首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
四川山鹧鸪Arborophila rufipectus是中国特有的珍稀濒危鸟类.本研究对1只成年雄性四川山鹧鸪个体的心脏、肝脏和肾脏进行了转录组测序、组装和注释.其原始序列过滤后分别产生了5.70 G、4.60 G和5.16 G数据.286661条转录本经过Trinity组装并去掉冗余后共得到234488个基因.BUS...  相似文献   

2.

Background

Genome annotation is one way of summarizing the existing knowledge about genomic characteristics of an organism. There has been an increased interest during the last several decades in computer-based structural and functional genome annotation. Many methods for this purpose have been developed for eukaryotes and prokaryotes. Our study focuses on comparison of functional annotations of prokaryotic genomes. To the best of our knowledge there is no fully automated system for detailed comparison of functional genome annotations generated by different annotation methods (AMs).

Results

The presence of many AMs and development of new ones introduce needs to: a/ compare different annotations for a single genome, and b/ generate annotation by combining individual ones. To address these issues we developed an Automated Tool for Bacterial GEnome Annotation ComparisON (BEACON) that benefits both AM developers and annotation analysers. BEACON provides detailed comparison of gene function annotations of prokaryotic genomes obtained by different AMs and generates extended annotations through combination of individual ones. For the illustration of BEACON’s utility, we provide a comparison analysis of multiple different annotations generated for four genomes and show on these examples that the extended annotation can increase the number of genes annotated by putative functions up to 27 %, while the number of genes without any function assignment is reduced.

Conclusions

We developed BEACON, a fast tool for an automated and a systematic comparison of different annotations of single genomes. The extended annotation assigns putative functions to many genes with unknown functions. BEACON is available under GNU General Public License version 3.0 and is accessible at: http://www.cbrc.kaust.edu.sa/BEACON/.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1826-4) contains supplementary material, which is available to authorized users.  相似文献   

3.
A型流行性感冒病毒的负链RNA基因组由编码病毒中12个蛋白质的八个节段组成。在病毒组装的最后阶段,病毒体从细胞顶端胞浆膜突出时将这些基因组的病毒体(v)RNAs吸收进其中。基因组分段赋予了流感病毒进化的优势,但也提出了问题,在病毒体组装时需要八个节段每一个的至少一个复制本以产生完全有传染性的病毒颗粒。历史上一直存在争论:一方赞同确保足额的基因组合并的特异性包装机制;另一方赞同基因组节段被随机选择而不是以充足数量被包装以确保能自行产生合理比例病毒体的替代模式。近年来人们对该问题已达成一致意见:大多数病毒体仅包含八个节段,特异性机制为选择每个vRNA的某一复制本的确发挥了作用。本综述总结了得出这一结论所做的工作,叙述了在识别特异性包装信号方面最新的进展,讨论了这些RNA元素运转的可能机制。  相似文献   

4.
RNA interference (RNAi) is a widely adopted tool for loss-of-function studies but RNAi results only have biological relevance if the reagents are appropriately mapped to genes. Several groups have designed and generated RNAi reagent libraries for studies in cells or in vivo for Drosophila and other species. At first glance, matching RNAi reagents to genes appears to be a simple problem, as each reagent is typically designed to target a single gene. In practice, however, the reagent–gene relationship is complex. Although the sequences of oligonucleotides used to generate most types of RNAi reagents are static, the reference genome and gene annotations are regularly updated. Thus, at the time a researcher chooses an RNAi reagent or analyzes RNAi data, the most current interpretation of the RNAi reagent–gene relationship, as well as related information regarding specificity (e.g., predicted off-target effects), can be different from the original interpretation. Here, we describe a set of strategies and an accompanying online tool, UP-TORR (for Updated Targets of RNAi Reagents; www.flyrnai.org/up-torr), useful for accurate and up-to-date annotation of cell-based and in vivo RNAi reagents. Importantly, UP-TORR automatically synchronizes with gene annotations daily, retrieving the most current information available, and for Drosophila, also synchronizes with the major reagent collections. Thus, UP-TORR allows users to choose the most appropriate RNAi reagents at the onset of a study, as well as to perform the most appropriate analyses of results of RNAi-based studies.  相似文献   

5.
6.
蛋白质组表达图谱用于基因组功能提示的可行性研究   总被引:1,自引:0,他引:1  
本文以ECO2DBASE(Edition 6) 为研究材料, 探讨了利用蛋白质组表达图谱提供的生命动态活动信息提高基因组功能提示效果的可行性。在设计出一套较为完整的细胞功能簇(CRC)聚类方案的基础上, 经考察,79 个蛋白质聚成4 个不同的CRC。结果显示出功能相关的蛋白质趋向于聚集在相同的CRC中, 如9 种氨酰tRNA 合成酶和4 种热休克蛋白分别准确地聚合到CRC2 和CRC3 中。这些结果提示: 在蛋白质组研究资料比较充分的前提下, 通过有效的算法, 蛋白质组表达图谱可以为基因组功能提示提供非常重要的序列相似性之外的功能信息  相似文献   

