首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Canada thistle (Cirsium arvense) (L.) Scop, is an almost perfectly dioecious, perennial plant that can express strong vegetative reproduction by means of its extensive root system. We explore some of the consequences of this type of reproductive strategy on the plant's pollination success, its ability to allocate resources to individual achenes, its ability to abort excess achenes, and on how pollen limitation affects the primary sex ratio of its offspring. Seed set in females is constrained by the availability of pollen. Clumps of female thistle isolated from males by at least 50 m set far fewer achenes per head than females that are interspersed with males. Even when such interspersion occurs, distance to nearest effective pollen donor correlates negatively with fertilization. Achene mass is significantly higher in plants that set fewer seed due to pollen limitation; however, the proportion of achenes that abort is not affected by the availability of pollen. Plants partially compensate for pollen limitation by maintaining stigmas in a receptive stage longer when pollination is sparse. Primary sex ratio is not affected by the availability of pollen; both high- and low-pollen availability treatments produced highly female-biased sex ratios.  相似文献   

2.
《Biological Control》2007,40(3):481-488
Biological control of Canada thistle using Puccinia punctiformis has been largely unsuccessful in part due to a low incidence of systemically infected shoots and heterogeneous distribution of teliospores in the soil. The present study investigated the feasibility of strategic mowing to improve incidence of systemically infected shoots, and enhance intra- and/or inter-season disease development in two unused pastures. Mid-season mowing of plots in July lead to a greater proportion of systemically infected shoots in experimental plots observed at seasons’ end compared to unmowed plots. Late-season mowing in September resulted in the highest levels of systemically infected shoots early the next summer. Over time, September mowing treatments significantly increased the proportion of systemically infected shoots compared to no mowing. The number of healthy shoots declined over time in mowed plots, whereas the number of healthy shoots in unmowed plots either increased or remained constant. These effects were observed in experimental plots in both pastures. It is proposed that mowing followed by regrowth of systemically infected shoots may help overcome the monocyclic nature of the pathogen and enhance severity of this disease.  相似文献   

3.
4.
A laboratory colony of 50 adults ofAltica carduorum Guérin-Méneville was established at South Dakota State University. Beetles reared in this colony had an average preoviposition period of 7 days when exposed to a regular cycle of 16 hr of light (24°C) and 8 hr of darkness (12.7°C). The laboratory reared females, whose longevity averaged 100 days, laid an average of 259.3±9.7 eggs. High temperatures and/or low RH are limiting factors to beetle survival. In the field eggs were laid throughout June on the underside of leaves along the edges of the veins. Adults fed throughout the summer and then over-wintered in the soil. Some of these beetles emerged the following spring and laid viable eggs. Factors limiting establishment in South Dakota, however, were high temperatures, low humidities, and the predators,Lebia viridis Say andHarpalus pennsylvanicus Degeer.A. carduorum originates from the Swiss Rhône valley where there is a relatively “continental” climate, but is limited to special habitats where comparatively high humidity occurs. South Dakota climate is characterized by cold winters, and hot, dry summers, therefore establishment would be most difficult.  相似文献   

5.
Canada thistle (Cirsium arvense) is one of the worst weeds in temperate areas of the world. A rust fungus, Puccinia punctiformis, was first proposed as a biological control agent for C. arvense in 1893. The rust causes systemic disease which ultimately kills C. arvense plants. In 2013 it was demonstrated in four countries, that inoculation of C. arvense rosettes in the fall with ground telia-bearing leaves can initiate epidemics of systemic rust disease with an average of 28% of inoculated rosettes producing a systemically diseased shoot the following spring. Other rosettes that emerged near inoculation points in spring were stunted and appeared diseased. To determine whether other rosettes were diseased, a chemiluminescence western slot blot test, applying polyclonal antibodies raised against P. punctiformis antigens, was developed to detect the fungus in roots. Rosettes were inoculated with telia-bearing leaves in the fall in Maryland, USA and Veroia, Greece. Roots of asymptomatic rosettes that emerged adjacent to inoculation points the following spring were tested for the presence of the fungus with the slot blot test. Rosettes that had diseased shoots were recorded. Based on the slot blot tests, 50–60% of the asymptomatic rosettes adjacent to inoculation points were positive for presence of the rust and likely to be systemically diseased. To demonstrate that systemic disease leads to C. arvense decline, C. arvense shoot densities were measured annually at 10 sites, in three countries, that had been inoculated with telia-bearing leaves in the fall between 2008 and 2012. Changes in C. arvense shoot densities over time were calculated. Average reductions in C. arvense density across the 10 sites were 43.1 ± 10.0% at 18 months after inoculation, 63.8 ± 8.0% at 30 months after inoculation, and 80.9 ± 16.5% at 42 months after inoculation, and 72.9 ± 27.2% at 54 months after inoculation; the 54 month reduction was, however, based on only two sites.  相似文献   

