首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of chloroquine and vinblastine (10-100 microM) on insulin degradation and biological action were studied in cultured foetal rat hepatocytes. Insulin degradation, as measured by the release of trichloroacetic acid-soluble radioactivity from 125I-insulin into the medium, was strictly cell-associated, saturable with respect to insulin concentrations and linearly related to the amount of cell-associated hormone. The maximal rate of insulin degradation was 4,700 molecules/min per cell, and its KM about 5 nM. Thus, insulin receptors (30,000 sites/cell; half-life close to 13 hr) must be reutilized 450-fold before being degraded with an average time of reutilization inferior to 10 min. In the presence of 70 microM chloroquine or 100 microM vinblastine, insulin degradation was inhibited by 80% and the amount of cell-associated hormone enhanced 2-3-fold. Nearly total inhibition of insulin-stimulated glycogenesis was obtained with 70 microM chloroquine and 45 microM vinblastine. When hepatocytes were preincubated with chloroquine or vinblastine, insulin binding remained high for up to 4 hr, then progressively decreased thereafter. The addition of 10 nM native insulin during preincubation with the drugs resulted in an earlier and more pronounced decrease in insulin binding, whereas native insulin alone did not induce any change. Both the inhibition of insulin degradation and onset of receptor down-regulation suggest a drug-induced impairment in the receptor reutilization. This defect is correlated to a loss of the glycogenic effect of insulin in cultured foetal rat hepatocytes.  相似文献   

2.
The role of the pinosome-lysosome pathway in the degradation of 125I-labelled bovine insulin by cultured human fibroblasts was examined by comparing the effects of various known inhibitors of pinocytosis and lysosomal degradation on the uptake and degradation of 125I-labelled polyvinylpyrrolidone, formaldehyde-denatured bovine serum albumin and bovine insulin by these cells. Fibroblasts incubated with polyvinylpyrrolidone steadily accumulate this substrate, whereas incubations with insulin or denatured albumin led to the progressive appearance in the culture medium of [125I]iodotyrosine. Inhibitors of pinocytosis (bacitracin, colchicine and monensin), metabolic inhibitors (2,4-dinitrophenol and NaF), lysosomotropic agents (chloroquine and NH4Cl) and an inhibitor of cysteine-proteinases (leupeptin) decreased the rate of uptake of polyvinylpyrrolidone and denatured albumin very similarly, but only bacitracin had an effect on the processing of insulin. Chloroquine, NH4Cl and leupeptin strongly inhibited the digestion of denatured albumin, but not of insulin. The different responses to the modifiers, with polyvinylpyrrolidone and denatured albumin on the one hand and insulin on the other, suggest that insulin degradation can occur by a non-lysosomal pathway. The very strong inhibitory effect of bacitracin on insulin processing by fibroblasts may point to an important role of plasma membrane proteinases in insulin degradation.  相似文献   

3.
Previous studies have suggested that transglutaminase has a role in the internalization of some polypeptide hormones and is inhibited by the antibiotic, bacitracin. Bacitracin has been used in insulin-receptor studies to inhibit extracellular degradation of 125I-labelled insulin. The aim of this study was to investigate bacitracin's effect on 125I-labelled insulin-receptor interactions in isolated rat hepatocytes. 1 g/l bacitracin increased cell-associated 125I-labelled insulin at 20, 30 and 37°C (P < 0.001, 0.0005 and 0.0005, respectively). At 5 and 15°C (internalization does not occur), bacitracin did not affect cell-associated 125I-labelled insulin. The bacitracin effect was concentration dependent, increasing to 2 g/l. Scatchard analysis showed that bacitracin did not alter insulin receptor affinity or number. 1 g/l bacitracin abolished the effect of chloroquine. The increased cell-associated radioactivity with bacitracin was surface-bound in nature. 0.5 g/l bacitracin decreased 125I-labelled insulin degradation in hepatocyte suspensions (P < 0.001) and in buffer previously incubated with hepatocytes (P < 0.0005). More 125I-labelled insulin remained associated with cells during dissociation studies at 37°C when the buffer contained 1 g/l bacitracin. Label that appeared in the buffer after 60 min was significantly more intact in the presence of bacitracin (P < 0.025). These results suggest that bacitracin retards the internalization of 125I-labelled insulin in isolated rat hepatocytes.  相似文献   

