首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Simple sequence repeats (SSRs) in DNA sequences are tandem iterations of a single nucleotide or a short oligonucleotide. SSRs are subject to slipped-strand mutations and a common source of phase variation in bacteria and antigenic variation in pathogens. Significantly long SSRs are generally rare in prokaryotic genomes, and long SSRs composed of iterations of mono-, di-, tri-, and tetranucleotides are mostly restricted to host-adapted pathogens. We present new results concerning associations between long SSRs and genes related to different cellular functions in genomes of host-adapted pathogens. We found that in the majority of the analyzed genomes, at least some of the genes associated with SSRs encode potential antigens, which is expected if the primary function of SSRs is their contribution to antigenic variation. However, we also found a number of long SSRs associated with housekeeping genes, including rRNA and tRNA genes, genes encoding ribosomal proteins, amino acyl-tRNA synthetases, chaperones, and important metabolic enzymes. Many of these genes are probably essential and it is unlikely that they are phase-variable. Few statistically significant associations between SSRs and gene functional classifications were detected, suggesting that most long SSRs are not related to a particular cellular function or process. Long SSRs in Mycobacterium leprae are mostly associated with pseudogenes and may be contributing to gene loss following the adaptation to an obligate pathogenic lifestyle. We speculate that LSSRs may have played a similar role in genome reduction of other host-adapted pathogens.  相似文献   

2.
Obligate pathogenic and endosymbiotic bacteria typically experience gene loss due to functional redundancy, asexuality, and genetic drift. We hypothesize that reduced genomes increase their functional complexity through protein multitasking, in which many genes adopt new roles to counteract gene loss. Comparisons of interaction networks among six bacteria that have varied genome sizes (Mycoplasma pneumoniae, Treponema pallidum, Helicobacter pylori, Campylobacter jejuni, Synechocystis sp., and Mycobacterium tuberculosis) reveal that proteins in small genomes interact with proteins from a wider range of functions than do their orthologs in larger genomes. This suggests that surviving proteins form increasingly complex functional relationships to compensate for genes that are lost.  相似文献   

3.
P Li  B Chen  Z Song  Y Song  Y Yang  P Ma  H Wang  J Ying  P Ren  L Yang  G Gao  S Jin  Q Bao  H Yang 《Gene》2012,507(2):125-134
As one of the pathogens of hospital-acquired infections, Acinetobacter baumannii poses great challenges to the public health. A. baumannii phage could be an effective way to fight multi-resistant A. baumannii. Here, we completed the whole genome sequencing of the complete genome of A. baumannii phage AB1, which consists of 45,159bp and is a double-stranded DNA molecule with an average GC content of 37.7%. The genome encodes one tRNA gene and 85 open reading frames (ORFs) and the average size of the ORF is 531bp in length. Among 85 ORFs, only 14 have been identified to share significant sequence similarities to the genes with known functions, while 28 are similar in sequence to the genes with function-unknown genes in the database and 43 ORFs are uniquely present in the phage AB1 genome. Fourteen function-assigned genes with putative functions include five phage structure proteins, an RNA polymerase, a big sub-unit and a small sub-unit of a terminase, a methylase and a recombinase and the proteins involved in DNA replication and so on. Multiple sequence alignment was conducted among those homologous proteins and the phylogenetic trees were reconstructed to analyze the evolutionary courses of these essential genes. From comparative genomics analysis, it turned out clearly that the frame of the phage genome mainly consisted of genes from Xanthomonas phages, Burkholderia ambifaria phages and Enterobacteria phages and while it comprises genes of its host A. baumannii only sporadically. The mosaic feature of the phage genome suggested that the horizontal gene transfer occurred among the phage genomes and between the phages and the host bacterium genomes. Analyzing the genome sequences of the phages should lay sound foundation to investigate how phages adapt to the environment and infect their hosts, and even help to facilitate the development of biological agents to deal with pathogenic bacteria.  相似文献   

