共查询到16条相似文献,搜索用时 15 毫秒
1.
2.
Jingtao Guo Enrique Sosa Tsotne Chitiashvili Xichen Nie Ernesto Javier Rojas Elizabeth Oliver Kathrin Plath James M. Hotaling Jan-Bernd Stukenborg Amander T. Clark Bradley R. Cairns 《Cell Stem Cell》2021,28(4):764-778.e4
- Download : Download high-res image (168KB)
- Download : Download full-size image
3.
Yubin Xie Xiaotong Luo Yupeng Li Li Chen Wenbin Ma Junjiu Huang Jun Cui Yong Zhao Yu Xue Zhixiang Zuo Jian Ren 《基因组蛋白质组与生物信息学报(英文版)》2018,16(4):294-306
Protein nitration and nitrosylation are essential post-translational modifications(PTMs)involved in many fundamental cellular processes. Recent studies have revealed that excessive levels of nitration and nitrosylation in some critical proteins are linked to numerous chronic diseases.Therefore, the identification of substrates that undergo such modifications in a site-specific manner is an important research topic in the community and will provide candidates for targeted therapy. In this study, we aimed to develop a computational tool for predicting nitration and nitrosylation sites in proteins. We first constructed four types of encoding features, including positional amino acid distributions, sequence contextual dependencies, physicochemical properties, and position-specificscoring features, to represent the modified residues. Based on these encoding features, we established a predictor called DeepNitro using deep learning methods for predicting protein nitration and nitrosylation. Using n-fold cross-validation, our evaluation shows great AUC values for DeepNitro, 0.65 for tyrosine nitration, 0.80 for tryptophan nitration, and 0.70 for cysteine nitrosylation, respectively,demonstrating the robustness and reliability of our tool. Also, when tested in the independent dataset, DeepNitro is substantially superior to other similar tools with a 7%à42% improvement in the prediction performance. Taken together, the application of deep learning method and novel encoding schemes, especially the position-specific scoring feature, greatly improves the accuracy of nitration and nitrosylation site prediction and may facilitate the prediction of other PTM sites. DeepNitro is implemented in JAVA and PHP and is freely available for academic research at http://deepnitro.renlab.org. 相似文献
4.
John O. Hui Gary Woo David T. Chow Viswanatham Katta Timothy Osslund Mitsuru Haniu 《Journal of Protein Chemistry》1999,18(5):585-593
Recombinant human glial cell line-derived neurotrophic factor has been implicated to have therapeutic potential in the treatment of neurodegenerative diseases. The mature protein is a single polypeptide of 134 amino acid residues and functions as a disulfide-linked dimer. Reduction of the protein with dithiothreitol at pH 7.0 and in the absence of denaturant showed that the single intermolecular cystine bridge was reduced preferentially. Direct alkylation of the generated free sulfhydryl group using iodoacetamide or iodoacetate without denaturant was incomplete. Unfolding the protein in 6 M guanidine hydrochloride prior to the modification showed rapid disulfide scrambling. However, the sulfhydryl-modifying reagent N-ethylmaleimide was able to label quantitatively the free cysteinyl residue in the absence of any added chaotropic agent. By a combination of peptide mapping, Edman degradation, and mass spectrometric analysis, the labeled residue was identified to be Cys101, hence verifying the location of the intermolecular disulfide bond. The modified protein behaved as a noncovalent dimer when chromatographed through a Superdex 75 column under nondenaturing conditions and was comparable in biological activity to an unmodified control sample. The results therefore indicate that the intermolecular disulfide bridge of the protein is not essential for its biological function. 相似文献
5.
Chaturaka Rodrigo Fabio Luciani 《Biochimica et Biophysica Acta (BBA)/General Subjects》2019,1863(2):511-519
Background
Next generation sequencing (NGS) methods have significantly contributed to a paradigm shift in genomic research for nearly a decade now. These methods have been useful in studying the dynamic interactions between RNA viruses and human hosts.Scope of the review
In this review, we summarise and discuss key applications of NGS in studying the host – pathogen interactions in RNA viral infections of humans with examples.Major conclusions
Use of NGS to study globally relevant RNA viral infections have revolutionized our understanding of the within host and between host evolution of these viruses. These methods have also been useful in clinical decision-making and in guiding biomedical research on vaccine design.General significance
NGS has been instrumental in viral genomic studies in resolving within-host viral genomic variants and the distribution of nucleotide polymorphisms along the full-length of viral genomes in a high throughput, cost effective manner. In the future, novel advances such as long read, single molecule sequencing of viral genomes and simultaneous sequencing of host and pathogens may become the standard of practice in research and clinical settings. This will also bring on new challenges in big data analysis. 相似文献6.
Tagir Kh. Samigullin William F. Martin Aleksey V. Troitsky Andrey S. Antonov 《Journal of molecular evolution》1999,49(3):310-315
Partial sequences of the rpoC1 gene from two species of angiosperms and three species of gymnosperms (8330 base pairs) were determined and compared. The
data obtained support the hypothesis that angiosperms and gymnosperms are monophyletic and none of the recent groups of the
latter is sister to angiosperms.