4.
The effects of a mild heat shock were investigated using cultured 15-day-old fetal rat hepatocytes in which an acute glucocorticoid-dependent glycogenic response to insulin was present. After exposure from 15 min to 2 h at 42.5°C, cell surface [125I]insulin binding progressively decreased down to 60% of the value shown in cells kept at 37°C, due to a decrease in the apparent number of insulin binding sites with little change in insulin receptor affinity. In parallel cultures, protein labeling with [35S]methionine exhibited stimulated synthesis of specific proteins, in particular, 73-kDa Hsc (heat shock cognate) and 72-kDa Hsp (heat shock protein). When cells were returned to 37°C after 2 h at 42.5°C, cell surface insulin binding showed a two-third restoration within 3 h (insulin receptor half-life = 13 h), with similar concomitant return of Hsps72,73 synthesis to preinduction levels. The rate of [14C]glucose incorporation into glycogen measured at 37°C after 1- to 2-h heat treatment revealed a striking yet transient increase in basal glycogenesis (up to 5-fold). At the same time, the glycogenesis stimulation by insulin was reduced (from 3.2 to 1.4—fold), whereas that induced by a glucose load was maintained. Induction of thermotolerance after a first heating was obtained for the heat shock-dependent events except for the enhanced basal glycogenesis. In insulin-unresponsive cells grown in the absence of glucocorticoids, heat shock decreased the glycogenic capacity without modifying the glucose load stimulation, supporting the hypothesis that insulin and thermal stimulation of glycogenesis share at least part of the same pathway. Inverse variations were observed between Hsps72,73 synthesis and both cell surface insulin receptor level and insulin glycogenic response in fetal hepatocytes experiencing heat stress. © 1995 Wiley-Liss, Inc.  相似文献   

5.
The glycogenic effects of a glucose load (15 mM) and/or insulin (10 nM) were studied in 18-day-old fetal rat hepatocytes after 2 days of culture when medium contained 4 mM glucose. A glucose load led to a stimulation of [14C]glucose glycogen labelling (20 min) earlier than with insulin (30–40 min); maximal stimulations were 3-fold after 1 h for the glucose load and 5-fold after 2–3 h for insulin. Simultaneous addition of the two agents produced synergic effects. When insulin was added 4 h after a glucose load (or vice versa), a second glycogenic response was elicited: a further addition of the same glycogenic agent was ineffective. The early glycogenic effects (up to 2 h) also occurred in the presence of 10 μM cycloheximide, with, however, some decrease of insulin stimulation. The contribution of medium glucose to the glycogen formed for 2 days (67% in the absence of glycogenic agent) was clearly enhanced by a glucose load and to a lesser degree by insulin after a 4-h exposure (83 and 71%, respectively). This was accompanied by a related modification of the participation of glucogenic precursors such as fructose and galactose. Thus, acute glycogenic response to glucose and insulin appeared both synergic and independent, and quite different in several aspects in cultured fetal hepatocytes.  相似文献   

6.
Binding and degradation of 125I-labelled insulin were studied in cultured foetal hepatocytes after exposure to the protein-synthesis inhibitors tunicamycin and cycloheximide. Tunicamycin (1 microgram/ml) induced a steady decrease of insulin binding, which was decreased by 50% after 13 h. As the total number of binding sites per hepatocyte was 20000, the rate of the receptor degradation could not exceed 13 sites/min per hepatocyte. Cycloheximide (2.8 micrograms/ml) increased insulin binding by 30% within 6 h, an effect that persisted for up to 25 h. This drug had a specific inhibitory effect on the degradation of proteins prelabelled for 10 h with [14C]glucosamine, without affecting the degradation of total proteins. Chronic exposure to 10 nM-insulin neither decreased insulin binding nor modified the effect of the drugs. The absence of down-regulation of insulin receptors cannot be attributed to rapid receptor biosynthesis in foetal hepatocytes. Cellular insulin degradation, which is exclusively receptor-mediated, was determined by two different parameters. First, the rate of release of degraded insulin into the medium was 600 molecules/min per hepatocyte with 1 nM labelled hormone, and increased (preincubation with cycloheximide) or decreased (tunicamycin) as a function of the amount of cell-bound insulin. Secondly, the percentage of cell-bound insulin degraded was not changed by the presence of protein-synthesis inhibitors (25-30%). The stability of insulin degradation suggested that this process was dependent on long-life proteinase systems. Such differences in degradation rates and cycloheximide sensitivity imply that hormone- and receptor-degradation processes utilize distinct pathways.  相似文献   

