首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Evolutionary community ecology is an emerging field of study that includes evolutionary principles such as individual trait variation and plasticity of traits to provide a more mechanistic insight as to how species diversity is maintained and community processes are shaped across time and space. In this review we explore phenotypic plasticity in functional traits and its consequences at the community level. We argue that resource requirement and resource uptake are plastic traits that can alter fundamental and realised niches of species in the community if environmental conditions change. We conceptually add to niche models by including phenotypic plasticity in traits involved in resource allocation under stress. Two qualitative predictions that we derive are: (1) plasticity in resource requirement induced by availability of resources enlarges the fundamental niche of species and causes a reduction of vacant niches for other species and (2) plasticity in the proportional resource uptake results in expansion of the realized niche, causing a reduction in the possibility for coexistence with other species. We illustrate these predictions with data on the competitive impact of invasive species. Furthermore, we review the quickly increasing number of empirical studies on evolutionary community ecology and demonstrate the impact of phenotypic plasticity on community composition. Among others, we give examples that show that differences in the level of phenotypic plasticity can disrupt species interactions when environmental conditions change, due to effects on realized niches. Finally, we indicate several promising directions for future phenotypic plasticity research in a community context. We need an integrative, trait-based approach that has its roots in community and evolutionary ecology in order to face fast changing environmental conditions such as global warming and urbanization that pose ecological as well as evolutionary challenges.  相似文献   

2.
A key problem in community ecology is to understand how individual-level traits give rise to population-level trophic interactions. Here, we propose a synthetic framework based on ecological considerations to address this question systematically. We derive a general functional form for the dependence of trophic interaction coefficients on trophically relevant quantitative traits of consumers and resources. The derived expression encompasses—and thus allows a unified comparison of—several functional forms previously proposed in the literature. Furthermore, we show how a community’s, potentially low-dimens ional, effective trophic niche space is related to its higher-dimensional phenotypic trait space. In this manner, we give ecological meaning to the notion of the “dimensionality of trophic niche space.” Our framework implies a method for directly measuring this dimensionality. We suggest a procedure for estimating the relevant parameters from empirical data and for verifying that such data matches the assumptions underlying our derivation.  相似文献   

3.
Analyses of functional traits have become fundamental tools for understanding patterns and processes in plant community ecology. In this context, regenerative seed traits play an important, yet overlooked, role because they largely determine the ability of plants to disperse and re‐establish. A survey of recent publications in community ecology suggests that seed germination traits in particular are neglected at the expense of other relevant but overused traits based only on seed morphology. As a response to this bias, we discuss the functional significance of seed germination traits in comparison with morphological and biophysical seed traits, and advocate their use in vegetation science. We also demonstrate how research in community assembly, climate change and restoration ecology can benefit from the inclusion of germination traits, encompassing functions that cannot be explained solely by adult plant traits. Seed germination experiments conducted in the laboratory or field to quantify these traits provide ecologically meaningful and relatively easy‐to‐obtain information about the functional properties of plant communities. We argue that bridging the gap between seed physiologists and community ecologists will improve the prediction of plant assemblages, and propose further perspectives for including seed traits into the research agenda of functional community ecologists.  相似文献   

4.
The hypothesis that environmental heterogeneity promotes species richness by increasing opportunities for niche partitioning is a fundamental paradigm in ecology. However, recent studies suggest that heterogeneity–diversity relationships (HDR) are more complex than expected from this niche‐based perspective, and often show a decrease in richness at high levels of heterogeneity. These findings have motivated ecologists to propose new mechanisms that may explain such deviations. Here we provide an overview of currently recognised mechanisms affecting the shape of HDRs and present a conceptual model that integrates all previously proposed mechanisms within a unified framework. We also translate the proposed framework into an explicit community dynamic model and use the model as a tool for generating testable predictions concerning how landscape properties interact with species traits in determining the shape of HDRs. Our main finding is that, despite the enormous complexity of such interactions, the predicted HDRs are rather simple, ranging from positive to unimodal patterns in a highly consistent and predictable manner.  相似文献   

