首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chimeric RNA/DNA and modified DNA oligonucleotides have been shown to direct gene-conversion events in vitro through a process involving proteins from several DNA-repair pathways. Recent experiments have extended the utility of these molecules to plants, and we previously demonstrated that plant cell-free extracts are competent to support oligonucleotide-directed genetic repair. Using this system, we are studying Arabidopsis DNA-repair mutants and the role of plant proteins in the DNA-repair process. Here we describe a method for investigating mechanisms of plastid DNA-repair pathways. Using a genetic readout system in bacteria and chimeric or modified DNA oligonucleotides designed to direct the conversion of mutations in antibiotic resistance genes, we have developed an assay for genetic repair of mutations in a spinach chloroplast lysate system. We report genetic repair of point and frameshift mutations directed by both types of modified oligonucleotides. This system enables the mechanistic study of plastid gene repair and facilitates the direct comparison between plant nuclear and organelle DNA-repair pathways.  相似文献   

2.
Martin IV  MacNeill SA 《Genome biology》2002,3(4):reviews300-7
SUMMARY: By catalyzing the joining of breaks in the phosphodiester backbone of duplex DNA, DNA ligases play a vital role in the diverse processes of DNA replication, recombination and repair. Three related classes of ATP-dependent DNA ligase are readily apparent in eukaryotic cells. Enzymes of each class comprise catalytic and non-catalytic domains together with additional domains of varying function. DNA ligase I is required for the ligation of Okazaki fragments during lagging-strand DNA synthesis, as well as for several DNA-repair pathways; these functions are mediated, at least in part, by interactions between DNA ligase I and the sliding-clamp protein PCNA. DNA ligase III, which is unique to vertebrates, functions both in the nucleus and in mitochondria. Two distinct isoforms of this enzyme, differing in their carboxy-terminal sequences, are produced by alternative splicing: DNA ligase IIIalpha has a carboxy-terminal BRCT domain that interacts with the mammalian DNA-repair factor XrccI, but both alpha and beta isoforms have an amino-terminal zinc-finger motif that appears to play a role in the recognition of DNA secondary structures that resemble intermediates in DNA metabolism. DNA ligase IV is required for DNA non-homologous end joining pathways, including recombination of the V(D)J immunoglobulin gene segments in cells of the mammalian immune system. DNA ligase IV forms a tight complex with Xrcc4 through an interaction motif located between a pair of carboxy-terminal BRCT domains in the ligase. Recent structural studies have shed light on the catalytic function of DNA ligases, as well as illuminating protein-protein interactions involving DNA ligases IIIalpha and IV.  相似文献   

3.
A brief review of the available information concerning age-related genomic (DNA) damage and its repair, with special reference to brain tissue, is presented. The usefulness of examining the validity of DNA-damage and repair hypothesis of aging in a postmitotic cell like neuron is emphasized. The limited number of reports that exist on brain seem to overwhelmingly support the accumulation of DNA damage with age. However, results regarding the age-dependent decline in DNA-repair capacity are conflicting and divided. The possible reasons for these discrepancies are discussed in light of the gathering evidence, including some human genetic disorders, to indicate how complex is the DNA-repair system in higher animals. It is suggested that assessment of repair potential of neurons with respect to a specific damage in a specific gene might yield more definitive answers about the DNA-repair process and its role in aging.  相似文献   

4.
Breast cancer is the most common malignancy in women. Radiotherapy is frequently used in patients with breast cancer, but some patients may be more susceptible to ionizing radiation, and increased exposure to radiation sources may be associated to radiation adverse events. This susceptibility may be related to deficiencies in DNA repair mechanisms that are activated after cell-radiation, which causes DNA damage, particularly DNA double strand breaks. Some of these genetic susceptibilities in DNA-repair mechanisms are implicated in the etiology of hereditary breast/ovarian cancer (pathologic mutations in the BRCA 1 and 2 genes), but other less penetrant variants in genes involved in sporadic breast cancer have been described. These same genetic susceptibilities may be involved in negative radiotherapeutic outcomes. For these reasons, it is necessary to implement methods for detecting patients who are susceptible to radiotherapy-related adverse events. This review discusses mechanisms of DNA damage and repair, genes related to these functions, and the diagnosis methods designed and under research for detection of breast cancer patients with increased radiosensitivity.  相似文献   