7.
P Soubigou  M Ali    C Plas 《The Biochemical journal》1987,246(3):567-573
Sequential changes in the numbers of cell-surface receptors induced by a transitory exposure to insulin in cultured 18-day foetal-rat hepatocytes were investigated in the presence of drugs and at a temperature of 22 degrees C, which inhibit cellular insulin degradation. Chloroquine (70 microM) and monensin (3 microM) did not greatly change the initial rate of internalization of cell-surface receptor sites after exposure to 10 nM-insulin, but led to a steady state after 20 min, which represented 40% of the initial binding, compared with 5 min and 60% in the absence of the drug. Moreover, these drugs strongly decreased the proportion of receptor sites recovered at the cell surface after subsequent removal of the hormone. They were ineffective when insulin was not present. The removal of monensin together with the hormone allowed partial restoration of cell-surface receptor sites and degradation of cell-associated insulin to start again at the initial speed, indicating a reversible effect of the drug. During this phase, the drug concentration-dependence for the two effects showed that receptor recycling was restored with concentrations of monensin not as low as for insulin degradation. The effect of vinblastine (50-100 microM) was similar to that of chloroquine and monensin, whereas no modification in the internalization and recovery processes was observed in the presence of bacitracin concentrations (1-3 mM) that inhibit insulin degradation by 70%. A temperature of 22 degrees C did not prevent the receptor internalization, but had a slowing effect on the recycling process, which appeared to vary in experiments where insulin degradation remained inhibited. The present study shows that the process of insulin degradation mediated by receptor endocytosis is not a prerequisite for insulin-receptor recycling in cultured foetal hepatocytes.  相似文献   

8.
125I-Labelled alpha 2-macroglobulin-trypsin complex (125I-labelled alpha 2-macroglobulin X trypsin) was associated to isolated rat adipocytes and hepatocytes with a half-time of about 60 min at 37 degrees C. The association of 0.5 micrograms/ml 125I-labelled alpha 2-macroglobulin X trypsin was inhibited by unlabelled alpha 2-macroglobulin X trypsin with a half-inhibition constant of about 8 micrograms/ml (11 nM). 125I-Labelled alpha 2-macroglobulin became cell-associated to a smaller extent (10-40% of that of alpha 2-macroglobulin X trypsin) and the half-inhibition constant was about 35 micrograms/ml in adipocytes. The cell association of 125I-labelled alpha 2-macroglobulin X trypsin was markedly inhibited by dansylcadaverine, bacitracin, omission of Ca2+ from the medium or pretreatment of the cells with trypsin. After incubation for 180 min more than 60% of the cell-associated 125I-labelled alpha 2-macroglobulin X trypsin was not removed by treatment of the cells with trypsin-EDTA and represented probably internalized material. 125I-Labelled alpha 2-macroglobulin X trypsin was degraded to trichloroacetic acid-soluble fragments by suspensions of both cell types but only to a negligible extent by incubation media preincubated with these cells. The rate of degradation of 0.5 micrograms/ml 125I-labelled alpha 2-macroglobulin was approx. 40% of that of 125I-labelled alpha 2-macroglobulin X trypsin. Degradation of 125I-labelled alpha 2-macroglobulin X trypsin was abolished by a high concentration (0.5 mg/ml) of alpha 2-macroglobulin X trypsin. It is concluded that alpha 2-macroglobulin X trypsin by a specific and saturable mechanism is bound to, internalized and degraded by isolated rat adipocytes and hepatocytes.  相似文献   