5.
Assemblages of closely related organisms are generated on axes of deep time diversification, biogeographic processes related to dispersal and habitat filtering, and competition. Using models that account for phylogeny, ecology, and traits, we examine how the interaction among biogeography, habitat filtering, and trait convergence influences community assemblage in Nearctic snakes. With 122 community surveys, environmental niche, trait data including size, diet, parity and habitat preference, and a nearly complete phylogeny of snakes from the United States, we ask 1) do phylogenetic species variability (PSV) and traits change in predictable and correlated ways given ecology and geographic distance, 2) are the measured traits variable within and across communities and how is this related to PSV at local scales, and 3) is there evidence of habitat filtering or trait divergence? Following a general trend of western to eastern North American origin and dispersal of major groups, we similarly show a significant decrease in PSV in this direction but unexpectedly with stable trait variance, showing that traits and phylogenetic variability are disconnected at the community level. We also demonstrate that trait variability and not PSV dominates local communities. Finally, regardless of phylogeny, we show that certain traits, such as reproductive mode (parity) frequency, change within communities in response to steep ecological gradients.  相似文献   

6.
Understanding how omnivorous consumers are affected by their resources and how this is expressed through the food chain is a fundamental issue in ecology. We used stable isotope analysis of archived scales of two pelagic single-chain omnivorous fish species, bighead carp (Hypophthalmichthys nobilis) and silver carp (H. molitrix), to reconstruct historical trophic interactions patterns along a gradient of resources. We found that, although bighead carp and silver carp utilize the similar resources from the pelagic food chain, they can coexist and persist not only by regulating their trophic position and trophic dissimilarity, but also by regulating trophic niche width. Omnivorous fish often exhibit flexible foraging strategies, which is closely related to the availability of ecologic context. We found a positive relationship between trophic dissimilarity and zooplankton density, which may indicate that the competitive interactions induce strong top-down effects on zooplankton, and/or that high zooplankton availability release the between-population trophic interaction through bottom-up effect. The trophic niche width of bighead carp was positively related with zooplankton availability, probably reflecting that the niche of an omnivore at a higher trophic position is more sensitive to high quality resources. Our results indicate how different aspects of the trophic partitioning of coexisting omnivores may be regulated by different ecological contexts. These alternatives are not mutually exclusive and further theoretical work should include both these mechanisms to re-evaluate the effects of omnivory on food web properties.  相似文献   

7.
Caruso T  Powell JR  Rillig MC 《PloS one》2012,7(4):e35942
Community structure depends on both deterministic and stochastic processes. However, patterns of community dissimilarity (e.g. difference in species composition) are difficult to interpret in terms of the relative roles of these processes. Local communities can be more dissimilar (divergence) than, less dissimilar (convergence) than, or as dissimilar as a hypothetical control based on either null or neutral models. However, several mechanisms may result in the same pattern, or act concurrently to generate a pattern, and much research has recently been focusing on unravelling these mechanisms and their relative contributions. Using a simulation approach, we addressed the effect of a complex but realistic spatial structure in the distribution of the niche axis and we analysed patterns of species co-occurrence and beta diversity as measured by dissimilarity indices (e.g. Jaccard index) using either expectations under a null model or neutral dynamics (i.e., based on switching off the niche effect). The strength of niche processes, dispersal, and environmental noise strongly interacted so that niche-driven dynamics may result in local communities that either diverge or converge depending on the combination of these factors. Thus, a fundamental result is that, in real systems, interacting processes of community assembly can be disentangled only by measuring traits such as niche breadth and dispersal. The ability to detect the signal of the niche was also dependent on the spatial resolution of the sampling strategy, which must account for the multiple scale spatial patterns in the niche axis. Notably, some of the patterns we observed correspond to patterns of community dissimilarities previously observed in the field and suggest mechanistic explanations for them or the data required to solve them. Our framework offers a synthesis of the patterns of community dissimilarity produced by the interaction of deterministic and stochastic determinants of community assembly in a spatially explicit and complex context.  相似文献   