6.
D. P. Peschken 《BioControl》1977,22(4):425-428
Altica carduorum Guérin-Méneville, a biological control agent against creeping thistle (Cirsium arvense (L.)Scop.) was released in Canada on 2 climatically contrasting release sites. Predation at the southern site, aggravated by slow egg and larval development, and low temperatures at the northern site prevented establishment. Reports from other releases in Canada, Britain and South Dakota are discussed.
Résumé Altica carduorum Guérin-Melville, ennemi naturel du chardon des champsCirsium arvense (L.)Scop. a été laché au Canada dans 2 régions de climat différent. Il n'y a pas eu d'acclimatation à cause de la prédation dans la localité méridionale; dans le site septentrional ce phénomène a été aggravé par un développement embryonnaire et larvaire lent et par de basses températures. Les données sur d'autres lachers faits au Canada, en Grande-Bretagne et dans le Dakota du Sud sont discutées.
  相似文献   

7.
The response of plant species to future atmospheric carbon dioxide concentrations [CO(2)] has been determined for hundreds of crop and tree species. However, no data are currently available regarding the response of invasive weedy species to past or future atmospheric [CO(2)]. In the current study, the growth of six species which are widely recognized as among the most invasive weeds in the continental United States, Canada thistle (Cirsium arvense (L.) Scop.), field bindweed (Convolvulus arvensis L.), leafy spurge (Euphorbia esula L.), perennial sowthistle (Sonchus arvensis L.), spotted knapweed (Centaurea maculosa Lam.), and yellow star thistle (Centaurea solstitialis L.) were grown from seed at either 284, 380 or 719 micromol mol(-1) [CO(2)] until the onset of sexual reproduction (i.e. the vegetative period). The CO(2) concentrations corresponded roughly to the CO(2) concentrations which existed at the beginning of the 20th century, the current [CO(2)], and the future [CO(2)] projected for the end of the 21st century, respectively. The average stimulation of plant biomass among invasive species from current to future [CO(2)] averaged 46%, with the largest response (+72%) observed for Canada thistle. However, the growth response among these species to the recent [CO(2)] increase during the 20th century was significantly higher, averaging 110%, with Canada thistle again (+180%) showing the largest response. Overall, the CO(2)-induced stimulation of growth for these species during the 20th century (285-382 micromol mol(-1)) was about 3x greater than for any species examined previously. Although additional data are needed, the current study suggests the possibility that recent increases in atmospheric CO(2) during the 20th century may have been a factor in the selection of these species.  相似文献   

8.
Avis PG  Charvat I 《Mycologia》2005,97(2):329-337
The inoculum of ectomycorrhizal (EM) fungi was examined in a 16 y long nitrogen fertilization experiment maintained in a temperate oak savanna. To measure EM fungal inoculum, bur oak seedlings were grown in three types of bioassays: (i) intact soil cores that measure inoculum such as spores, mycelia and mycorrhizal roots; (ii) resistant propagule bioassays that measure inoculum types resistant to soil drying; and (iii) previously mycorrhizal root bioassays that measure the ability of EM fungi to colonize new roots from mycorrhizal roots. Colonization of bur oak seedlings was characterized by morphotyping and where necessary by restriction analysis and internal transcribed spacer (ITS) sequencing. Fourteen morphotypes were found in intact soil core bioassays with species of Cortinarius, Cenococcum and Russula abundant. Five morphotypes were found in resistant propagule bioassays with Cenococcum, a thelephoroid morphotype and a Wilcoxina-like ascomycete abundant and frequent. In intact soil core bioassays total percent root colonization and number of morphotypes were not affected by N supply in 2000 and 2001. However the composition of EM fungi colonizing oak seedling roots was different with increased N supply such that Russula spp. (primarily Russula aff. amoenolens) were most abundant at the highest level of N supply. Dominant Russula spp. did not colonize any roots in resistant propagule bioassays but did colonize oak seedling roots from previously mycorrhizal roots. Results suggest that in this savanna N supply can influence the kinds of inoculum propagules present and thereby might affect the dynamics of ectomycorrhizal communities by differentially influencing reproductive and colonization strategies.  相似文献   