9.
The influence of medium composition on basal and insulin-stimulated glycogenesis was studied in cultured 17-day-old rat fetal hepatocytes, which contain no glycogen at the time of transplantation. Continuous-labeling 14C-glucose experiments were used to determine both glycogen content and glycogen labeling. The specific activity of glucose units in the newly formed glycogen (a) was compared to that of the medium glucose (b): the ratio a/b expresses the contribution of medium glucose to glycogen formation. In standard medium (5.5 mM glucose), this ratio averaged 0.60. Variations of glucose concentration in the medium from 1 to 40 mM were accompanied by a progressive increase in both glycogen content and the ratio a/b (up to 0.80). Supplementation of standard medium with fructose, galactose, glycerol, or lactate-pyruvate decreased the hepatocyte glucose uptake from the medium. Galactose (1 to 5 mM) or lactate-pyruvate (5 mM) enhanced the glycogen content whereas glycerol or fructose (1 to 5 mM) had no effect. The ratio a/b, not modified by glycerol or lactate-pyruvate, was decreased to 0.45 by fructose (5 mM). Galactose at concentrations as low as 1 to 2 mM brought the ratio down to 0.30, indicating that it is a superior precursor of glycogen as compared to glucose. When the hepatocytes were grown in the presence of 10 nM insulin, the glycogen content was constantly higher than in the absence of the hormone (2-fold stimulation). Also the amplitude of the glycogenic effect of insulin was similar whatever the modifications of the medium, whereas ratio a/b and glucose uptake were hardly increased by insulin. Thus several substrates can contribute to glycogen formation (especially galactose) in cultured fetal hepatocytes and the essential effect of insulin is a stimulation of the final step of the glycogenosynthetic pathway.  相似文献   

10.
The insulin-receptor cycle was investigated in cultured foetal rat hepatocytes by determining the variations in insulin-binding sites at the cell surface after short exposure to the hormone. Binding of 125I-insulin was measured at 4 degrees C after dissociation of prebound native insulin. Two protocols were used: exchange binding assay and binding after acid treatment; both gave the same results. Cell-surface 125I-insulin-receptor binding decreased sharply (by 40%) during the first 5 min of 10 nM-insulin exposure (t1/2 = 2 min) and remained practically constant thereafter; subsequent removal of the hormone restored the initial binding within 10 min. This fall-rise sequence corresponded to variations in the number of insulin receptors at the cell surface, with no detectable change in receptor affinity. The reversible translocation of insulin receptors from the cell surface to a compartment not accessible to insulin at 4 degrees C was hormone-concentration- and temperature-dependent. SDS/polyacrylamide-gel electrophoresis after cross-linking of bound 125I-insulin to cell-surface proteins with disuccinimidyl suberate showed that these variations were not associated with changes in Mr of binding components, in particular for the major labelled band of Mr 130,000. The insulin-receptor cycle could be repeated after intermittent exposure to insulin. Continuous or intermittent exposure to the hormone gave a similar glycogenic response, contrary to the partial effect of a unique short (5-20 min) exposure. A relationship could be established between the repetitive character of the rapid insulin-receptor cycle and the maximal expression of the biological effect in cultured foetal hepatocytes.  相似文献   

11.
The mechanism of insulin's action upon intracellular proteolysis in isolated hepatocytes was studied. At 37 degrees C insulin inhibited intracellular degradation of intracellular proteins in a dose-dependent manner. A maximal 40% inhibition of intracellular proteolysis was achieved at an insulin concentration of 500 ng/ml with a half-maximal inhibition observed at 2.5 ng/ml of insulin. Insulin inhibited intracellular proteolysis both in the presence and in the absence of amino acids in the incubation mixture. Low concentrations of trypsin (10 micrograms/ml) mimicked insulin's effect upon glucose incorporation into glycogen, but not on intracellular proteolysis. Four protease inhibitors (phenylmethylsulfonyl fluoride (0.5 mM), p-nitrophenyl-p-guanidinobenzoate (0.25 mM), p-tosyl-L-arginine methyl ester (1 mM), and N alpha-p-tosyl-L-lysine chloromethyl ketone (1 mM) blocked the stimulatory effect of insulin upon [14C]glucose incorporation into glycogen, but did not affect the inhibitory action of insulin upon intracellular proteolysis. These results suggest that the mechanism of insulin's action upon intracellular proteolysis differs from that involved in stimulation of glycogenesis. Low temperature (15 degrees C) and short time exposure (10 min) of the hepatocytes to insulin eliminated the inhibitory effect of insulin on intracellular proteolysis. Similarly, insulin's effect on intracellular proteolysis was eliminated by dansylcadaverine, a transglutaminase inhibitor that blocked insulin internalization. In contrast, dansylcadaverine had no effect on insulin's ability to stimulate [14C]glucose incorporation into glycogen. These experiments strongly suggest the necessity of insulin internalization for its inhibitory effect on endogenous protein degradation.  相似文献   

