首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The most commonly quoted mechanism of the coupling between the electrochemical proton gradient and the formation of ATP from ADP and Pi assumes that all states of the F1 portion of the ATP synthase have subunits in tight, loose, and open conformations. Models based on this assumption are inconsistent with some of the available experimental evidence. A mechanism that includes an additional subunit conformation, closed, observed in the rat liver structure overcomes these difficulties.  相似文献   

2.
Escherichia coli ATP synthase has eight subunits and functions through transmission of conformational changes between subunits. Defective mutation at Gly-149 was suppressed by the second mutations at the outer surface of the subunit, indicating that the defect by the first mutation was suppressed by the second mutation through long range conformation transmission. Extensive mutant/pseudorevertant studies revealed that / and / subunits interactions are important for the energy coupling between catalysis and H+ translocation. In addition, long range interaction between amino and carboxyl terminal regions of the subunit has a critical role(s) for energy coupling. These results suggest that the dynamic conformation change and its transmission are essential for ATP synthase.  相似文献   

3.
ATP synthases are motor complexes comprised of F0 and F1 parts that couple the proton gradient across the membrane to the synthesis of ATP by rotary catalysis. Although a great deal of information has been accumulated regarding the structure and function of ATP synthases, their motor functions are not fully understood. For this reason, we performed the alignments and analyses of the protein sequences comprising the core of the ATP synthase motor complex, and examined carefully the locations of the conserved residues in the subunit structures of ATP synthases. A summary of the findings from this bioinformatic study is as follows. First, we found that four conserved regions in the sequence of subunit are clustered into three patches in its structure. The interactions of these conserved patches with the and subunits are likely to be critical for energy coupling and catalytic activity of the ATP synthase. Second, we located a four-residue cluster at the N-terminal domain of mitochondrial OSCP or bacterial (or chloroplast) subunit which may be critical for the binding of these subunits to F1. Third, from the localizations of conserved residues in the subunits comprising the rotors of ATP synthases, we suggest that the conserved interaction site at the interface of subunit c and (mitochondria) or (bacteria and chloroplasts) may be important for connecting the rotor of F1 to the rotor of F0. Finally, we found the sequence of mitochondrial subunit b to be highly conserved, significantly longer than bacterial subunit b, and to contain a shorter dimerization domain than that of the bacterial protein. It is suggested that the different properties of mitochondrial subunit b may be necessary for interaction with other proteins, e.g., the supernumerary subunits.  相似文献   

4.
The mitochondrial ATP synthases shares many structural and kinetic properties with bacterial and chloroplast ATP synthases. These enzymes transduce the energy contained in the membrane's electrochemical proton gradients into the energy required for synthesis of high-energy phosphate bonds. The unusual three-fold symmetry of the hydrophilic domain, F1, of all these synthases is striking. Each F1 has three identical subunits and three identical subunits as well as three additional subunits present as single copies. The catalytic site for synthesis is undoubtedly contained in the subunit or an , interface, and thus each enzyme appears to contain three identical catalytic sites. This review summarizes recent isotopic and kinetic evidence in favour of the concept, originally proposed by Boyer and coworkers, that energy from the proton gradient is exerted not directly for the reaction at the catalytic site, but rather to release product from a single catalytic site. A modification of this binding change hypotheses is favored by recent data which suggest that the binding change is due to a positional change in all three subunits relative to the remaining subunits of F1 and F0 and that the vector of rotation is influenced by energy. The positional change, or rotation, appears to be the slow step in the process of catalysis and it is accelerated in all F1F0 ATPases studied by substrate binding and by the proton gradient. However, in the mammalian mitochondrial enzyme, other types of allosteric rate regulation not yet fully elucidated seem important as well.  相似文献   