9.
10.
Resource competition is commonly invoked to explain negative effects of invasive plants on native plant abundance. If invasives out-compete natives, global changes that elevate resource availability may interact with invasives to exacerbate impacts on native communities. Indeed, evidence is accumulating that elevated CO2 and N deposition decrease native biomass and simultaneously increase invasive biomass. However, superior competitive ability, and a relative increase in the magnitude of invasive impacts under elevated resource availability, remain to be definitively proven. Using model, multi-species, multi-individual riparian plant communities, where planting density was maintained by replacement of native with exotic individuals, we conducted a greenhouse, competition experiment using native (to the UK) and invaded communities exposed to ambient and elevated CO2 (CO2 experiment) or N availability (N experiment). We tested two hypotheses: (1) invasives are superior competitors to natives at ambient atmospheric CO2 and N deposition; (2) negative effects of invasives on natives are exacerbated under elevated CO2 or N availability. Our results provide some support for the first hypothesis: in the CO2 experiment native biomass was significantly lower in invaded communities. In the N experiment, native biomass was unaffected by the presence of exotics but other characteristics (e.g. root:shoot ratios) were altered. Differences in light availability between the experiments may have modified the effects of the invasives on the native assemblages but our design did not permit us to determine this definitively. The hypothesis that elevated CO2 and N availability benefit invasives at the expense of natives was not supported by our results. This may be explained either because the invasives showed minor responses to the resource manipulations or because native and exotic species were differentially limited by CO2 and N. Our results confirm the expectation that invasives alter the characteristics of native assemblages but lead us to question whether elevated resource availability will magnify these effects.  相似文献   

11.
Summary The tephritid fly Urophora cardui induces a large multi-chambered gall within the stems of Cirsium arvense. Three distinct phases of gall development have been identified as initiation, growth, and maturation. During initiation the insect gains control of tissue development and during the gall's growth phase parenchyma cells proliferate rapidly surrounding the larvae with thick layers of cells. Patches of primary nutritive cells appear along the surface of larval chambers during the growth phase but few of these cells are consumed. In the gall's maturation phase, thick layers of secondary nutritive cells appear around the surface of larval chambers and the remaining gall parenchyma lignifies. Secondary nutritive cells are the primary food of U. cardui.The gall expands rapidly during the growth phase then abruptly slows at the beginning of the maturation phase. Rate of gall growth is dependent upon the number of larvae per gall but the number of larvae does not affect duration of this phase.Larvae remain in the second instar throughout the growth phase and grow slowly. Once the gall enters the maturation phase and the secondary nutritive cells appear, the larvae moult to the third instar and grow quickly. Larvace attain over 98% of their final weight during the maturation phase and consume all secondary nutritive cells.It is postulated that larvae do not feed extensively on primary nutritive cells since these cells play a key role in gall morphogenesis. The appearance of secondary nutritive cells stimulates larval feeding at a time when gall growth and development is finished.  相似文献   

12.
The cost of nitrogen storage to current growth was examined in relation to N availability in the biennial Cirsium vulgare. Plants were grown outdoors, in sand culture, with continuous diel drip irrigation of fertilization medium containing one of five different N concentrations. Plants grown at the highest N concentration stored twice as much N in their tap roots as did plants grown at the lowest N concentration. In high-N-grown plants, the storage of N reserves occurred during the period of maximum growth, at the same time as tap-root production. At the time of maximum biomass, stored N was also at a maximum. During the period following maximum biomass, no additional storage of N occurred. This pattern was observed despite frequent late-season leaf senescence which resulted in a large pool of potentially mobile N which could have been stored at no cost to growth. In low-N-grown plants, the production of tap-root storage tissue and the filling of that tissue with stored N were staggered. Tap-root production and growth occurred during the period of maximum growth, as in the high-N-grown plants. However, filling of the storage tissue with N occurred late in the growing season, when the pool of mobile N from senescent leaves was large. The utilization of this late-season N source occurred with little or no cost to growth, and this N is labelled, according to previous definitions, as ‘accumulated’. The costs of storing N in plants of the different N treatments were calculated using two models based on different growth constraints. In one model, the cost of N storage was represented as lost growth due to allocation of N to storage, rather than to the photosynthetic shoot (i.e. growth was assumed to be limited by carbon acquisition). In the second model, the storage cost was calculated as lost growth due to allocation of N to storage, rather than to the nitrogen-acquiring fine-root system (i.e. growth was assumed to be limited by nitrogen acquisition). In both models, the total cost of N storage was predicted to decrease as N availability decreased due to smaller storage pool sizes in plants of the low-N treatments. The cost of filling the tap root with stored N as a percentage of the total storage cost was also reduced as N availability decreased due to the occurrence of late-season accumulation. By relying, at least in part, on late-season accumulation, plants grown at the lowest three levels of N availability reduced total storage costs by 15 to 22%. The results demonstrate that plants are capable of adjusting their storage patterns in response to low nitrogen availability such that the costs of storage are reduced.  相似文献   