12.
An improved non-perfusion method for the preparation of cultured foetal-rat hepatocytes is described. Digestion of the liver with collagenase and deoxyribonuclease I gave yields of 40 X 10(6) hepatocytes/g of liver. The plating efficiency of hepatocytes in medium with 10 microM-cortisol was 50%. Cell morphology and metabolism were maintained through 3 days of monolayer culture, with minimal contamination by haematopoietic cells or fibroblasts. The cultured cells bound and degraded 125I-insulin in a time- and dose-dependent manner. The estimated ED50 for competitive binding at 37 degrees C was 1.1 nM. Curvilinear Scatchard plots were observed, with estimates of 16 500 high-affinity sites (Kd = 813 pM) and 53 000 low-affinity sites (Kd = 23 nM) per cell. The cultured cells demonstrated a glycogenic response to insulin, with an estimated ED50 of 120 pM. The degree of glycogenic response to insulin varied with time in culture: 500% above basal on day 1, 200% on day 2, and only 150% on day 3. Cultured foetal cells also exhibited a time-dependent uptake of 2-aminoisobutyric acid, which, in contrast with previous reports with adult cells, was not stimulated by the presence of 10 nM-insulin. Cultured foetal hepatocytes may provide an interesting model with which to study the relationship between insulin-receptor binding and insulin action.  相似文献   

13.
1. The efficiency of the contribution of hexoses to basal- and stimulated-glycogenesis, when studied in cultured 18 day-old rat foetal hepatocytes in the presence of glucose, was as follows: galactose greater than glucose greater than fructose. 2. Glucose deprivation had opposite effects on the contributions of [14C]galactose (decreased) and [14C]fructose (increased) to glycogenesis, which occurred independently of insulin and were reversed by glucose concentrations as low as 30-100 microM. 3. The stimulation of glycogenesis by insulin measured with [14C]glucose (3.2-fold) was superior to that obtained with either [14C]galactose or [14C]fructose (2.7-fold in both cases), which revealed a specific beneficial effect of insulin on glucose contribution.  相似文献   

14.
The pathways of glycogen synthesis from glucose were studied using double-isotope procedures in 18-day cultured foetal-rat hepatocytes in which glycogenesis is strongly stimulated by insulin. When the medium containing 4 mM-glucose was supplemented with [2-3H,U-14C]glucose or [3-3H,U-14C]glucose, the ratios of 3H/14C in glycogen relative to that in glucose were 0.23 +/- 0.04 (n = 6) and 0.63 +/- 0.09 (n = 8) respectively after 2 h. This indicates that more than 75% of glucose was first metabolized to fructose 6-phosphate, whereas 40% reached the step of the triose phosphates prior to incorporation into glycogen. The stimulatory effect of 10 nM-insulin on glycogenesis (4-fold) was accompanied by a significant increase in the (3H/14C in glycogen)/(3H/14C in glucose) ratio with 3H in the C-2 position (0.29 +/- 0.05, n = 6, P less than 0.001) or in the C-3 position (0.68 +/- 0.09, n = 8, P less than 0.01) of glucose, whereas the effect of a 12 mM-glucose load (3.5-fold) did not alter these ratios. Fructose (4 mM) displaced [U-14C]glucose during labelling of glycogen in the presence and absence of insulin by 50 and 20% respectively, and produced under both conditions a similar increase (45%) in the (3H/14C in glycogen)/(3H/14C in glucose) ratio when 3H was in the C-2 position. 3-Mercaptopicolinate (1 mM), an inhibitor of gluconeogenesis from lactate/pyruvate, further decreased the already poor labelling of glycogen from [U-14C]alanine, whereas it increased both glycogen content and incorporation of label from [U-14C]serine and [U-14C]glucose with no effect on the relative 3H/14C ratios in glycogen and glucose with 3H in the C-3 position of glucose. These results indicate that an alternative pathway in addition to direct glucose incorporation is involved in glycogen synthesis in cultured foetal hepatocytes, but that insulin preferentially favours the classical direct route. The alternative foetal pathway does not require gluconeogenesis from pyruvate-derived metabolites, contrary to the situation in the adult liver.  相似文献   

