.  相似文献   

17.
The present study investigated active tone development in isolated ring segments of rabbit epicardial coronary artery. Endothelium-denuded (E-) or endothelium-intact (E+) vessels treated with the NO synthase inhibitor N(omega)-nitro-L-arginine (100 microM) developed active tone, which was enhanced by stretch and reversed by the NO donor sodium nitroprusside (SNP; IC(50)=9 nM). Nifedipine abolished active tone and the contractile response to phorbol dibutyrate (PDBu; 10 nM) with the same potency (IC(50)=8 nM), whereas 300 nM PDBu responses were only partially blocked by nifedipine. The classical and novel PKC inhibitors GF-109203X (IC(50)=1-2 microM) and chelerythrine (IC(50)=4-5 microM) and the classical PKC inhibitor G?-6976 (IC(50)=0.3-0.4 microM) blocked both active tone and 10 nM PDBu responses with similar potency. Active tone development was associated with depolarization of membrane potential (E(m)) and a shift to the left of the E(m)-vs.-contraction relationship determined by varying extracellular potassium. The depolarization and leftward shift were reversed by either chelerythrine (10 microM) or SNP (30 nM). PDBu (100-300 nM) increased peak L-type calcium channel (Ca(v)) currents in isolated coronary myocytes, and this effect was reversed by chelerythrine (1 microM) or G?-6976 (200 nM). SNP (500 nM) reduced Ca(v) currents only in the presence of the PKA blocker 8-bromo-2'-O-monobutyryl-cAMPS, Rp isomer (10 microM). In conclusion, active tone development in coronary artery is suppressed by basal NO release and is dependent on both enhanced Ca(v) activity and classical PKC activity. Both E(m)-dependent and -independent processes contribute to contraction. Our results suggest that one E(m)-independent process is direct enhancement of Ca(v) current by PKC.  相似文献   

18.
In order to identify new subtype-selective (S)-glutamate (Glu) receptor ligands we have synthesized (RS)-2-amino-3-(3-hydroxy-1,2,5-thiadiazol-4-yl)propionic acid [(RS)-TDPA]. Resolution of (RS)-TDPA by chiral chromatography was performed using a Crownpac CR(+) column affording (R)- and (S)-TDPA of high enantiomeric purity (enantiomeric excess=99.9%). An X-ray crystallographic analysis revealed that the early eluting enantiomer has R-configuration. Both enantiomers showed high affinity as well as high agonist activity at (RS)-2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propionic acid (AMPA) receptors, determined using a [(3)H]AMPA binding assay and an electrophysiological model, respectively. The affinities and agonist activities obtained for (R)-TDPA (IC(50)=0.265 microM and EC(50)=6.6 microM, respectively) and (S)-TDPA (IC(50)=0.065 microM and EC(50)=20 microM, respectively) revealed a remarkably low AMPA receptor stereoselectivity, (S)-TDPA showing the highest affinity and (R)-TDPA the most potent agonist activity. In addition, (S)-TDPA was shown to interact with synaptosomal Glu uptake sites displacing [(3)H](R)-aspartic acid (IC(50 ) approximately 390 microM). An enantiospecific and subtype-selective agonist activity was observed for (S)-TDPA at group I metabotropic Glu (mGlu) receptors (EC(50)=13 microM at mGlu(5) and EC(50)=95 microM at mGlu(1)).  相似文献   

19.
Deoxynegamycin (1b) is a protein synthesis inhibitor with activity against Gram-negative (GN) bacteria. A series of conformationally restricted analogs were synthesized to probe its bioactive conformation. Indeed, some of the constrained analogs were found to be equal or better than deoxynegamycin in protein synthesis assay (1b, IC(50)=8.2 microM; 44, IC(50)=6.6 microM; 35e(2), IC(50)=1 microM). However, deoxynegamycin had the best in vitro whole cell antibacterial activity (Escherichia coli, MIC=4-16 microg/mL; Klebsiella pneumoniae, MIC=8 microg/mL) suggesting that other factors such as permeation may also be contributing to the overall whole cell activity. A new finding is that deoxynegamycin is efficacious in an E. coli murine septicemia model (ED(50)=4.8 mg/kg), providing further evidence of the favorable in vivo properties of this class of molecules.  相似文献   

20.
A hitherto unknown class of celecoxib analogs was designed for evaluation as dual inhibitors of the 5-lipoxygenase/cyclooxygenase-2 (5-LOX/COX-2) enzymes. These compounds possess a SO(2)Me (11a), or SO(2)NH(2) (11b) COX-2 pharmacophore at the para-position of the N(1)-phenyl ring in conjunction with a 5-LOX N-hydroxypyrid-2(1H)one iron-chelating moiety in place of the celecoxib C-5 tolyl group. The title compounds 11a-b are weak inhibitors of the COX-1 and COX-2 isozymes (IC(50)=7.5-13.2 microM range). In contrast, the SO(2)Me (11a, IC(50)=0.35 microM), and SO(2)NH(2) (11b, IC(50)=4.9 microM), compounds are potent inhibitors of the 5-LOX enzyme comparing favorably with the reference drug caffeic acid (5-LOX IC(50)=3.47 microM). The SO(2)Me (11a, ED(50)=66.9 mg/kg po), and SO(2)NH(2) (11b, ED(50)=99.8 mg/kg po) compounds exhibited excellent oral anti-inflammatory (AI) activities being more potent than the non-selective COX-1/COX-2 inhibitor drug aspirin (ED(50)=128.9 mg/kg po) and less potent than the selective COX-2 inhibitor celecoxib (ED(50)=10.8 mg/kg po). The N-hydroxypyridin-2(1H)one moiety constitutes a novel pharmacophore for the design of cyclic hydroxamic mimetics capable of chelating 5-LOX iron for exploitation in the design of 5-LOX inhibitory AI drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号