13.
The phytophagous ladybird beetle, Epilachna pustulosa Kôno occurs mainly on the thistle Cirsium kamtschaticum Ledeb. In recent years, we have confirmed feeding and oviposition by E.pustulosa, and some degree of larval development of this beetle, on a naturalized congeneric thistle, Cirsium vulgare (Savi) Tenore. In this study, we assessed the host suitability of C.vulgare for E.pustulosa, using larval rearing and simple food choice tests, by comparing the performance on, and preference for, their legitimate host C.kamtschaticum. All experiments were initiated in July, when the utilization of C.vulgare by E.pustulosa became obvious. For larval performance, E.pustulosa showed a lower eclosion rate, shorter developmental duration and smaller body size when reared on C.vulgare than on C.kamtschaticum. Cirsium vulgare appeared to be a less adequate larval food than C.kamtschaticum. Adult feeding preference was altered seasonally; females preferred C.kamtschaticum to C.vulgare in a food choice test conducted in early July, whereas they showed the opposite preference in tests conducted in mid and late July. The utilization of C.vulgare by E.pustulosa appeared to be induced by qualitative deterioration of C.kamtschaticum leaves in July, which resulted in increased dispersion of adult beetles.  相似文献   

14.
In two experiments, winter wheat (Triticum aestivum cv. Cerco) was grown in 350 (ambient) and 700 μmol mol-1 (elevated) atmospheric CO2 concentrations. In the first experiment, plants were grown at five levels of nitrogen fertilization, and in the second experiment, plants were grown at three levels of water supply. All plants were infected with powdery mildew, caused by the fungus Erysiphe graminis. Plants grown in elevated atmospheric CO2 concentrations had significantly reduced % shoot nitrogen contents and significantly increased % shoot water contents. At elevated atmospheric CO2 concentrations, where plant nitrogen content was significantly reduced, the severity of mildew infection was significantly reduced, and where host water content was significantly increased, the severity of mildew infection was significantly increased. In a moderate water supply treatment, the plants grown in elevated atmospheric CO2 concentrations had significantly reduced nitrogen contents (9·9%) and significantly increased water content (4%), the amount of mildew infection was unchanged. The severity of mildew infection appeared to be more sensitive to host water content than to host nitrogen content.  相似文献   

15.
Powdery mildew diseases are sensitive to climate change and spread can be favored by increased temperature and low moisture. During 2011 to 2012, a powdery mildew disease by a Podosphaera species was observed on the leaves of Japanese thistle (Cirsium japonicum) in Korea. The initial sign of this disease included scattered superficial white mycelia on leaves. As the disease progressed, abundant necrotic black spots exhibiting chasmothecia were formed on the leaves. rDNA ITS and 28S homologies of the fungus (EML-CSPW1) showed 100% identity values with those regions from many strains of P. xanthii (syn. P. fusca) via NCBI BLASTN search.  相似文献   

16.
Abstract. Herbaceous C3 plants grown in elevated CO2 show increases in carbon assimilation and carbohydrate accumulation (particularly starch) within source leaves. Although changes in the partitioning of biomass between root and shoot occur, the proportion of this extra assimilate made available for sink growth is not known. Root:shoot ratios tend to increase for CO2-enriched herbaceous plants and decrease for CO2-enriched trees. Root:shoot ratios for cereals tend to remain constant. In contrast, elevated temperatures decrease carbohydrate accumulation within source and sink regions of a plant and decrease root:shoot ratios. Allometric analysis of at least two species showing changes in root: shoot ratios due to elevated CO2 show no alteration in the whole-plant partitioning of biomass. Little information is available for interactions between temperature and CO2. Cold-adapted plants show little response to elevated levels of CO2, with some species showing a decline in biomass accumulation. In general though, increasing temperature will increase sucrose synthesis, transport and utilization for CO2-enriched plants and decrease carbohydrate accumulation within the leaf. Literature reports are discussed in relation to the hypothesis that sucrose is a major factor in the control of plant carbon partitioning. A model is presented in support.  相似文献   