15.
These experiments examined the effects of N-ethylmaleimide on insulin- and oxidant-stimulated sugar transport in soleus muscle in terms of the Thiol-Redox model for insulin-stimulated adipocyte sugar transport (Czech, M.P. (1976) J. Cell. Physiol. 89, 661-668). Brief exposure (1 min) to N-ethylmaleimide (0.3-10 mM) inhibited the stimulatory effect of insulin (0.1 U/ml) on D-[U-14C]xylose uptake by rat soleus muscle. N-Ethylmaleimide also inhibited the stimulatory effects of H2O2 (5 mM), diamide (0.2 mM) and vitamin K-5 (0.05 mM). This effect of N-ethylmaleimide on insulin action was paralleled by the inhibition of 125I-labelled insulin binding by the muscle. N-ethylmaleimide lowered muscle ATP; however, its effects on sugar transport and 125I-labelled insulin binding could be dissociated from its effect on ATP. Exposing muscles to insulin prior to N-ethylmaleimide did not abolish the inhibitory effect of sulphydryl blockade on insulin-stimulated sugar transport, but did reduce the effect of the inhibitor by 20-30%. Conversely, when muscles were first allowed to bind 125I-labelled insulin and then exposed to the inhibitor, there was no effect of N-ethylmaleimide on pre-bound insulin. Exposure to diamide or vitamin K-5 before N-ethylmaleimide (1 mM) attenuated the inhibitory effect of sulphydryl blockade but no protective effect was observed with H2O2. None of the oxidants protected against the inhibitory effect of 3 mM N-ethylmaleimide. It is concluded that there are two N-ethylmaleimide-sensitive sites involved in the activation of muscle sugar transport at the post-receptor level. One of these would appear to be similar to the Thiol-Redox site described in the adipocyte; the other site appears to be an essential sulphydryl group whose function does not involve oxidation to a disulphide.  相似文献   

16.
Cultured rat hepatocytes were used to characterize the relationship between cellular glycogen content and the basal rate, as well as response to insulin of glycogen synthesis. Depending on the concentration of medium glucose, glycogen-depleted monolayers accumulated glycogen between 24 and 48 h of culture up to the fed in vivo level. Insulin at 100 nM stimulated glycogen deposition 20-fold at 1 mM and 1.5-fold at 50 mM glucose. The rate of further glycogen storage decreased with time and increasing glycogen content. In hepatocytes preincubated with 1-50 mM glucose during 24-48 h, short-term basal and insulin-dependent incorporation of 10 mM [14C]glucose into glycogen was inversely related to the actual cellular glycogen content. This was not due to different intracellular dilution of the label, since the specific radioactivity of UDP-glucose was similar in all groups. 125I-Insulin binding indicated that insulin receptors were also not involved in this phenomenon. An inverse relationship was also found between glycogen content and the stimulation of glycogen synthase I activity by insulin, whereas the basal activity of the enzyme was dissociated from the rate of incorporation of [14C]glucose. Basal net glycogen deposition at 10 mM glucose was also inversely related to cellular glycogen; however, no such relation was evident in the presence of insulin due to the overlapping inhibition of glycogenolysis. These studies suggest that the glycogen-mediated inhibition of the activation of glycogen synthase I is operative in the cultured hepatocyte and leads to an apparent inverse relationship between the actual glycogen content and basal as well as insulin-dependent glycogenesis.  相似文献   

17.
We studied insulin degradation in human cultured lymphocytes (RPMI-1788 line) with a small but significant number of lysosomes under the electron microscope. Insulin degradation determined by the TCA solubility method was 64.6 +/- 1.2% (mean +/- SEM) at a trace concentration after the incubation with 2.0 x 10(7) cells (4.0 x 10(7) cells/ml) for 60 min at 37 degrees C. Because insulin degradation was 54.6 +/- 7.0% in the cell-free buffer in which 2.0 x 10(7) cells were previously incubated, most of the insulin was degraded outside of the cells. Gel filtration of the radioactive materials also revealed that most of the labeled insulin in the medium was degraded, and the main peak of the cell-associated radioactivities was intact labeled insulin. Chloroquine, a lysosomotropic agent, failed not only to increase insulin binding but also to decrease the insulin degradation. Other lysosomal protease inhibitors, antipain and leupeptin had also no effect on insulin degradation. In contrast, bacitracin (500 micrograms/ml) significantly decreased the insulin degradation analyzed by TCA solubility, receptor-rebinding, and the gel filtration method. These results suggest that insulin molecules are degraded by the enzymes leaked from the cells. The non-receptor mediated process, which is the bacitracin sensitive pathway, might be a general mechanism of insulin degradation in human cultured lymphocytes in vitro.  相似文献   