5.
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a multifunctional protein with diverse biological functions in human cells. In bacteria, moonlighting GAPDH functions have only been described for the secreted protein in pathogens or probiotics. At the intracellular level, we previously reported the interaction of Escherichia coli GAPDH with phosphoglycolate phosphatase, a protein involved in the metabolism of the DNA repair product 2-phosphoglycolate, thus suggesting a putative role of GAPDH in DNA repair processes. Here, we provide evidence that GAPDH is required for the efficient repair of DNA lesions in E. coli. We show that GAPDH-deficient cells are more sensitive to bleomycin or methyl methanesulfonate. In cells challenged with these genotoxic agents, GAPDH deficiency results in reduced cell viability and filamentous growth. In addition, the gapA knockout mutant accumulates a higher number of spontaneous abasic sites and displays higher spontaneous mutation frequencies than the parental strain. Pull-down experiments in different genetic backgrounds show interaction between GAPDH and enzymes of the base excision repair pathway, namely the AP-endonuclease Endo IV and uracil DNA glycosylase. This finding suggests that GAPDH is a component of a protein complex dedicated to the maintenance of genomic DNA integrity. Our results also show interaction of GAPDH with the single-stranded DNA binding protein. This interaction may recruit GAPDH to the repair sites and implicates GAPDH in DNA repair pathways activated by profuse DNA damage, such as homologous recombination or the SOS response.  相似文献   

6.
The capacity of normal human cells to regulate DNA-repair pathways was examined. Synchronous populations of WI-38 human diploid fibroblasts were used to determine whether base-excision repair was increased as a function of the cell cycle. 2 parameters of the base-excision repair pathway were examined: (1) The induction of the DNA-repair enzyme uracil DNA glycosylase which functions in an initial step in base excision repair: (2) cell-mediated base-excision repair as measured by unscheduled DNA synthesis after exposure to sodium bisulfite or to methyl methanesulfonate. The glycosylase activity was increased 5-fold during cell proliferation; unscheduled DNA synthesis was enhanced 4- to 30-fold in a similar fashion. Equivalent results were observed where repair replication was quantitated using density-gradient analysis in the absence of hydroxyurea. The increase of the activity of the uracil DNA glycosylase and the enhancement of DNA repair occurred prior to the induction of DNA replication. Furthermore, at the maximal stimulation of DNA replication both glycosylase activity and DNA repair had substantially diminished. As the cells entered the second cell cycle, the glycosylase activity was again increased and then was again diminished. These results suggest that human cells actively modulate this DNA-repair pathway. The temporal stimulation of base-excision repair suggests the possibility that a DNA-repair complex may be formed prior to DNA replication to prescreen DNA and thus ensure the transfer of the correct genetic information to daughter cells.  相似文献   

7.
8.
The conserved NineTeen protein complex (NTC) is an integral subunit of the spliceosome and required for intron removal during pre-mRNA splicing. The complex associates with the spliceosome and participates in the regulation of conformational changes of core spliceosomal components, stabilizing RNA-RNA- as well as RNA-protein interactions. In addition, the NTC is involved in cell cycle checkpoint control, response to DNA damage, as well as formation and export of mRNP-particles. We have identified the Num1 protein as the homologue of SPF27, one of NTC core components, in the basidiomycetous fungus Ustilago maydis. Num1 is required for polarized growth of the fungal hyphae, and, in line with the described NTC functions, the num1 mutation affects the cell cycle and cell division. The num1 deletion influences splicing in U. maydis on a global scale, as RNA-Seq analysis revealed increased intron retention rates. Surprisingly, we identified in a screen for Num1 interacting proteins not only NTC core components as Prp19 and Cef1, but several proteins with putative functions during vesicle-mediated transport processes. Among others, Num1 interacts with the motor protein Kin1 in the cytoplasm. Similar phenotypes with respect to filamentous and polar growth, vacuolar morphology, as well as the motility of early endosomes corroborate the genetic interaction between Num1 and Kin1. Our data implicate a previously unidentified connection between a component of the splicing machinery and cytoplasmic transport processes. As the num1 deletion also affects cytoplasmic mRNA transport, the protein may constitute a novel functional interconnection between the two disparate processes of splicing and trafficking.  相似文献   

9.
While the mechanisms governing DNA damage response and repair are fundamentally conserved, cross-kingdom comparisons indicate that they differ in many aspects due to differences in life-styles and developmental strategies. In photosynthetic organisms these differences have not been fully explored because gene-discovery approaches are mainly based on homology searches with known DDR/DNA repair proteins. Here we performed a forward genetic screen in the green algae Chlamydomonas reinhardtii to identify genes deficient in DDR/DNA repair. We isolated five insertional mutants that were sensitive to various genotoxic insults and two of them exhibited altered efficiency of transgene integration. To identify genomic regions disrupted in these mutants, we established a novel adaptor-ligation strategy for the efficient recovery of the insertion flanking sites. Four mutants harbored deletions that involved known DNA repair factors, DNA Pol zeta, DNA Pol theta, SAE2/COM1, and two neighbouring genes encoding ERCC1 and RAD17. Deletion in the last mutant spanned two Chlamydomonas-specific genes with unknown function, demonstrating the utility of this approach for discovering novel factors involved in genome maintenance.  相似文献   