5.
ATP synthases are unusually complex molecules, which fractionate most readily into two major units, one a water soluble unit called F1 and the other a detergent soluble unit called F0. In almost all known species the F1 unit consists of 5 subunit types in the stoichiometric ratio 33 while the F0 unit contains 3 subunit types (a, b, and c) in E. coli, and at least 10 subunit types (a, b, c, and others) in higher animals. It is now believed by many investigators that during the synthesis of ATP, protons derived from an electrochemical gradient generated by an electron transport chain are directed through the F0 unit in such a way as to drive the rotation of the single subunit, which extends from an oligomeric ring of at least 10 c subunits in F0 through the center of F1. It is further believed by many that the rotating subunit, by interacting sequentially with the 3 pairs of F1 (360° cycle) in the presence of ADP, Pi, and Mg++, brings about via power strokes conformational/binding changes in these subunits that promote the synthesis of ATP and its release on each pair. In support of these views, studies in several laboratories either suggest or demonstrate that F0 consists in part of a proton gradient driven motor while F1 consists of an ATP hydrolysis driven motor, and that the subunit does rotate during F1 function. Therefore, current implications are that during ATP synthesis the former motor drives the latter in reverse via the subunit. This would suggest that the process of understanding the mechanism of ATP synthases can be subdivided into three major levels, which include elucidating those chemical and/or biophysical events involved in (1) inducing rotation of the subunit, (2) coupling rotation of this subunit to conformational/binding changes in each of the 3 pairs, and (3) forming ATP and water (from ADP, Pi, and Mg++) and then releasing these products from each of the 3 catalytic sites. Significantly, it is at the final level of mechanism where the bond breaking/making events of ATP synthesis occur in the transition state, with the former two levels of mechanism setting the stage for this critical payoff event. Nevertheless, in order to get a better grip in this new century on how ATP synthases make ATP and then release it, we must take on the difficult challenge of elucidating each of the three levels of mechanism.  相似文献   

6.
This introductory article briefly summarizes how our views about the structural features ofATP synthases (F0F1) have evolved over the past 30 years and also reviews some of our currentviews in the year 2000 about the structures of these remarkably unique enzyme complexes.Suffice it to say that as we approach the end of the first year of this new millinium, we canbe conservatively confident that we have a reasonably good grasp of the overall low-resolutionstructural features of ATP synthases. Electron microscopy techniques, combined with the toolsof biochemistry, molecular biology, and immunology, have played the leading role here byidentifying the headpiece, basepiece, central stalk, side stalk, cap, and in the mitochondrialenzyme, the collar around the central stalk. We can be reasonably confident also that we havea fairly good grasp of much of the high-resolution structural features of both the F1 moietycomprised of fives subunit types (, , , , and ) and parts of the F0 moiety comprised ofeither three (E. coli) or at least ten (mitochondria) subunit types. This information acquiredin several different laboratories, either by X-ray crystallography or NMR spectroscopy, includesdetails about the active site and subunit relationships. Moreover, it is consistent with recentlyreported data that the F1 moiety may be an ATP driven motor, which, during ATP synthesis,is driven in reverse by the electrochemical proton gradient generated by the electron transportchain. The real structural challenges of the future are to acquire at high resolution completeATP synthase complexes representative of different stages of the catalytic cycle during ATPsynthesis and representative also of key regulatory states.  相似文献   

7.
The catalytic transition state of ATP synthase has been characterized and modeled by combined use of (1) Mg-ADP–fluoroaluminate, Mg-ADP–fluoroscandium, and corresponding Mg-IDP–fluorometals as transition-state analogs; (2) fluorescence signals of -Trp331 and -Trp148 as optical probes to assess formation of the transition state; (3) mutations of critical catalytic residues to determine side-chain ligands required to stabilize the transition state. Rate acceleration by positive catalytic site cooperativity is explained as due to mobility of -Arg376, acting as an arginine finger residue, which interacts with nucleotide specifically at the transition state step of catalysis, not with Mg-ATP- or Mg-ADP-bound ground states. We speculate that formation and collapse of the transition state may engender catalytic site / subunit-interface conformational movement, which is linked to -subunit rotation.  相似文献   