17.
Plants of Cirsium vulgare (Savi) Ten. were cultivated under five different nitrogen regimes in order to investigate the effects of nitrogen supply on the storage processes in a biennial species during its first year of growth. External N supply increased total biomass production without changing the relationship between ‘productive plant compartments’ (i.e. shoot plus fine roots) and ‘storage plant compartments’ (i.e. structural root dry weight, which is defined as the difference between tap root biomass and the amount of stored carbohydrates and N compounds). The amount of carbohydrates and N compounds stored per unit of structural tap root dry weight was not affected by external N availability during the season, because high rates of N supply increased the concentration of N compounds whilst decreasing the carbohydrate concentration, and low rates of N supply had the opposite effect. Mobilization of N from senescing leaves was not related to the N status of the plants. The relationship between nitrogen compounds stored in the tap root and the maximum amount of nitrogen in leaves was an increasing function with increasing nitrogen supply. We conclude that the allocation between vegetative plant growth and the growth of storage structures over a wide range of N availability seems to follow predictions from optimum allocation theory, whereas N storage responds in a rather plastic way to N availability.  相似文献   

18.
Lincoln  D. E. 《Plant Ecology》1993,(1):273-280
The carbon/nutrient ratio of plants has been hypothesized to be a significant regulator of plant susceptibility of leaf-eating insects. As rising atmospheric carbon dioxide stimulates photosynthesis, host plant carbon supply is increased and the accompanying higher levels of carbohydrates, especially starch, apparently dilute the protein content of the leaf. When host plant nitrogen supply is limited, plant responses include increased carbohydrate accumulation, reduced leaf protein content, but also increased carbon-based defensive chemicals. No change, however, has been observed in the concentration of leaf defensive allelochemicals with elevated carbon dioxide during host plant growth. Insect responses to carbon-fertilized leaves include increased consumption with little change in growth, or alternatively, little change in consumption with decreased growth, as well as enhanced leaf digestibility, reduced nitrogen use efficiency, and reduced fecundity. The effects of plant carbon and nutrient supply on herbivores appear to result, at least in part, from independent processes affecting secondary metabolism.  相似文献   

19.
Vochysia divergens Pohl is considered to be a flood-adapted, light-demanding pioneer species that has been invading grasslands of the Brazilian Pantanal. In these areas, a successful invasion requires an ability to tolerate physiologically wide fluctuations in surface hydrology and shading induced by a dense cover of grasses and other vegetation. We evaluated how flooding and shading affected the photosynthetic performance of V. divergens saplings by measuring light-saturated gas exchange (net photosynthetic rate, P N; stomatal conductance, g s), and intercellular CO2 (P N/C i) and photosynthetic photon flux density (P N/PPFD) response curves over a 61-d field experiment. Shading and flooding reduced significantly light-saturated P N and g s and affected multiple aspects of the leaf gas exchange response of V. divergens to variations in PPFD and CO2. Flooding influenced the physiology of this species more than shading. Given the success of V. divergens at invading and expanding in seasonally flooded areas of the Pantanal, the results were surprising and highlighted the physiological ability of this species to tolerate suboptimal conditions. However, the consistently higher light-saturated P N and g s under nonflooded conditions suggested that the invasive success of V. divergens might not be related to its physiological potential during flooding, but to situations, when flooding recedes during the dry season and soil water availability is adequate.  相似文献   

20.
Interactive effects of elevated atmospheric CO2 and arbuscular mycorrhizal (AM) fungi on biomass production and N2 fixation were investigated using black locust ( Robinia pseudoacacia ). Seedlings were grown in growth chambers maintained at either 350 μmol mol−1 or 710 μmol mol−1 CO2. Seedlings were inoculated with Rhizobium spp. and were grown with or without AM fungi. The 15N isotope dilution method was used to determine N source partitioning between N2 fixation and inorganic fertilizer uptake. Elevated atmospheric CO2 significantly increased the percentage of fine roots that were colonized by AM fungi. Mycorrhizal seedlings grown under elevated CO2 had the greatest overall plant biomass production, nodulation, N and P content, and root N absorption. Additionally, elevated CO2 levels enhanced nodule and root mass production, as well as N2 fixation rates, of non- mycorrhizal seedlings. However, the relative response of biomass production to CO2 enrichment was greater in non-mycorrhizal seedlings than in mycorrhizal seedlings. This study provides strong evidence that arbuscular mycorrhizal fungi play an important role in the extent to which plant nutrition of symbiotic N2-fixing tree species is affected by enriched atmospheric CO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号