首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pertussis toxin administered to rats resulted in a polyuric state that was due to enhanced renal water excretion. Pertussis toxin also induced a defect in renal water conservation. These abnormalities in renal water excretion could not be attributed to polydipsia, impaired synthesis and/or release of arginine vasopressin or renal tubular dysfunction with solute diuresis. No evidence of pertussis toxin-induced renal tubular damage was present. These results indicate that pertussis toxin induces nephrogenic diabetes insipidus and this defect occurs at the level of the renal collecting tubule.  相似文献   

2.
Circadian water and sodium excretion in patients with renal arterial stenosis is inverted, but if the fluid intake is reduced it can return to normal. The findings also furnish indirect evidence that changes in circadian water and sodium excretion in patients with renal arterial stenosis are related to the degree of hydration of the organism. When evaluating circadian water and sodium excretion in patients with renal arterial stenosis, the osmolarity (specific gravity) of the urine should thus be taken into account.  相似文献   

3.
The effect of water deprivation for 19 h on renal Na excretion of conscious adrenalectomized (ADX) sheep maintained on a constant intravenous infusion of aldosterone and cortisol (ADX-constant steroid sheep) was investigated. Both ADX and normal sheep showed large increases in renal Na excretion when they were deprived of water. ADX-constant steroid sheep also exhibited a normal postprandial natriuresis 3-6 h after feeding, whether or not water was available to drink. In another experiment, sheep deprived of water for 41 h were then allowed to drink water. Both normal and ADX-constant steroid sheep exhibited a large reduction of renal Na excretion in the 6 h after rehydration. Changes in plasma Na and K concentration and osmolality were similar in normal and ADX-constant steroid sheep during periods of dehydration and rehydration. These results show that change in aldosterone secretion is not a major factor in causing either dehydration-induced or postprandial natriuresis. Neither is it a major cause of rehydration-induced renal Na retention.  相似文献   

4.
The effects of felodipine on renal hemodynamics and excretion were evaluated in the anesthetized dog. Unilateral renal arterial infusion of felodipine produced ipsilateral increases in the absolute and fractional excretion of sodium and water which were greater than those of potassium; these effects occurred in the absence of changes in mean arterial pressure, renal blood flow, or glomerular filtration rate. There were no significant effects on renal hemodynamic or excretory function in the contralateral kidney. The unilateral renal arterial infusion of isotonic saline or vehicle produced no significant effects on renal hemodynamic or excretory function in either ipsilateral or contralateral kidney. Felodipine, a calcium antagonist with vasodilator antihypertensive properties, in doses which do not affect systemic or renal hemodynamics in the dog, increased urinary flow rate and sodium excretion by decreasing renal tubular water and sodium reabsorption. As a vasodilator antihypertensive agent, felodipine possesses potentially advantageous diuretic and natriuretic properties.  相似文献   

5.
The rich innervation of the kidney is distributed to all structures of renal parenchyma thus providing important anatomical support to the functional evidence that the renal nerves can control kidney functions and send signals on the kidney environment to the central nervous system. Efferent renal nerve fibres are known to influence renal haemodynamics by modifying arteriolar vascular tone, renin release by a direct action on juxtaglomerular cells, and the excretion of sodium and water by changing tubular reabsorption of sodium and water at the different tubular levels. Mechano- and chemo-receptors have been shown in the kidney. Afferent fibres connected with renal receptors convey signals to the central nervous system both at spinal and supraspinal levels. The central areas receiving inputs from the kidney are those involved in the control of cardiovascular homeostasis and fluid balance. Activation of renal receptors by the electrical stimulation of renal afferent fibres were found to elicit both excitatory and inhibitory sympathetic responses. Although the existence of excitatory renorenal reflexes has been suggested, electrophysiological and functional data demonstrate that neural renorenal reflexes exert a tonic inhibitory influence on the tubular sodium and water reabsorption and on the secretion of renin from the juxtaglomerular cells.  相似文献   

6.
Hypertension was induced in Dahl-salt-sensitive (Dahl-S) rats by administering salt in drinking water. Control rats receiving tap water did not show a significant change in blood pressure or abnormalities in the kidney. Rats receiving 0.5% NaCl solution developed moderate hypertension and renal lesions. Rats receiving 1.0% NaCl solution showed prominent and increasing hypertension and severe renal damage. This method of salt administration should be simpler than administration in the diet as a means of promoting renal hypertension. The lower concentration salt water caused chronic mild hypertension in Dahl-S rats, and may serve as a useful model for progressive hypertension.  相似文献   