8.
The chloroplast ATP synthase is strictly regulated so that it is very active in the light (rates of ATP synthesis can be higher than 5 mol/min/mg protein), but virtually inactive in the dark. The subunits of the catalytic portion of the ATP synthase involved in activation, as well as the effects of nucleotides are discussed. The relation of activation to proton flux through the ATP synthase and to changes in the structure of enzyme induced by the proton electrochemical gradient are also presented. It is concluded that the and subunits of CF1 play key roles in both regulation of activity and proton translocation.  相似文献   

9.
Recent studies of chemically modified F1-ATPases have provided new information that requires a revision of our thinking on their catalytic mechanism. One of the subunits in F1-ATPase is distinguishable from the other two both structurally and functionally. The catalytic site and regulatory site of the same subunit are probably sufficiently close to each other, and the interaction between the various catalytic and regulatory sites are probably sufficiently strong to raise the uni-site rate of ATP hydrolysis by several orders of magnitude to that of promoted (multi-site) ATP hydrolysis. Although all three subunits in F1 possess weak uni-site ATPase activity, only one of them () catalyzes promoted ATP hydrolysis. But all three subunits catalyze ATP synthesis driven by the proton flux. Internal rotation of the 33 or 3 moiety relative to the remainder of the F0F1 complex did not occur during oxidative phosphorylation by reconstituted submitochondrial particles.  相似文献   

10.
The catalytic portion (F1) of ATP synthases have the subunit composition 3, 3, , , . This composition imparts structural asymmetry to the entire complex that results in differences in nucleotide binding affinity among the six binding sites. Evidence that two or more sites participate in catalysis, alternating their properties, led to the notion that the interactions of individual pairs with the small subunits must change as binding site properties alternate. A rotation of the subunit within the 33 hexamer has been proposed as a means of alternating the properties of catalytic sites. Evidence argues that the rotation of the complete subunit during ATP hydrolysis is not mandatory for activity. The subunit of chloroplast F1 may be cleaved into three large fragments that remain bound to F1. This cleavage enhances ATPase activity without loss of evidence of site-site interactions. Complexes of 33 have been shown to have significant ATPase activity in the absence of . Mg2+ATP affects the interaction of with the different subunits, and induces other changes in F1, but whether these changes are induced by catalysis, or are fast enough to be involved in the catalytic turnover of the enzyme has not been established. Likewise, changes in structure and in binding site properties induced in thylakoid membrane bound CF1 by formation of an electrochemical proton gradient may activate the enzyme rather than be apart of catalysis. Mechanisms other than rotary catalysis should be considered.  相似文献   

11.
The contents of subunits I, II/III, and IV of cytochrome c oxidase and of subunits , and of FoF1 ATP synthase in inner mitochondrial membrane proteins purified from cerebral cortex of rat at 2, 6, 12, 18, 24, and 26 months of age were analyzed by western blot. Age-related changes in the content of subunits, either of mitochondrial or nuclear origin, were observed. All the cytochrome c oxidase (COX) subunits examined showed an age-related increase from 2-month-old rats up to 24 months with a decrease at the oldest age (26 months). The same pattern of age-dependent changes was observed for ATP synthase, while the and subunits increased progressively up to 26 months.  相似文献   

12.
The structure of theEscherichia coli ATP synthase has been studied by electron microscopy and a model developed in which the and subunits of the F1 part are arranged hexagonally (in top view) alternating with one another and surrounding a central cavity of around 35 Å at its widest point. The and subunits are interdigitated in side view for around 60 Å of the 90 Å length of the molecule. The F1 narrows and has three-fold symmetry at the end furthest from the F0 part. The F1 is linked to F0 by a stalk approximately 45 Å long and 25–30 Å in diameter. The F0 part is mostly buried in the lipid bilayer. The subunit provides a domain that extends into the central cavity of the F1 part. The and subunits are in a different conformation when ATP+Mg2+ are present in catalytic sites than when ATP+EDTA are present. This is consistent with these two small subunits switching conformations as a function of whether or not phosphate is bound to the enzyme at the position of the phosphate of ATP. We suggest that this switching is the key to the coupling of catalytic site events with proton translocation in the F0 part of the complex.  相似文献   