4.
致病岛是病原微生物通过基因水平转移获得的外源DNA,它是在研究致病性肠道菌的基因组结构和致病性的基础上发展起来的,并在其他革兰氏阴性和阳性致病菌中得到证实。本就各类病原菌致病岛的研究近况作一综述,同时介绍了致病岛的特征,讨论了致病岛在微生物进化中的意义及与tRNA基因的关系。  相似文献   

5.
Genomes of pathogenic bacteria evolve by large-scale changes in gene inventory. The continual acquisition of genomic islands, which refines their metabolic arsenal, is offset by gene loss. Far from this being a passive deletion of genes no longer useful to pathogens, the removal of genes encoding problematic metabolic process and immunogenic surface antigens might be strongly beneficial. Genomes of virulent eukaryotes show the footprint of similar genomic alterations, including acquisition of genes by lateral transfer, and genome degradation in obligate pathogens. These common features suggest that unicellular pathogens share common strategies for adaptation.  相似文献   

6.
3-Hexulose-6-phosphate synthase (HPS) and 6-phospho-3-hexuloisomerase (PHI) are the key enzymes of the ribulose monophosphate pathway. This pathway, which was originally found in methylotrophic bacteria, is now recognized as a widespread prokaryotic pathway involved in formaldehyde fixation and detoxification. Recent progress, involving biochemical and genetic approaches in elucidating the physiological functions of HPS and PHI in methylotrophic as well as non-methylotrophic bacteria are described in this review. HPS and PHI orthologs are also found in a variety of archaeal strains. Some archaeal HPS orthologs are fused with other genes to form single ORF (e.g., the hps-phi gene of Pyrococcus spp. and the faeB-hpsB gene of Methanosarcina spp). These fused gene products exhibit functions corresponding to the individual enzyme activities, and are more efficient than equivalent systems made up of discrete enzymes. Recently, a novel metabolic function for HPS and PHI has been proposed in which these enzymes catalyze the reverse reaction for the biosynthesis of pentose phosphate in some archaeal strains. Thus the enzyme system plays a different role in bacteria and archaea by catalyzing the forward and reverse reactions respectively.  相似文献   

7.
We employed an antisense RNA approach to identify essential genes common in both Gram-positive and Gram-negative bacteria by cloning a random library of Streptococcus mutans chromosomal DNA into an expression vector and transforming Escherichia coli. Twelve out of 27 E. coli transformants with growth defective phenotypes contained individual structural genes of S. mutans in the antisense orientation relative to the E. coli promoter. Thirty-three percent of these transformants (4/12) corresponded to the genes (gyrA, ileS, rplE and yihA orthologs) which are essential for bacterial viability.  相似文献   

8.
Chen LL  Chung WC  Lin CP  Kuo CH 《PloS one》2012,7(3):e34407
Phytoplasmas and mycoplasmas are two groups of important pathogens in the bacterial class Mollicutes. Because of their economical and clinical importance, these obligate pathogens have attracted much research attention. However, difficulties involved in the empirical study of these bacteria, particularly the fact that phytoplasmas have not yet been successfully cultivated outside of their hosts despite decades of attempts, have greatly hampered research progress. With the rapid advancements in genome sequencing, comparative genome analysis provides a new approach to facilitate our understanding of these bacteria. In this study, our main focus is to investigate the evolution of gene content in phytoplasmas, mycoplasmas, and their common ancestor. By using a phylogenetic framework for comparative analysis of 12 complete genome sequences, we characterized the putative gains and losses of genes in these obligate parasites. Our results demonstrated that the degradation of metabolic capacities in these bacteria has occurred predominantly in the common ancestor of Mollicutes, prior to the evolutionary split of phytoplasmas and mycoplasmas. Furthermore, we identified a list of genes that are acquired by the common ancestor of phytoplasmas and are conserved across all strains with complete genome sequences available. These genes include several putative effectors for the interactions with hosts and may be good candidates for future functional characterization.  相似文献   