7.
  • 1.1. Water turnover rate, glomerular nitration rate and renal plasma and blood flow rates have been measured in individuals of the Australian desert rodent Notomys alexis under conditions of acute and chronic water deprivation and high nitrogen diet.
  • 2.2. When these parameters are compared with values predicted allometrically the extreme ability of the species to conserve water is apparent only in those groups subjected to water stress.
  • 3.3. Whilst a reversible reduction in renal function is evident upon water deprivation, the major factor in water conservation under these conditions is the renal reabsorption of water at a post-filtration stage.
  相似文献   

8.
1. After iso-osmotic salt loading (1% NaCl, 1.25% KCl, 0.75% MgCl2 solutions, each load making up 5% body weight) the water voles excreted 66.2% sodium, 84.4% potassium, 18.8% magnesium over a 4 hr period. The big gerbil excreted 20%, 58.9% and 7.1% respectively over the same period. The volume of the water excreted was greater in the case of the water vole. 2. There were no considerable changes in plasma ion concentration in rodents of the species studied after salt loading. 3. The gerbils and water voles had no significant changes in the renal cortex electrolyte concentrations as a result of isotonic salt loads. The highest sodium cortico-papillar gradient was found in the gerbils when experimenting with the isotonic NaCl loading. It was somewhat lower with the KCl load, and significantly lower with water and MgCl2 loads. 4. Under the same experimental conditions, no major changes in the papilla sodium concentration were found in the water voles. 5. The concentrations of potassium, calcium and magnesium were practically alike in all zones of the renal tissue of both rodent species, ion loads producing no effect. 6. The comparison of the renal volume and ion regulating function in rodents with different urine osmotic concentration systems proves the independent existence of renal functions. The greater rate of renal fluid and ion excretion in the water voles is coupled with less specific ion regulation.  相似文献   

9.
1. The metabolic changes in rats following introduction of sea water directly into the stomach were studied. The results were compared with those of a human case report of acute renal failure following swallowing of sea water. 2. In both rats and man, acute renal failure appeared within the first 24 hr. A slight improvement was found five days later. 3. There was an acute hypocalcemia. This was supposedly due to the large magnesium content of the sea water. 4. It is probable that water entering the alimentary canal, dry drowning, affects the kidneys by the initial flow of water to the intestines. This results in hemo-concentration and reduced kidney function. The abnormality is a transient one and could be due to a partial anoxia due to shrinking of the erythrocytes. 5. It is concluded that an apparently uneventful swallowing of sea water can turn into secondary drowning with transient acute renal failure.  相似文献   

10.
Changes in the major component of renal cortical membranes as well as membrane fluidity and Na+, K+, ATPase activity have been studied in membranes from the renal cortex of rats with experimental liver cirrhosis, which show renal sodium and water retention, and in normal animals. Rats with cirrhosis of the liver show a decrease in cholesterol, phospholipid and protein content, without changes in cholesterol/phospholipid molar ratio. In addition there is a small decrease in 14:0 and 18:2 and an increase in 20:4 content, without differences in unsaturation degree. Membrane fluidity was decreased in renal membranes from cirrhotic rats when compared with normal ones. Na+, K+, ATPase activity was higher in cirrhotic than in normal renal membranes could be related with the changes in renal water and electrolyte changes shown by cirrhotic rats.  相似文献   

11.
Renal tubular actions of ANF.   总被引:1,自引:0,他引:1  
Many of the earliest investigations of the renal effects of atrial natriuretic factor (ANF) pointed to the glomerulus as a major site of the peptide's action. More recently, there have been many reports showing various effects of ANF on renal tubular epithelia, including collecting ducts, thick ascending limbs of Henle's loop, thin limbs of Henle's loops, and proximal tubules. The purpose of this review is to summarize the evidence for renal tubular actions of ANF and analyze it from the perspective of the specialized functions of the individual nephron segments, addressing the question: can renal tubule effects of ANF play a significant role in the precise day-to-day regulation of renal NaCl and water excretion? Based on these considerations, we propose that long-term renal tubular action of ANF may be distinct from its short-term natriuretic effect. The short-term action of ANF to accelerate salt and water excretion may play a role in the overall response to acute volume overload. This action of ANF appears to be largely due to an ANF-mediated increase in glomerular filtration rate accompanied by a blunting of the tubuloglomerular feedback mechanism, perhaps with some contribution from ANF-mediated inhibition of fluid absorption in the proximal tubule. In contrast, contributions of ANF to the precise day-to-day regulation of salt and water excretion are likely to be chiefly due to ANF-mediated inhibition of NaCl and water absorption in collecting ducts, but may also involve actions of ANF on the loop of Henle.  相似文献   