13.
The ATP synthase from Escherichia coli is a prototype of the ATP synthases that are found in many bacteria, in the mitochondria of eukaryotes, and in the chloroplasts of plants. It contains eight different types of subunits that have traditionally been divided into F1, a water-soluble catalytic sector, and Fo, a membrane-bound ion transporting sector. In the current rotary model for ATP synthesis, the subunits can be divided into rotor and stator subunits. Several lines of evidence indicate that is one of the three rotor subunits, which rotate through 360 degrees. The three-dimensional structure of is known and its interactions with other subunits have been explored by several approaches. In light of recent work by our group and that of others, the role of in the ATP synthase from E. coli is discussed.  相似文献   

14.
This article summarizes some of the evidence for the existence of light-driven structural changes in the and subunits of the chlorplast ATP synthase. Formation of a transmembrane proton gradient results in: (1) a change in the position of the subunit such that it becomes exposed to polyclonal antibodies and to reagents which selectively modifyLys109; (2) enhanced solvent accessibility of several sulfhydryl residues on the subunit; and (3) release/ exchange of tightly bound ADP from the enzyme. These and related experimental observations can, at least partially, be explained in terms of two different bound conformational states of the subunit. Evidence for structural changes in the enzyme which are driven by light or nucleotide binding is discussed with special reference to the popular rotational model for catalysis.  相似文献   

15.
The b subunit of ATP synthase is a major component of the second stalk connecting the F1and F0 sectors of the enzyme and is essential for normal assembly and function. The156-residue b subunit of the Escherichia coli ATP synthase has been investigated extensivelythrough mutagenesis, deletion analysis, and biophysical characterization. The two copies ofb exist as a highly extended, helical dimer extending from the membrane to near the top ofF1, where they interact with the subunit. The sequence has been divided into four domains:the N-terminal membrane-spanning domain, the tether domain, the dimerization domain, andthe C-terminal -binding domain. The dimerization domain, contained within residues 60–122,has many properties of a coiled-coil, while the -binding domain is more globular. Sites ofcrosslinking between b and the a, , , and subunits of ATP synthase have been identified,and the functional significance of these interactions is under investigation. The b dimer mayserve as an elastic element during rotational catalysis in the enzyme, but also directly influencesthe catalytic sites, suggesting a more active role in coupling.  相似文献   

16.
Clostridium rectum strain S-17 converts -1,2,3,4,5,6-hexachlorocyclohexane (HCH) related compounds to chlorobenzenes. The metabolites from -1,2,3,4,5,6-hexachlorocyclohexene and -1,3,4,5,6-pentachlorocyclohexene are identified as 1,2,4-trichlorobenzene and 1,4-dichlorobenzene, respectively. ATP synthesis, converting these chlorinated compounds, is observed in the cell suspension of C. rectum as indicated by luciferase-luciferin reaction and phosphorylation of 32P-labeled phosphate. These observation lead to the conclusion that HCH and related compounds serve as artificial electron acceptors of the Stickland reaction, and therefore, the reductive dechlorination is associated with ATP synthesis.Abbreviations HCH -1,2,3,4,5,6-hexachlorocyclohexane - HCCH -1,2,3,4,5,6-hexachlorocyclohexene - PCCH -1,3,4,5,6-pentachlorocyclohexene - TCCH -3,4,5,6-tetrachlorocyclohexene - 1,2,4-TCB 1,2,4-trichlorobenzene - 1,4-DCB 1,4-dichlorobenzene - MCB monochlorobenzene - DTT 1,4-dithiothreitol - IAA monoiodoacetic acid  相似文献   