7.
  相似文献   

8.
The DOE-JGI Microbial Annotation Pipeline (DOE-JGI MAP) supports gene prediction and/or functional annotation of microbial genomes towards comparative analysis with the Integrated Microbial Genome (IMG) system. DOE-JGI MAP annotation is applied on nucleotide sequence datasets included in the IMG-ER (Expert Review) version of IMG via the IMG ER submission site. Users can submit the sequence datasets consisting of one or more contigs in a multi-fasta file. DOE-JGI MAP annotation includes prediction of protein coding and RNA genes, as well as repeats and assignment of product names to these genes.  相似文献   

9.
Advances in modern sequencing technologies allow us to generate sufficient data to analyze hundreds of bacterial genomes from a single machine in a single day. This potential for sequencing massive numbers of genomes calls for fully automated methods to produce high-quality assemblies and variant calls. We introduce Pilon, a fully automated, all-in-one tool for correcting draft assemblies and calling sequence variants of multiple sizes, including very large insertions and deletions. Pilon works with many types of sequence data, but is particularly strong when supplied with paired end data from two Illumina libraries with small e.g., 180 bp and large e.g., 3–5 Kb inserts. Pilon significantly improves draft genome assemblies by correcting bases, fixing mis-assemblies and filling gaps. For both haploid and diploid genomes, Pilon produces more contiguous genomes with fewer errors, enabling identification of more biologically relevant genes. Furthermore, Pilon identifies small variants with high accuracy as compared to state-of-the-art tools and is unique in its ability to accurately identify large sequence variants including duplications and resolve large insertions. Pilon is being used to improve the assemblies of thousands of new genomes and to identify variants from thousands of clinically relevant bacterial strains. Pilon is freely available as open source software.  相似文献   

10.
BG7 is a new system for de novo bacterial, archaeal and viral genome annotation based on a new approach specifically designed for annotating genomes sequenced with next generation sequencing technologies. The system is versatile and able to annotate genes even in the step of preliminary assembly of the genome. It is especially efficient detecting unexpected genes horizontally acquired from bacterial or archaeal distant genomes, phages, plasmids, and mobile elements. From the initial phases of the gene annotation process, BG7 exploits the massive availability of annotated protein sequences in databases. BG7 predicts ORFs and infers their function based on protein similarity with a wide set of reference proteins, integrating ORF prediction and functional annotation phases in just one step. BG7 is especially tolerant to sequencing errors in start and stop codons, to frameshifts, and to assembly or scaffolding errors. The system is also tolerant to the high level of gene fragmentation which is frequently found in not fully assembled genomes. BG7 current version – which is developed in Java, takes advantage of Amazon Web Services (AWS) cloud computing features, but it can also be run locally in any operating system. BG7 is a fast, automated and scalable system that can cope with the challenge of analyzing the huge amount of genomes that are being sequenced with NGS technologies. Its capabilities and efficiency were demonstrated in the 2011 EHEC Germany outbreak in which BG7 was used to get the first annotations right the next day after the first entero-hemorrhagic E. coli genome sequences were made publicly available. The suitability of BG7 for genome annotation has been proved for Illumina, 454, Ion Torrent, and PacBio sequencing technologies. Besides, thanks to its plasticity, our system could be very easily adapted to work with new technologies in the future.  相似文献   

11.
Protein N-myristoylation is an important lipid modification that affects the activity and membrane-binding properties of crucial proteins belonging to signal transduction cascades. The aim of this work was to develop a rapid and easy diagnostic method to check for (i) effective N-myristoylation of any given protein and (ii) easy proteome annotation. The N-myristoylation reaction was coupled to that of pyruvate dehydrogenase, and NADH was continuously detected spectrophotometrically. This method was optimized for and applied to full-length Saccharomyces cerevisiae and Arabidopsis thaliana N-myristoyltransferases and two A. thaliana enzyme derivatives. The data were validated by comparison with a previously described discontinuous assay, modification of the chemical nature of the substrates, and use of specific inhibitors. The kinetics of N-myristoylation were determined in vitro with various compounds including a full-length polypeptide substrate, a small G protein of the RAB family already known to be N-myristoylated in vivo. This automated assay can be used for proteomic studies to determine the N-myristoylation state of any protein.  相似文献   

12.
We have previously constructed the physical map of a cyanobacterium,Synechoystis sp. strain PCC6803 on the basis of restrictionand linking clone analysis. Since a total of 82 genes and geneclusters have been isolated from this strain, most of whichare involved in oxygenic photosynthesis, portions of their sequenceswere amplified by the PCR method and assigned on the physicalmap of the genome by hybridization with restriction fragments,ordered clones, which were obtained from cosmid and libraries,and long PCR-products. An exception was the gene psbG2 whichwas mapped on an extra-chromosomal unit of 45 kb. Since geneticmaps of some of genes assigned above, especially those for photosynthesis,have been reported for two other cyanobacterial strains, Anabaenasp. PCC7120 and Synechococcus sp. PCC7002, gene organizationswere compared among the three strains. However, no significantcorrelation was observed, suggesting that rearrangement of genesoccurred in the respective strains during or after establishmentof the species.  相似文献   