12.
When somatostatin was infused into the left renal artery of anaesthetized, hydropenic dogs in doses ranging from 1 to 10 micrograms/min, it produced an increased flow of a more dilute urine from the ipsilateral kidney. Similar infusions in dogs undergoing a maximal water diuresis had no effect. If aqueous antidiuretic hormone (ADH) was administered intravenously into water-loaded dogs prior to the intraarterial infusion of somatostatin, this latter peptide was able to produce an augmented flow of a more dilute urine from the ipsilateral kidney. If the left kidney was made to excrete a concentrated urine in the face of maximal water loading by restricting arterial perfusion, then the infusion of somatostatin had no effect on urinary dilution, though this peptide could increase water excretion in hydropenic dogs when the left kidney was similarly restricted as to arterial inflow. In dogs undergoing a water diuresis that were given cyclic AMP (4 mg/min) into the left renal artery, a decrease in ipsilateral water excretion was observed. The subsequent infusion of somatostatin produced no urinary dilution. We conclude that somatostatin increases renal water excretion by antagonizing the ADH effect on the renal tubule, and that this event probably occurs at a pre-cAMP site within the cell.  相似文献   

13.
A. Chapdelaine  A. Lanthier 《CMAJ》1963,88(24):1184-1192
Observations are presented on two patients with chronic compulsive polydipsia who showed a relative defect in renal concentrating capacity. After excluding all possible metabolic and renal causes of hyposthenuria and after obtaining normal kidney biopsies, both patients were studied in metabolic balance on a constant diet under the following conditions: (a) dehydration (loss of 3-5% body weight), (b) water loading and response to hypertonic saline, and (c) water loading and response to intravenous vasopressin (Pitressin). Throughout these studies the following parameters were observed: plasma and urine osmolality, glomerular filtration rate (inulin), renal plasma flow (P.A.H.), osmolar clearance and clearance of free water. In both patients the concentration defect was not related to variations in glomerular filtration rate or osmotic load. There was no correlation between the degree of hypoosmolality and the renal concentrating defect. Contrary to reports from other laboratories, restriction of water intake and chronic administration of intramuscular vasopressin did not correct the concentration defect.  相似文献   

14.
R K Handa  V M Buckalew 《Life sciences》1992,51(20):1571-1575
The effect of myristoyl-lysophosphatidylcholine (myristoyl-LPC) on renal hemodynamics, electrolyte and water excretion was examined over a 90 min period in sodium pentobarbital anesthetized male Sprague Dawley rats. Intravenous infusion of myristoyl-LPC at 13 +/- 3 pmol/min resulted in a small fall in systemic blood pressure, a 13% decrease in renal plasma flow without significantly altering glomerular filtration rate and produced a slightly greater excretion of sodium and water than vehicle controls. These results suggest that short term myristoyl-LPC administration can significantly alter renal function producing a weak natriuresis and diuresis which is not dependent on systemic blood pressure and renal hemodynamic changes.  相似文献   

15.
The effect of bilateral renal denervation on water intake and urine volume during specific thirst challenges was studied in rats. Renal denervation attenuated significantly the drinking response elicited by the administration of 30% polyethylene glycol (PG, extracellular challenge) but had no effect on the drinking response after an intracellular challenge (2.5 M NaCl) or after a 24-h water deprivation period. Furthermore, during a PG challenge total water intake was the same in two groups of rats, one with denervated kidneys and the other with beta-adrenergic neural activity in efferent renal nerves eliminated by blocking agents. Urine volumes were not affected by PG administration or water deprivation in denervated rats but were increased significantly after administration of 2.5 M NaCl. These results indicate that renal nerves play an important role in the physiological processes controlling extracellular thirst, and suggest that this role may be related to the neural control of release of renin.  相似文献   

16.
An SDS-PAGE analysis of renal microsomal fraction of albino mice was performed to study the involvement of proteins in dexamethasone-induced type-2 diabetes mellitus (DM) and their alterations by metformin, a widely accepted oral antidiabetic drug. In addition, changes in renal lipid peroxidation (LPO), activities of superoxide dismutase (SOD) and catalase (CAT), reduced glutathione (GSH) content, as well as renal somatic index (RSI) and daily rate of water consumption were also investigated. While dexamethasone administration (1.0 mg/kg for 21 days) expressed two renal proteins (43 kDa and 63.23 kDa), in addition to the increased fasting serum levels of glucose and insulin, renal LPO, RSI and daily rate of water consumption, a parallel decrease in renal SOD, CAT and GSH was also observed. Treatment with metformin normalized these alterations including the renal proteins and LPO, confirming its efficacy in ameliorating dexamethasone-induced type-2 DM and also the association of two proteins with type-2 DM.  相似文献   