9.
A total of 37 complete genome sequences of bacteria, archaea, and eukaryotes were compared. The percentage of orthologous genes of each species contained within any of the other 36 genomes was established. In addition, the mean identity of the orthologs was calculated. Several conclusions result: (i) a greater absolute number of orthologs of a given species is found in larger species than in smaller ones; (ii) a greater percentage of the orthologous genes of smaller genomes is contained in other species than is the case for larger genomes, which corresponds to a larger proportion of essential genes; (iii) before species can be specifically related to one another in terms of gene content, it is first necessary to correct for the size of the genome; (iv) eukaryotes have a significantly smaller percentage of bacterial orthologs after correction for genome size, which is consistent with their placement in a separate domain; (v) the archaebacteria are specifically related to one another but are not significantly different in gene content from the bacteria as a whole; (vi) determination of the mean identity of all orthologs (involving hundreds of gene comparisons per genome pair) reduces the impact of errors in misidentification of orthologs and to misalignments, and thus it is far more reliable than single gene comparisons; (vii) however, there is a maximum amount of change in protein sequences of 37% mean identity, which limits the use of percentage sequence identity to the lower taxa, a result which should also be true for single gene comparisons of both proteins and rRNA; (viii) most of the species that appear to be specifically related based upon gene content also appear to be specifically related based upon the mean identity of orthologs; (ix) the genes of a majority of species considered in this study have diverged too much to allow the construction of all-encompassing evolutionary trees. However, we have shown that eight species of gram-negative bacteria, six species of gram-positive bacteria, and eight species of archaebacteria are specifically related in terms of gene content, mean identity of orthologs, or both.  相似文献   

10.

Background  

Systematic genome comparisons are an important tool to reveal gene functions, pathogenic features, metabolic pathways and genome evolution in the era of post-genomics. Furthermore, such comparisons provide important clues for vaccines and drug development. Existing genome comparison software often lacks accurate information on orthologs, the function of similar genes identified and genome-wide reports and lists on specific functions. All these features and further analyses are provided here in the context of a modular software tool "inGeno" written in Java with Biojava subroutines.  相似文献   

11.
12.
While a variety of chemical transformations related to the aerobic degradation of L-tryptophan (kynurenine pathway), and most of the genes and corresponding enzymes involved therein have been predominantly characterized in eukaryotes, relatively little was known about this pathway in bacteria. Using genome comparative analysis techniques we have predicted the existence of the three-step pathway of aerobic L-tryptophan degradation to anthranilate (anthranilate pathway) in several bacteria. Based on the chromosomal gene clustering analysis, we have identified a previously unknown gene encoding for kynurenine formamidase (EC 3.5.1.19) involved with the second step of the anthranilate pathway. This functional prediction was experimentally verified by cloning, expression and enzymatic characterization of recombinant kynurenine formamidase orthologs from Bacillus cereus, Pseudomonas aeruginosa and Ralstonia metallidurans. Experimental verification of the inferred anthranilate pathway was achieved by functional expression in Escherichia coli of the R. metallidurans putative kynBAU operon encoding three required enzymes: tryptophan 2,3-dioxygenase (gene kynA), kynurenine formamidase (gene kynB), and kynureninase (gene kynU). Our data provide the first experimental evidence of the connection between these genes (only one of which, kynU, was previously characterized) and L-tryptophan aerobic degradation pathway in bacteria.  相似文献   

13.
In this work, we purified and characterized a newly identified lantibiotic (salivaricin D) from Streptococcus salivarius 5M6c. Salivaricin D is a 34-amino-acid-residue peptide (3,467.55 Da); the locus of the gene encoding this peptide is a 16.5-kb DNA segment which contains genes encoding the precursor of two lantibiotics, two modification enzymes (dehydratase and cyclase), an ABC transporter, a serine-like protease, immunity proteins (lipoprotein and ABC transporters), a response regulator, and a sensor histidine kinase. The immunity gene (salI) was heterologously expressed in a sensitive indicator and provided significant protection against salivaricin D, confirming its immunity function. Salivaricin D is a naturally trypsin-resistant lantibiotic that is similar to nisin-like lantibiotics. It is a relatively broad-spectrum bacteriocin that inhibits members of many genera of Gram-positive bacteria, including the important human pathogens Streptococcus pyogenes and Streptococcus pneumoniae. Thus, Streptococcus salivarius 5M6c may be a potential biological agent for the control of oronasopharynx-colonizing streptococcal pathogens or may be used as a probiotic bacterium.  相似文献   