18.
Glycogen synthesis in isolated hepatocytes can occur from glucose both by a direct mechanism and by an indirect process in which glucose is first metabolized to C3 intermediates before use for glycogenesis via gluconeogenesis. We studied the incorporation into glycogen of glucose and the gluconeogenic substrate, fructose, in primary cultures of hepatocytes from fasted rats. In the presence of insulin, both glucose and fructose promoted net deposition of glycogen; however, fructose carbon was incorporated into glycogen to a greater extent than that from glucose. When glucose and fructose were administered simultaneously, the glycogenic utilization of glucose was stimulated 2-3-fold, and that of fructose was increased by about 50%. At constant hexose concentrations, the total incorporation of carbon, and the total accumulation of glycogen mass, from glucose and fructose when present together exceeded that from either substrate alone. Fructose did not change the relative proportion of glucose carbon incorporated into glycogen via the indirect (gluconeogenic) mechanism. The synergism of glucose and fructose in glycogen synthesis in isolated rat hepatocytes in primary culture appears to result from a decrease in the rate of degradation of newly deposited glycogen, owing to (i) decreased amount of phosphorylase a mediated by glucose and (ii) noncovalent inhibition of residual phosphorylase activity by some intermediate arising from the metabolism of fructose, presumably fructose 1-phosphate.  相似文献   

19.
Two human breast cancer cell lines (MCF 7 and T 47D) possess calcitonin-responsive adenylate cyclase systems. Suspended cells of both lines specifically bound 125I-labelled salmon calcitonin with mean dissociation constants of 1.7 nM (MCF 7) and 1.4 nM (T 47D); mean receptor numbers were 5300 and 24400 per cell respectively. Measurement of specific binding to MCF 7 cells was obscured by rapid and substantial degradation of the labelled hormone. Degradation of 125I-labelled salmon calcitonin: (i) was of high capacity; (ii) lacked the specificity displayed by 125I-labelled salmon calcitonin binding to the same cells; and (iii) was not related to binding since cell incubation supernatants retained full degrading activity. The degrading activity was inhibited by corticotropin (1-24)-tetracosapeptide, insulin and bacitracin. Inclusion of bacitracin in the incubation resulted in apparently fewer numbers of lower affinity receptors on MCF 7 cells, whereas these parameters were identical to T 47D cells incubated in the presence or absence of bacitracin. Eel [2-aminosuberic acid 1,7]-calcitonin was resistant to proteolysis in the presence of either cell line. Analysis of hormone-receptor interactions with calcitonin-responsive cells should take account of potent calcitonin-degrading activities in some cell lines.  相似文献   

20.
1. The uptake of 125I-labelled high density lipoproteins (HDL) in various organs of the rat was determined after an intravenous injection. The uptake of 125I-labelled polyvinylpyrrolidone in the same organs was determined in order to assess uptake by fluid endocytosis. The uptake/organ was highest for the liver. The adrenals showed the highest uptake/unit weight of the organs studied. The liver, the kidneys and the spleen showed comparable values for uptake/g of tissue. The uptake of 125I-labelled HDL exceeded by far that of 125I-labelled polyvinylpyrrolidone in the liver, the kidneys, the spleen and the adrenals, indicating that the uptake of 125I-labelled HDL was mediated by adsorptive endocytosis. 2. The in vivo uptake of 125I-labelled HDL was determined in purified hepatocytes and non-parenchymal cells prepared by collagenase perfusion of livers from animals after intravenous injections of 125I-labelled HDL. When expressed per cell, the hepatocytes and the non-parenchymal liver cells took up about the same amount of 125I-labelled HDL. 3. The in vitro uptake and degradation of 125I-labelled HDL in isolated rat hepatocytes was studied. The uptake at increasing concentrations of 125I-labelled HDL was saturable indicating uptake mediated through binding sites. 125I-labelled HDL were easily degraded by contaminating proteases from the perfusate. 4. Subcellular fractionation by isopycnic centrifugation indicated that the accumulation of 125I-labelled HDL did not take place in the lysosomes, but rather on the plasma membrane and possibly in the endosomes (phagosomes). 5. 125I-labelled HDL were internalized into the cells and degraded in the lysosomes. Leupetin and chloroquine, inhibitors of the lysosomal function effectively inhibited the formation of 125I-labelled acid-soluble radioactivity by the cells. Chloroquine, but not the protease inhibitor leupeptin, reduced the hydrolysis of the cholesteryl ester moiety of HDL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号