8.
Almost all organisms on Earth exhibit ontogenetic niche shifts, which causes great phenotypic variation among individuals and is thus considered to critically mediate community structure and dynamics. In contrast, community ecology has traditionally assumed that species are composed of identical individuals with invariant traits and ignored the potentially important ecological roles of ontogenetic niche shifts. To bridge the gap, here I briefly review ecologically relevant examples which show that basic insights of species-based community theories can be revised by including the ontogenetic perspective. Specifically, I focus on the most representative animals in the study of ontogenetic niche shifts, i.e., fish, insects, and amphibians. Notably, their ontogenetic niche shifts create novel views of community structure: (1) ontogenetic diet shifts of predatory fish couple pelagic and benthic food webs in aquatic systems, (2) ontogenetic shifts in interaction types of pollinating insects couple herbivory and pollination networks in terrestrial systems, and (3) ontogenetic habitat shifts of amphibians and aquatic insects couple aquatic and terrestrial metacommunities at interface areas. Dynamic models of such stage-structured communities suggest that their ontogenetic niche shifts may affect the community resilience and disturbance responses. Exploring more complex systems (e.g., where many species undergo ontogenetic niche shifts several times or continuously) is a future direction, for which describing body size relationships between interacting organisms would be a promising approach. I conclude that both theoretical and empirical advances are needed to facilitate the ontogenetic perspective for better understanding mechanisms underlying biodiversity and ecosystem functioning which are increasingly threatened by anthropogenic disturbance.  相似文献   

9.
Environmental niche models, which are generated by combining species occurrence data with environmental GIS data layers, are increasingly used to answer fundamental questions about niche evolution, speciation, and the accumulation of ecological diversity within clades. The question of whether environmental niches are conserved over evolutionary time scales has attracted considerable attention, but often produced conflicting conclusions. This conflict, however, may result from differences in how niche similarity is measured and the specific null hypothesis being tested. We develop new methods for quantifying niche overlap that rely on a traditional ecological measure and a metric from mathematical statistics. We reexamine a classic study of niche conservatism between sister species in several groups of Mexican animals, and, for the first time, address alternative definitions of "niche conservatism" within a single framework using consistent methods. As expected, we find that environmental niches of sister species are more similar than expected under three distinct null hypotheses, but that they are rarely identical. We demonstrate how our measures can be used in phylogenetic comparative analyses by reexamining niche divergence in an adaptive radiation of Cuban anoles. Our results show that environmental niche overlap is closely tied to geographic overlap, but not to phylogenetic distances, suggesting that niche conservatism has not constrained local communities in this group to consist of closely related species. We suggest various randomization tests that may prove useful in other areas of ecology and evolutionary biology.  相似文献   

10.
Communities are thought to be assembled by two types of filters: by the environment relating to the fundamental niche and by biotic interactions relating to the realized niche. Both filters include parameters related to functional traits and their variation along environmental gradients. Here, we infer the general importance of environmental filtering of a functional trait determining local community assembly within insular adaptive radiations on the example of Caribbean Anolis lizards. We constructed maps for the probability of presence of Anolis ecomorphs (ecology‐morphology‐behavior specialists) on the Greater Antilles and overlaid these to estimate ecomorph community completeness (ECC) over the landscape. We then tested for differences in environmental parameter spaces among islands for real and cross‐fitted ECC values to see whether the underlying assembly filters are deterministic (i.e., similar among islands). We then compared information‐theoretic models of climatic and landscape parameters among Greater Antillean islands and inferred whether body mass as functional trait determines ECC. We found areas with high ECC to be strongly correlated with environmental filters, partly related to elevation. The environmental parameters influencing high ECC differed among islands. With the exception of the Jamaican twig ecomorph (which we suspect to be misclassified), smaller ecomorphs were more restricted to higher elevations than larger ones which might reflect filtering on the basis of differential physiological restrictions of ecomorphs. Our results in Anolis show that local community assembly within adaptive island radiations of animals can be determined by environmental filtering of functional traits, independently from species composition and realized environmental niche space.  相似文献   