14.
Most Alzheimer disease (AD) cases are unexplained. To identify causative agents for AD and to understand this chronic, complex disease process, the pathogenic chromatin modification hypothesis is put forward here, which links pathogenicity with genetic variability, epigenetic modifications and environmental factors. Host chromatin modification by pathogens (disease producers) directly exploiting susceptible genes of their hosts with DNA cleavage, and DNA, histone and other host chromatin protein modifications at defined sites, provide an understanding of the molecular mechanisms for the gene variation associations for AD and the effect of environmental and epigenetic factors. With the pathogenic chromatin modification hypothesis, the erratic success for AD pathogenicity of certain microbes is explained. If a microbe contains the pathogenic chromatin modifiers or their genes, and has the opportunity to infect a host, which has gene variants vulnerable to the pathogenic chromatin modifiers, then the disease process is initiated and promoted. This hypothesis postulates that pathogenic chromatin modifiers contribute to the DNA damage found in AD, and are tied to known risks including the ?4 allele of apolipoprotein E, Down syndrome, the aging process and head injury. Restriction enzymes (REases) and methyltransferases (MTases), previously unrecognized as pathogens in AD or any disease, are a focus with specific suggestions for experiments to elucidate their possible role. The pathogenic chromatin modification hypothesis is relevant to other neurodegenerative disorders including human immunodeficiency virus (HIV) associated dementia and other chronic diseases. This work, integrating a multitude of genetic and environmental factors, presents new targets for therapeutic strategies.  相似文献   

15.
Using computational approaches we have identified 2017 expressed intronless genes in the mouse genome. Evolutionary analysis reveals that 56 intronless genes are conserved among the three domains of life--bacteria, archea and eukaryotes. These highly conserved intronless genes were found to be involved in essential housekeeping functions. About 80% of expressed mouse intronless genes have orthologs in eukaryotic genomes only, and thus are specific to eukaryotic organisms. 608 of these genes have intronless human orthologs and 302 of these orthologs have a match in OMIM database. Investigation into these mouse genes will be important in generating mouse models for understanding human diseases.  相似文献   

16.
Infections caused by multiresistant Gram-positive bacteria represent a major health burden in the community as well as in hospitalized patients. Staphylococcus aureus, Enterococcus faecalis and Enterococcus faecium are well-known pathogens of hospitalized patients, frequently linked with resistance against multiple antibiotics, compromising effective therapy. Streptococcus pneumoniae and Streptococcus pyogenes are important pathogens in the community and S. aureus has recently emerged as an important community-acquired pathogen. Population genetic studies reveal that recombination prevails as a driving force of genetic diversity in E. faecium, E. faecalis, S. pneumoniae and S. pyogenes, and thus, these species are weakly clonal. Although recombination has a relatively modest role driving the genetic variation of the core genome of S. aureus, the horizontal acquisition of resistance and virulence genes plays a key role in the emergence of new clinically relevant clones in this species. In this review, we discuss the population genetics of E. faecium, E. faecalis, S. pneumoniae, S. pyogenes and S. aureus. Knowledge of the population structure of these pathogens is not only highly relevant for (molecular) epidemiological research but also for identifying the genetic variation that underlies changes in clinical behaviour, to improve our understanding of the pathogenic behaviour of particular clones and to identify novel targets for vaccines or immunotherapy.  相似文献   