13.
Evolution of mitochondrial genes is far from clock-like. The substitution rate varies considerably between species, and there are many species that have a significantly increased rate with respect to their close relatives. There is also considerable variation among species in the rate of gene order rearrangement. Using a set of 55 complete arthropod mitochondrial genomes, we estimate the evolutionary distance from the common ancestor to each species using protein sequences, tRNA sequences, and breakpoint distances (a measure of the degree of genome rearrangement). All these distance measures are correlated. We use relative rate tests to compare pairs of related species in several animal phyla. In the majority of cases, the species with the more highly rearranged genome also has a significantly higher rate of sequence evolution. Species with higher amino acid substitution rates in mitochondria also have more variable amino acid composition in response to mutation pressure. We discuss the possible causes of variation in rates of sequence evolution and gene rearrangement among species and the possible reasons for the observed correlation between the two rates. [Reviewing Editor: Dr. David Pollock]  相似文献   

14.
Advances in DNA sequencing technology have facilitated the determination of hundreds of complete genome sequences both for bacteria and their bacteriophages. Some of these bacteria have well-developed and facile genetic systems for constructing mutants to determine gene function, and recombineering is a particularly effective tool. However, generally applicable methods for constructing defined mutants of bacteriophages are poorly developed, in part because of the inability to use selectable markers such as drug resistance genes during viral lytic growth. Here we describe a method for simple and effective directed mutagenesis of bacteriophage genomes using Bacteriophage Recombineering of Electroporated DNA (BRED), in which a highly efficient recombineering system is utilized directly on electroporated phage DNA; no selection is required and mutants can be readily detected by PCR. We describe the use of BRED to construct unmarked gene deletions, in-frame internal deletions, base substitutions, precise gene replacements, and the addition of gene tags.  相似文献   

15.
16.
17.
Molecular phylogenetic analyses suggest an emerging phylogeny for the extant Placentalia (eutherian) that radically departs from morphologically based constructions of the past. Placental mammals are partitioned into four supraordinal clades: Afrotheria, Xenarthra, Laurasiatheria, and Euarchontoglires. Afrotheria form an endemic African clade that includes elephant shrews, golden moles, tenrecs, aardvarks, hyraxes, elephants, dugongs, and manatees. Datamining databases of genome size (GS) shows that till today just one afrotherian GS has been evaluated, that of the aardvark Orycteropus afer. We show that the GSs of six selected representatives across the Afrotheria supraordinal group are among the highest for the extant Placentalia, providing a novel genomic signature of this enigmatic group. The mean GS value of Afrotheria, 5.3 ± 0.7 pg, is the highest reported for the extant Placentalia. This should assist in planning new genome sequencing initiatives. [Reviewing Editor: Dmitri Petrov]  相似文献   

18.
19.
Integrative genomics predictors, which score highly in predicting bacterial essential genes, would be unfeasible in most species because the data sources are limited. We developed a universal approach and tool designated Geptop, based on orthology and phylogeny, to offer gene essentiality annotations. In a series of tests, our Geptop method yielded higher area under curve (AUC) scores in the receiver operating curves than the integrative approaches. In the ten-fold cross-validations among randomly upset samples, Geptop yielded an AUC of 0.918, and in the cross-organism predictions for 19 organisms Geptop yielded AUC scores between 0.569 and 0.959. A test applied to the very recently determined essential gene dataset from the Porphyromonas gingivalis, which belongs to a phylum different with all of the above 19 bacterial genomes, gave an AUC of 0.77. Therefore, Geptop can be applied to any bacterial species whose genome has been sequenced. Compared with the essential genes uniquely identified by the lethal screening, the essential genes predicted only by Gepop are associated with more protein-protein interactions, especially in the three bacteria with lower AUC scores (<0.7). This may further illustrate the reliability and feasibility of our method in some sense. The web server and standalone version of Geptop are available at http://cefg.uestc.edu.cn/geptop/ free of charge. The tool has been run on 968 bacterial genomes and the results are accessible at the website.  相似文献   

20.
Genome shuffling: Progress and applications for phenotype improvement   总被引:1,自引:0,他引:1  
Although rational method and global technique have been successfully applied in strain improvement respectively, the demand for engineering complex phenotypes required combinatorial approach. The technology of genome shuffling has been presented as a novel whole genome engineering approach for the rapid improvement of cellular phenotypes. This approach using recursive protoplast fusion with multi-parental strains offers the advantage of recombination throughout the entire genome without the necessity for genome sequence data or network information. Genome shuffling has been demonstrated as an effective method, which is not only for producing improved strain but also for providing information on complex phenotype. In this review we attempt to present the advantage of genome shuffling, introduce the procedure of this technology, summarize the applications of this approach for phenotype improvement and then give perspective on the development of this method in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号