11.
Plasticity-mediated changes in interaction dynamics and structure may scale up and affect the ecological network in which the plastic species are embedded. Despite their potential relevance for understanding the effects of plasticity on ecological communities, these effects have seldom been analysed. We argue here that, by boosting the magnitude of intra-individual phenotypic variation, plasticity may have three possible direct effects on the interactions that the plastic species maintains with other species in the community: may expand the interaction niche, may cause a shift from one interaction niche to another or may even cause the colonization of a new niche. The combined action of these three factors can scale to the community level and eventually expresses itself as a modification in the topology and functionality of the entire ecological network. We propose that this causal pathway can be more widespread than previously thought and may explain how interaction niches evolve quickly in response to rapid changes in environmental conditions. The implication of this idea is not solely eco-evolutionary but may also help to understand how ecological interactions rewire and evolve in response to global change.  相似文献   

12.
In a discussion it is often easier to staunchly reject or offer resolute support for an idea. This third paper on the niche concept aims to develop a balanced argument by exploring general principles for determining an appropriate level for pitching the niche concept that will guide better use and less abuse of niche concepts. To do this we first have to accept that niche concepts are not necessarily essential for ecology. Rather than to improve niche concepts, our aim should then be to pitch the niche in terms of ecology. This aim helps us develop an ‘ultimate goal of the niche’ by which we can evaluate the concepts we use. For species distribution modelling, there has been a focus on the niche as an equilibrium outcome that perhaps has less relevance for disequilibrium situations (e.g. climate change projections). As is the case for much of ecology, more causal explanations of species' distributions use alternative terminologies and less frequently use the word ‘niche’. We suggest that niche concepts that are better aligned with the rest of ecology could arise from taking more responsibility for our own implementations, and by explaining our models with terms other than niche. A general, holistic niche concept promotes this view and promotes practical thinking about what we are modelling and how we interpret those models, which in turn should help inspire and support innovative modelling approaches in species distribution modelling.  相似文献   

13.
1. Plant–animal mutualisms are key processes that influence community structure, dynamics, and function. They reflect several neutral and niche-based mechanisms related to plant–animal interactions. 2. However, the strength with which these processes influence community structure depends on functional traits that influence the interactions between mutualistic partners. In mutualisms involving plants and ants, nectar is the most common reward, and traits such as quantity and quality can affect ant species' responses by influencing their recruitment rates and aggressiveness. 3. In this study, nectar traits that mediate ant–plant defensive mutualisms were manipulated to test whether resource quantity and quality affect the structure of ant–plant interaction networks. A downscaling approach was used to investigate the interaction network between ant species and individual plants of the extrafloral nectary-bearing terrestrial orchid Epidendrum secundum. 4. We found a short-term reorganization of the ant assemblage that caused the interaction networks to become more specialised and modular in response to a more rewarding nectar gradient. Furthermore, the ant species tended to narrow their foraging range by limiting their associations to one or a few individual plants. 5. This study shows that ant species' responses to variable resource traits play an important role in the structure of the ant–plant interaction network. We suggest that more rewarding nectar enhanced aggressiveness and a massive recruitment of some ant species, leading to lower niche overlap and thus a less connected and more specialised network.  相似文献   