17.
The ATP synthase complex of Klebsiella pneumoniae (KF1F0) has been purified and characterized. SDS-gel electrophoresis of the purified F1F0 complexes revealed an identical subunit pattern for E. coli (EF1F0) and K. pneumoniae. Antibodies raised against EF1 complex and purified EF0 subunits recognized the corresponding polypeptides of EF1F0 and KF1F0 in immunoblot analysis. Protease digestion of the individual subunits generated an identical cleavage pattern for subunits , , , , a, and c of both enzymes. Only for subunit different cleavage products were obtained. The isolated subunit c of both organisms showed only a slight deviation in the amino acid composition. These data suggest that extensive homologies exist in primary and secondary structure of both ATP synthase complexes reflecting a close phylogenetic relationship between the two enterobacteric tribes.Abbreviations ACMA 9-amino-6-chloro-2-methoxyacridine - DCCD N,N-dicyclohexylcarbodiimide - FITC fluorescein isothiocyanate - SDS sodium dodecyl sulfate - TTFB 4,5,6,7-tetrachloro-2-trifluoromethylbenzimidazole  相似文献   

18.
Summary Insulin binding to human placenta membranes treated at pH 7.6 or 8.5 in the presence or absence of 2.0mm DTT for 5 min, followed by the simultaneous removal of the DTT and pH adjustment to pH 7.6, displayed curvilinear (heterogeneous) insulin binding plots when analyzed by the method of Scatchard. However, Triton X-100 solubilization followed by Bio-Gel A-1.5m gel filtration chromatography of the placenta membranes previously treated with DTT at pH 8.5 generated a nearly straight line (homogeneous) Scatchard plot.125I-insulin affinity crosslinking studies coupled with Bio-Gel A-1.5m gel filtration chromatography demonstrated that the alkaline pH and DTT treatment of placenta membranes followed by detergent solubilization generated an heterodimeric insulin receptor complex from the 22 heterotetrameric disulfide-linked state. The ability of alkaline pH and DTT to produce a functional heterodimeric insulin receptor complex was found to be time dependent with maximal formation and preservation of tracer insulin binding occurring at 5 min. These data demonstrate that (i) a combination of alkaline pH and DTT treatment of placenta membranes can result in the formation of a functional heterodimeric insulin receptor complex. (ii) the heterodimeric complex displays homogeneous insulin binding. (iii) the insulin receptor membrane environment maintains the 22 association state, which displays heterogeneous insulin binding, despite reduction of the critical domains that are responsible for the covalent interaction between the heterodimers.Abbreviations used are ATP adenosine 5-triphosphate - DTT dithiothreitol - SDS sodium dodecyl sulfate - DSS disuccinimidyl suberate - NEM N-ethylmaleimide - IGF-I insulin-like growth factor-I - EDTA ethylenediaminetetraacetic acid - HEPES 4-(2-hydroxyethyl)-1-piperazine-ethanesulfonic acid  相似文献   