10.
Y-family DNA polymerase iota (Pol ι) possesses both DNA polymerase and dRP lyase activities and was suggested to be involved in DNA translesion synthesis and base excision repair in mammals. The 129 strain of mice and its derivatives have a natural nonsense codon mutation in the second exon of the Pol ι gene resulting in truncation of the Pol ι protein. These mice were widely used as a Pol ι-null model for in vivo studies of the Pol ι function. However whether 129-derived strains of mice are fully deficient in the Pol ι functions was a subject of discussion since Pol ι mRNA undergoes alternative splicing at exon 2. Here we report purification of mouse Pol ι lacking the region encoded by exon 2, which includes several conserved residues involved in catalysis. We show that the deletion abrogates both the DNA polymerase and dRP lyase activities of Pol ι in the presence of either Mg2+ or Mn2+ ions. Thus, 129-derived strains of mice express catalytically inactive alternatively spliced Pol ι variant, whose cellular functions, if any exist, remain to be established.  相似文献   

11.
Repair response of human fibroblasts to bleomycin damage   总被引:1,自引:0,他引:1  
The ability of human fibroblasts to repair the specific types of DNA damage caused by bleomycin (BLM) was examined in whole-cell experiments. The method utilized for analysis was alkaline sucrose-gradient centrifugation of DNA. The results of these studies show that a repair pathway exists for the damage produced in DNA by bleomycin. DNA from BLM-treated cells shows a decrease in molecular weight, caused by chemical or enzymatic incision at sites of drug action. If the drug is removed, the DNA rapidly returns to high molecular weight, demonstrating reformation of damaged DNA. This repair response to BLM-damage was also confirmed in fibroblasts isolated from patients with putative DNA-repair defects. We observed that the response (to BLM) of cells from patients with Fanconi anemia was altered in that the fall in molecular weight of DNA from treated cells was not as great as that observed in other cell strains after drug treatment.  相似文献   

12.
The Gam protein of bacteriophage Mu is an orthologue of eukaryotic Ku   总被引:1,自引:0,他引:1  
Mu bacteriophage inserts its DNA into the genome of host bacteria and is used as a model for DNA transposition events in other systems. The eukaryotic Ku protein has key roles in DNA repair and in certain transposition events. Here we show that the Gam protein of phage Mu is conserved in bacteria, has sequence homology with both subunits of Ku, and has the potential to adopt a similar architecture to the core DNA-binding region of Ku. Through biochemical studies, we demonstrate that Gam and the related protein of Haemophilus influenzae display DNA binding characteristics remarkably similar to those of human Ku. In addition, we show that Gam can interfere with Ty1 retrotransposition in Saccharomyces cerevisiae. These data reveal structural and functional parallels between bacteriophage Gam and eukaryotic Ku and suggest that their functions have been evolutionarily conserved.  相似文献   

13.
Hrq1 helicase is a novel member of the RecQ family. Among the five human RecQ helicases, Hrq1 is most homologous to RECQL4 and is conserved in fungal genomes. Recent genetic and biochemical studies have shown that it is a functional gene, involved in the maintenance of genome stability. To better define the roles of Hrq1 in yeast cells, we investigated genetic interactions between HRQ1 and several DNA repair genes. Based on DNA damage sensitivities induced by 4-nitroquinoline-1-oxide (4-NQO) or cisplatin, RAD4 was found to be epistatic to HRQ1. On the other hand, mutant strains defective in either homologous recombination (HR) or post-replication repair (PRR) became more sensitive by additional deletion of HRQ1, indicating that HRQ1 functions in the RAD4-dependent nucleotide excision repair (NER) pathway independent of HR or PRR. In support of this, yeast two-hybrid analysis showed that Hrq1 interacted with Rad4, which was enhanced by DNA damage. Overexpression of Hrq1K318A helicase-deficient protein rendered mutant cells more sensitive to 4-NQO and cisplatin, suggesting that helicase activity is required for the proper function of Hrq1 in NER.  相似文献   