14.
The response of tree life-history traits to community profiles (horizontal and vertical heterogeneity, disturbances and biotic interactions) determines community assembly rules, which are currently a hot issue in community ecology. Important mechanisms of coexistence differ throughout the developing stages of tree life history. Many processes of niche partitioning and tradeoffs that potentially enable tree coexistence have been reported to be present in temperate forests, although some of these life-history traits are either correlated with each other or are not independent. Not all of the proposed mechanisms explain coexistence equally well; some could predominate in determining the community organization of forest communities. Population studies need to concentrate more on the component species of a target community to detect the ecological assembly rule. These approaches can also address how chance factors contribute to the composition of temperate tree communities, which might be less dependent on chance than are tropical ones.  相似文献   

15.
Manipulating community assemblages to achieve functional targets is a key component of restoring degraded ecosystems. The response‐and‐effect trait framework provides a conceptual foundation for translating restoration goals into functional trait targets, but a quantitative framework has been lacking for translating trait targets into assemblages of species that practitioners can actually manipulate. This study describes new trait‐based models that can be used to generate ranges of species abundances to test theories about which traits, which trait values and which species assemblages are most effective for achieving functional outcomes. These models are generalisable, flexible tools that can be widely applied across many terrestrial ecosystems. Examples illustrate how the framework generates assemblages of indigenous species to (1) achieve desired community responses by applying the theories of environmental filtering, limiting similarity and competitive hierarchies, or (2) achieve desired effects on ecosystem functions by applying the theories of mass ratios and niche complementarity. Experimental applications of this framework will advance our understanding of how to set functional trait targets to achieve the desired restoration goals. A trait‐based framework provides restoration ecology with a robust scaffold on which to apply fundamental ecological theory to maintain resilient and functioning ecosystems in a rapidly changing world.  相似文献   

16.
Species distribution models (SDMs) use spatial environmental data to make inferences on species' range limits and habitat suitability. Conceptually, these models aim to determine and map components of a species' ecological niche through space and time, and they have become important tools in pure and applied ecology and evolutionary biology. Most approaches are correlative in that they statistically link spatial data to species distribution records. An alternative strategy is to explicitly incorporate the mechanistic links between the functional traits of organisms and their environments into SDMs. Here, we review how the principles of biophysical ecology can be used to link spatial data to the physiological responses and constraints of organisms. This provides a mechanistic view of the fundamental niche which can then be mapped to the landscape to infer range constraints. We show how physiologically based SDMs can be developed for different organisms in different environmental contexts. Mechanistic SDMs have different strengths and weaknesses to correlative approaches, and there are many exciting and unexplored prospects for integrating the two approaches. As physiological knowledge becomes better integrated into SDMs, we will make more robust predictions of range shifts in novel or non-equilibrium contexts such as invasions, translocations, climate change and evolutionary shifts.  相似文献   

17.
Ove Eriksson 《Ecography》2013,36(4):403-413
This paper discusses the ecology of species that were favoured by the development of the cultural landscape in central and NW Europe beginning in the Neolithic and the Bronze Age, with a focus on mechanisms behind species responses to this landscape transformation. A fraction of species may have maintained their realized niches from the pre‐ agricultural landscape and utilized similar niches created by the landscape transformation. However, I suggest that many species responded by altering their niche relationships, and a conceptual model is proposed for this response, based on niche construction, ecological opportunity and niche shifts. Human‐mediated niche construction, associated with clearing of forests and creation of pastures and fields promoted niche shifts towards open habitats, and species exploited the ecological opportunity provided by these created environments. This process was initially purely ecological, i.e. the new habitats must have been included in the original fundamental niche of the species. Two other features of human‐mediated niche construction, increased interconnectivity and increased spatial stability of open habitats, resulted in species accumulating in the habitats of the constructed landscape. As a consequence, selection processes were initiated favouring traits promoting fitness in the constructed landscape. This process implied a feed‐back to niche shifts, but now also including evolutionary changes in fundamental niches. I briefly discuss whether this model can be applied also to present‐day anthropogenic impact on landscapes. A general conclusion is that ecological and evolutionary changes in species niches should be more explicitly considered in modeling and predictions of species response to present‐day landscape and land‐use changes.  相似文献   