19.
Photosynthetic coupling factor ATPases (F1-ATPases) generally censist of five subunits named , , , and in order of decreasing apparent molecular weight. The isolated enzyme has a molecular weight of between 390,000 to 400,000, with the five subunits probably occurring in a 3:3:1:1:1 ratio. Some photosynthetic F1 ATPases are inactive as isolated and require treatment with protease, heat or detergent in order to elicit ATPase activity. This activity is sensitive to inhibition by free divalent cations and appears to be more specific for Ca2+ vs. Mg2+ as the metal ion substrate chelate. This preference for Ca2+ can be explained by the higher inhibition constant for inhibition of ATPase activity by free Ca2+. Methods for the assay of a Mg-dependent ATPase activity have recently been described. These depend on the presence of organic solvents or detergents in the reaction mixture for assay. The molecular mechanism behind the expression of either the Ca- or Mg-ATPase activities is unknown. F1-ATPases function to couple proton efflux from thylakoid membranes or chromatophores to ATP synthesis. The isolated enzyme may thus also be assayed for the reconstitution of coupling activity to membranes depleted of coupling factor 1.The functions of the five subunits in the complex have been deduced from the results of chemical modification and reconstitution studies. The subunit is required for the functional binding of the F1 to the F0. The active site is probably contained in the (and ) subunit(s). The proposed functions for the and subunits are, however, still matters of controversy. Coupling factors from a wide variety of species including bacteria, algae, C3 and C4 plants, appear to be immunologically related. The subunits are the most strongly related, although the and subunits also show significant immunological cross-reactivity. DNA sequence analyses of the genes for the subunit of CF1 have indicated that the primary sequence of this polypeptide is highly conserved. The genes for the polypeptides of CF1 appear to be located in two cellular compartments. The , and subunits are coded for on chloroplast DNA, whereas the and subunits are probably nuclear encoded. Experiments involving protein synthesis by isolated chloroplasts or protein synthesis in the presence of inhibitors specific for one or the other set of ribosomes in the cell suggest the existence of pools of unassembled CF1 subunits. These pools, if they do exist in vivo, probably make up no greater than 1% of the total CF1 content of the cell.Abbreviations AMP-PNP adenylyl 5 imidodiphosphate - bchl bacteriochlorophyll - CF1 chloroplast coupling factor 1 - CF1-CF0 the chloroplast ATP synthase complex - chl chlorophyll - CvF1 F1 from Chromatium vinosum - DCCD N, N-dicyclohexyl carbodiimide - EF1 the coupling factor 1 isolated from membranes of Escherichia coli - F0 the hydrophobic, integral membrane portion of the ATP synthase - F1 coupling factor 1, the extrinsic membrane portion of the ATP synthase - FSBA 5-p-fluorosulfonylbenzoyladenosine - Kd dissociation constant - ki inhibition constant - kii intercept inhibition constant - kis slope inhibition constant - LS large subunit of ribulose bisphosphate carboxylase - MF1 mitochondrial coupling factor 1 - M1F1 F1 from Mastigocladus laminosus - NBD-Cl 4-chloro-7-nitrobenzo-2-oxa-1,3-diazole - PAGE polyacrylamide gel electrophoresis - RcF1 F1 from Rhodopseudomonas capsulata - RpF1 F1 from Rhodopseudomonas palustris - RrF1 F1 from Rhodospirillum rubrum - RsF1 F1 from Rhodopseudomonas sphaeroides - SDS sodium dodecyl sulfate - S1F1 F1 from Synechococcus lividus - SpF1 F1 from Spirulina platensis - TF1 F1 from the thermophilic bacterium, PS3 - tricine N-tris (hydroxymethyl) methyl glycine - tris tris (hydroxymethyl)-amino methane; and - Vmax maximal velocity or maximal activity  相似文献   

20.
Summary Five subunits (-, -, -, - and -subunits) of the six -and -subunits) in the F1 portion (F1ATPase) of sweet potato (Ipomoea batatas) mitochondrial adenosine triphosphatase were isolated by an electrophoretic method. The - and -subunits were not distinguishable immunologically but showed completely different tryptic peptide maps, indicating that they were different molecular species. In vitro protein synthesis with isolated sweet potato root mitochondria produced only the -subunit when analyzed with anti-sweet potato F1ATPase antibody reacting with all the subunits except the -subunit. Sweet potato root poly(A)+RNA directed the synthesis of six polypeptides which were immunoprecipitated by the antibody: two of them immunologically related to the -subunit and the others to the - and -subunits. We conclude that the -subunit of the F1ATPase is synthesized only in the mitochondria and the -, - and -subunits are in the cytoplasm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号