14.
In the past two decades, scientists have elucidated the molecular mechanisms behind Drosophila sex determination and dosage compensation. These two processes are controlled essentially by two different sets of genes, which have in common a master regulatory gene, Sex-lethal (Sxl). Sxl encodes one of the best-characterized members of the family of RNA binding proteins. The analysis of different mechanisms involved in the regulation of the three identified Sxl target genes (Sex-lethal itself, transformer, and male specific lethal-2) has contributed to a better understanding of translation repression, as well as constitutive and alternative splicing. Studies using the Drosophila system have identified the features of the protein that contribute to its target specificity and regulatory functions. In this article, we review the existing data concerning Sxl protein, its biological functions, and the regulation of its target genes.  相似文献   

15.
Enzymatic studies of DNA repair in Drosophila melanogaster   总被引:1,自引:0,他引:1  
Thus far, our studies in Drosophila have concentrated primarily on the various enzymes involved in the in vitro repair of modified or nonconventional DNA substrates. In some cases, our findings have led us to investigate events that may not have a bearing on DNA repair, but rather may be associated with developmental signals important to the maturation of the organism. As appealing as some of these models seem, however, they must await confirmation through detailed genetic studies before any substantial conclusions can be drawn. This combination of genetic and biochemical knowledge makes Drosophila an exciting organism for an eventual detailed understanding of the developmental expression and cellular location of DNA-repair systems.  相似文献   

16.
Cellular DNA-repair pathways involve proteins that have roles in other DNA-metabolic processes, as well as those that are dedicated to damage removal. Several proteins, which have diverse functions and are not known to have roles in DNA repair, also associate with damaged DNA. These newly discovered interactions could either facilitate or hinder the recognition of DNA damage, and so they could have important effects on DNA repair and genetic integrity. The outcome for the cell, and ultimately for the organism, might depend on which proteins arrive first at sites of DNA damage.  相似文献   

17.
FANCM, the most highly conserved component of the Fanconi Anaemia (FA) pathway can resolve recombination intermediates and remodel synthetic replication forks. However, it is not known if these activities are relevant to how this conserved protein activates the FA pathway and promotes DNA crosslink repair. Here we use chicken DT40 cells to systematically dissect the function of the helicase and nuclease domains of FANCM. Our studies reveal that these domains contribute distinct roles in the tolerance of crosslinker, UV light and camptothecin-induced DNA damage. Although the complete helicase domain is critical for crosslink repair, a predicted inactivating mutation of the Walker B box domain has no impact on FA pathway associated functions. However, this mutation does result in elevated sister chromatid exchanges (SCE). Furthermore, our genetic dissection indicates that FANCM functions with the Blm helicase to suppress spontaneous SCE events. Overall our results lead us to reappraise the role of helicase domain associated activities of FANCM with respect to the activation of the FA pathway, crosslink repair and in the resolution of recombination intermediates.  相似文献   

18.
DNA mismatch repair, which involves is a widely conserved set of proteins, is essential to limit genetic drift in all organisms. The same system of proteins plays key roles in many cancer related cellular transactions in humans. Although the basic process has been reconstituted in vitro using purified components, many fundamental aspects of DNA mismatch repair remain hidden due in part to the complexity and transient nature of the interactions between the mismatch repair proteins and DNA substrates. Single molecule methods offer the capability to uncover these transient but complex interactions and allow novel insights into mechanisms that underlie DNA mismatch repair. In this review, we discuss applications of single molecule methodology including electron microscopy, atomic force microscopy, particle tracking, FRET, and optical trapping to studies of DNA mismatch repair. These studies have led to formulation of mechanistic models of how proteins identify single base mismatches in the vast background of matched DNA and signal for their repair.  相似文献   

19.
20.
Alternative pre-mRNA splicing of two terminal exons (α and β) regulates the expression of the human DNA ligase III gene. In most tissues, the α exon is expressed. In testes and during spermatogenesis, the β exon is used instead. The α exon encodes the interaction domain with a scaffold DNA repair protein, XRCC1, while the β exon-encoded C-terminal does not. Sequence elements regulating the alternative splicing pattern were mapped by in vitro splicing assays in HeLa nuclear extracts. Deletion of a region beginning in the β exon and extending into the downstream intron derepressed splicing to the β exon. Two silencing elements were found within this 101 nt region: a 16 nt exonic splicing silencer immediately upstream of the β exon polyadenylation signal and a 45 nt intronic splicing silencer. The exonic splicing silencer inhibited splicing, even when the polyadenylation signal was deleted or replaced by a 5′ splice site. This element also enhanced polyadenylation under conditions unfavourable to splicing. The splicing silencer partially inhibited assembly of spliceosomal complexes and functioned in an adenoviral pre-mRNA context. Silencing of splicing by the element was associated with cross-linking of a 37 kDa protein to the RNA substrate. The element exerts opposite functions in splicing and polyadenylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号