18.
In plant ecology, community-weighted trait means are often used as predictors for ecosystem functions. More recently, also within-species trait variation has been confirmed to contribute to ecosystem functioning. We here go even further and assess within-individual trait variation, assuming that every leaf in a plant individually adjusts to its micro-environment. Using forest plots varying in tree species richness (Sardinilla experiment, Panama), we analysed how leaf traits within individual trees vary along the vertical crown gradient. Furthermore, we tested whether niche partitioning in mixed stands results in a decrease of within-species leaf trait variation and whether niche partitioning can be also observed at the level of individual trees. We focused on leaf traits that describe the growth strategy along the conservative-acquisitive spectrum of growth. We found a decrease in within-species variation of specific leaf area (SLA) with increasing neighbourhood species richness. Both sampling height and local neighbourhood richness contributed to explaining within-species leaf trait variation, which however, varied in importance among different species and traits. With increasing sampling height, leaf dry matter content (LDMC), carbon to nitrogen ratio and lignin content increased, while leaf nitrogen concentration (leaf N), SLA, cellulose and hemicellulose decreased. Variation in leaf N decreased with increasing neighbourhood species richness, while the magnitude of within-individual variation of most traits was unaffected by neighbourhood species richness. Our results suggest an increased niche partitioning with increasing species richness both in a plant community and at the level of individual plants. Our findings highlight the importance of including within-individual trait variation to understand biodiversity-ecosystem functioning relationships.  相似文献   

19.
In plant ecology, community-weighted trait means are often used as predictors for ecosystem functions. More recently, also within-species trait variation has been confirmed to contribute to ecosystem functioning. We here go even further and assess within-individual trait variation, assuming that every leaf in a plant individually adjusts to its micro-environment. Using forest plots varying in tree species richness (Sardinilla experiment, Panama), we analysed how leaf traits within individual trees vary along the vertical crown gradient. Furthermore, we tested whether niche partitioning in mixed stands results in a decrease of within-species leaf trait variation and whether niche partitioning can be also observed at the level of individual trees. We focused on leaf traits that describe the growth strategy along the conservative-acquisitive spectrum of growth. We found a decrease in within-species variation of specific leaf area (SLA) with increasing neighbourhood species richness. Both sampling height and local neighbourhood richness contributed to explaining within-species leaf trait variation, which however, varied in importance among different species and traits. With increasing sampling height, leaf dry matter content (LDMC), carbon to nitrogen ratio and lignin content increased, while leaf nitrogen concentration (leaf N), SLA, cellulose and hemicellulose decreased. Variation in leaf N decreased with increasing neighbourhood species richness, while the magnitude of within-individual variation of most traits was unaffected by neighbourhood species richness. Our results suggest an increased niche partitioning with increasing species richness both in a plant community and at the level of individual plants. Our findings highlight the importance of including within-individual trait variation to understand biodiversity-ecosystem functioning relationships.  相似文献   

20.
Sensitivity analysis of structured populations is a useful tool in population ecology. Historically, methodological development of sensitivity analysis has focused on the sensitivity of eigenvalues in linear matrix models, and on single populations. More recently there have been extensions to the sensitivity of nonlinear models, and to communities of interacting populations. Here we derive a fully general mathematical expression for the sensitivity of equilibrium abundances in communities of interacting structured populations. Our method yields the response of an arbitrary function of the stage class abundances to perturbations of any model parameters. As a demonstration, we apply this sensitivity analysis to a two-species model of ontogenetic niche shift where each species has two stage classes, juveniles and adults. In the context of this model, we demonstrate that our theory is quite robust to violating two of its technical assumptions: the assumption that the community is at a point equilibrium and the assumption of infinitesimally small parameter perturbations. Our results on the sensitivity of a community are also interpreted in a niche theoretical context: we determine how the niche of a structured population is composed of the niches of the individual states, and how the sensitivity of the community depends on niche segregation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号