17.
The control of renal medullary perfusion and the impact of alterations in medullary blood flow on renal function have been topics of research interest for almost four decades. Many studies have examined the vascular architecture of the renal medulla, the factors that regulate renal medullary blood flow, and the influence of medullary perfusion on sodium and water excretion and arterial pressure. Despite these studies, there are still a number of important unanswered questions in regard to the control of medullary perfusion and the influence of medullary blood flow on renal excretory function and blood pressure. This review will first address the vascular architecture of the renal medulla and the potential mechanisms whereby medullary perfusion may be regulated. The known extrarenal and local systems that influence the medullary vasculature will then be summarized. Finally, this review will present an overview of the evidence supporting the concept that selective changes in medullary perfusion can have a potent influence on sodium and water excretion with a long-term influence on arterial blood pressure regulation.  相似文献   

18.
Cardiopulmonary stretch receptors have been implicated as part of a reflex mechanism linking changes in blood volume to changes in renal excretion. Experiments were performed to determine whether total denervation of these receptors by combined cervical vagotomy and thoracic sympathectomy affects the renal responses of the monkey to head-out water immersion, a maneuver that translocates blood to the thorax and elicits an increase in renal salt and water excretion. Macaca fascicularis monkeys first underwent chronic bilateral thoracic sympathectomy or sham denervation performed in two stages a week apart. One to two weeks later, they were anesthetized with pentobarbital sodium, and the sympathectomized animals underwent bilateral cervical vagotomy. Control renal function did not differ between the two groups. Immersion of 90-min duration increased central venous and mean arterial pressures by similar amounts in both groups, but heart rate increased only in the sham-denervated animals. Denervation did not affect the magnitudes or delay the times of onset of the increases in urine flow, absolute and fractional sodium excretion, and osmolar and free water clearances occurring with immersion. These results demonstrate that in the anesthetized monkey cardiopulmonary receptors are not necessary for eliciting the renal responses to immersion.  相似文献   

19.
J. A. Graham  A. M. Paton  A. L. Linton 《CMAJ》1971,104(11):1000-1003
Body water and electrolyte contents have been measured by means of muscle biopsy analysis in 11 patients with untreated acute renal failure and in one patient during the diuretic recovery phase of his illness. Patients with acute oliguric renal failure show two main types of imbalance. One group shows evidence of a reduction in extracellular sodium and chloride with normal intracellular water and electrolytes. These findings are thought to be due to a combination of excess urinary salt loss during the development of oliguric renal failure, and inadequate replacement of extrarenal electrolyte losses. A second group shows overhydration of both extra- and intracellular phases, associated with an excess of sodium and chloride. The intracellular potassium concentration is reduced, owing to the intracellular water excess. The patient studied during the diuretic recovery phase of acute renal failure showed a marked loss of sodium and chloride, which emphasizes the necessity to replace urinary electrolyte losses at this stage of the illness. It is often extremely difficult to assess fluid and electrolyte balance in patients presenting with acute renal failure, and muscle biopsy analysis or isotope dilution studies may be required before accurate replacement therapy is possible.  相似文献   

20.
The existence and identity of protein water transporters in biological membranes has been uncertain. Osmotic water permeability (Pf) was measured in defolliculated Xenopus oocytes microinjected with water or mRNA from kidney cortex, kidney papilla, reticulocyte, brain, and muscle. Pf was measured by quantitative image analysis from the time course of oocyte swelling in response to an osmotic gradient. When assayed at 10 degrees C, Pf in water-injected oocytes increased from (3.6 +/- 0.9) x 10(-4) cm/s (S.D., n = 16) to 74 x 10(-4) cm/s with addition of amphotericin B, showing absence of unstirred layers. At 48-72 h after injection of 50 ng of unfractionated mRNA, Pf (in cm/s x 10(-4] was: 4.0 +/- 1.5 (rabbit brain, n = 15), 4.2 +/- 1.8 (rabbit muscle, n = 10), 18.4 +/- 6.3 (rabbit reticulocyte, n = 20), 16.1 +/- 5.6 (rat renal papilla, n = 24), 12.9 +/- 6.3 (rat renal cortex, n = 20), 14.4 +/- 6.1 (rabbit renal papilla, n = 15), and 11.8 +/- 3.4 (rabbit renal cortex, n = 8). In oocytes injected with mRNA from rat renal papilla, Pf was inhibited reversibly by 0.3 mM HgCl2 (4.1 +/- 1.6, n = 10); expressed water channels from kidney and red cell had activation energies of less than 4 kcal/mol. These results show functional oocyte expression of water channels from red cell, kidney proximal tubule (cortex), and the vasopressin-sensitive kidney collecting tubule (papilla), indicating that water channels are proteins, and providing an approach for the expression cloning of water channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号