17.
Novel drug targets are required in order to design new defenses against antibiotic-resistant pathogens. Comparative genomics provides new opportunities for finding optimal targets among previously unexplored cellular functions, based on an understanding of related biological processes in bacterial pathogens and their hosts. We describe an integrated approach to identification and prioritization of broad-spectrum drug targets. Our strategy is based on genetic footprinting in Escherichia coli followed by metabolic context analysis of essential gene orthologs in various species. Genes required for viability of E. coli in rich medium were identified on a whole-genome scale using the genetic footprinting technique. Potential target pathways were deduced from these data and compared with a panel of representative bacterial pathogens by using metabolic reconstructions from genomic data. Conserved and indispensable functions revealed by this analysis potentially represent broad-spectrum antibacterial targets. Further target prioritization involves comparison of the corresponding pathways and individual functions between pathogens and the human host. The most promising targets are validated by direct knockouts in model pathogens. The efficacy of this approach is illustrated using examples from metabolism of adenylate cofactors NAD(P), coenzyme A, and flavin adenine dinucleotide. Several drug targets within these pathways, including three distantly related adenylyltransferases (orthologs of the E. coli genes nadD, coaD, and ribF), are discussed in detail.  相似文献   

18.
Most bacteria pathogenic for humans have closely related nonpathogenic counterparts that live as saprophytes, commensals or even symbionts (mutualists) in similar or different habitats. The knowledge of how these bacteria adapt their metabolism to the preferred habitats is critical for our understanding of pathogenesis, commensalism and symbiosis, and - in the case of bacterial pathogens - could help to identify targets for new antimicrobial agents. The focus of this review is on the metabolic potentials and adaptations of three different groups of human extra- and intracellular bacterial pathogens and their nonpathogenic relatives. All bacteria selected have the potential to reach the interior of mammalian host cells. However, their ability to replicate intracellularly differs significantly. The question therefore arises whether there are specific metabolic requirements that support stable intracellular replication. Furthermore, we discuss - whenever relevant data for the pathogenic representatives are available - the possible effect of the metabolism on the expression of virulence genes.  相似文献   

19.
基因芯片技术在病原细菌检测中的应用   总被引:4,自引:0,他引:4  
基因芯片技术具有快速、高通量、平行化等优点,在病原细菌检测中有广泛的应用前景,选择细菌适宜的靶基因是芯片制备的关键之一。用细菌核糖体基因做靶基因的芯片技术,虽然应用广泛,但仍存在一些不足,随着基因组信息及基因功能的深入研究,包括毒力基因、耐药基因等具有较好种属特异性的细菌基因不断被发现,为芯片技术检测病原细菌提供了更多特异的靶基因,使检测结果更加灵敏、准确,在病原细菌研究中将发挥更大的作用。  相似文献   

20.
ADP-ribosyltransferases including toxins secreted by Vibrio cholera, Pseudomonas aerurginosa, and other pathogenic bacteria inactivate the function of human target proteins by attaching ADP-ribose onto a critical amino acid residue. Cross-species polymerase chain reaction (PCR) and database mining identified the orthologs of these ADP-ribosylating toxins in humans and the mouse. The human genome contains four functional toxin-related ADP-ribosyltransferase genes (ARTs) and two related intron-containing pseudogenes; the mouse has six functional orthologs. The human and mouse ART genes map to chromosomal regions with conserved linkage synteny. The individual ART genes reveal highly restricted expression patterns, which are largely conserved in humans and the mouse. We confirmed the predicted extracellular location of the ART proteins by expressing recombinant ARTs in insect cells. Two human and four mouse ARTs contain the active site motif (R-S-EXE) typical of arginine-specific ADP-ribosyltransferases and exhibit the predicted enzyme activities. Two other human ARTs and their murine orthologues deviate in the active site motif and lack detectable enzyme activity. Conceivably, these ARTs may have acquired a new specificity or function. The position-sensitive iterative database search program PSI-BLAST connected the mammalian ARTs with most known bacterial ADP-ribosylating toxins. In contrast, no related open reading frames occur in the four completed genomes of lower eucaryotes (yeast, worm, fly, and mustard weed). Interestingly, these organisms also lack genes for ADP-ribosylhydrolases, the enzymes that reverse protein ADP-ribosylation. This suggests that the two enzyme families that catalyze reversible mono-ADP-ribosylation either were lost from the genomes of these nonchordata eucaryotes or were subject to horizontal gene transfer between kingdoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号