Received: 20 November 1998 / Accepted: 26 April 1999 相似文献
7.
Terry Kwok Jochen Heinrich Jiunshan Jung-Shiu Michelle G. Meier Srikanth Mathur Karin Moelling 《Biochimica et Biophysica Acta (BBA)/General Subjects》2009
Background
We previously described the inhibition of HIV-1 replication by a 54-mer hairpin-loop structured oligodeoxynucleotide (ODN) A, which binds the polypurine tract (PPT) on HIV-1 RNA. ODN A was shown to lead to reduced viral RNA in virions or early during infection.Methods and results
Here we demonstrated that ODN A was able to cause hydrolysis of viral RNA not only by retroviral RT-associated RNase H but also cellular RNase H1 and RNase H2 in vitro. Furthermore, ODN A reduced gene expression in a dose-dependent manner in a cell-based reporter assay where a PPT sequence was inserted in the 5′ untranslated region of the reporter gene. The efficacy of ODN A was higher than that of its siRNA and antisense counterparts. By knocking down cellular RNases H, we showed that RNase H1 contributed to the gene silencing by ODN A but the possibility of a partial contribution of RNase H-independent mechanisms could not be ruled out.General significance
Our findings highlight the potential application of hairpin-loop structured ODNs for reduction of gene expression in mammalian cells and underscore the possibility of using ODN A to trigger the hydrolysis of HIV RNA in infected cells by cellular RNases H. 相似文献8.
The abilities of suspension cultures and intact roots of soybean (Glycine max L. cv. Hawkeye) to reduce ferric chelate were compared. Ferric chelate was supplied as ferric hydroxyethylethylenediaminetriacetic acid (FeHEDTA) and reduction was measured spectrophotometrically using bathophenan-throlinedisulfonic acid (BPDS) as the ferrous scavenger. Ferric chelate reduction by cell suspension cultures showed typical saturation kinetics; however, no difference was observed between cells that had been continuously grown with Fe (+Fe) and those that had been grown for four days without added Fe (–Fe). Values for Km and Vmax, determined from a Lineweaver-Burk plot, were 57 M and nmoles mg-1 dry weight for the +Fe cells and 50 M and 22 nmoles mg-1 dry weight for the -Fe cells, respectively. Ferric chelate reduction by Fe-deficient roots also exhibited saturation kinetics, while roots grown with adequate Fe did not reduce ferric chelate. The Km and Vmax values for Fe-deficient roots were 45 M and 20 nmoles mg-1 dry weight, respectively, and did not differ from values obtained for cells in culture. This study offers strong evidence that the mechanism responsible for the reduction of ferric chelate is the same for cultured cells and roots and that the process is controlled at the cellular level. We propose that suspension cultures can be used as an alternative to intact roots in the study of ferric chelate reduction. 相似文献
9.
《Theriogenology》2016,85(9):1499-1512
Complementary DNA overexpression and short hairpin RNA interference approaches were evaluated for decreasing expression of primordial germ cell (PGC) marker genes and thereby sterilizing channel catfish, Ictalurus punctatus, by delivering knockdown constructs driven by a constitutive promoter from yeast and a copper transport protein gene into fish embryos by electroporation. Two PGC marker genes, nanos and dead end, were the target knockdown genes, and their expressions, along with that of an off-target gene, vasa, were evaluated temporally using real-time polymerase chain reaction. Copper sulfate was evaluated as a repressor compound. Some of the constructs knocked down PGC marker gene expression, and some of the constructs were partially repressed by application of 0.1-ppm copper sulfate. When the rate of sexual maturity was compared for three-year-old broodfish that had been exposed to the sterilizing constructs during embryologic development and controls that had not been exposed, several treatments had reduced sexual maturity for the exposed fish. Of two promoter systems evaluated, the one which had been designed to be less sensitive to copper generally was more effective at achieving sterilization and more responsive to repression. Knockdown constructs based on 3′ nanos short hairpin RNA interference appeared to result in the best repression and restoration of normal sexual maturity. We conclude that these copper-based systems exhibited good potential for repressible transgenic sterilization. Optimization of this system could allow environmentally safe application of transgenic technology and might be applicable to other applications for aquatic organisms. 相似文献
10.
Matthew C. F. Wander James D. Kubicki Martin A. A. Schoonen 《Origins of life and evolution of the biosphere》2008,38(3):195-209
Nitrogen reduction by ferrous iron has been suggested as an important mechanism in the formation of ammonia on pre-biotic Earth. This paper examines the effects of adsorption of ferrous iron onto a goethite (alpha-FeOOH) substrate on the thermodynamic driving force and rate of a ferrous iron-mediated reduction of N2 as compared with the homogeneous aqueous reaction. Utilizing density functional theory and Marcus Theory of proton coupled electron transfer reactions, the following two reactions were studied: Fe2+aq + N2aq + H2Oaq --> N2H* + FeOH2+aq and triple bond Fe2+ads + N2aq + 2H2Oaq --> N2H* + alpha-FeOOHs + 2H+aq. Although the rates of both reactions were calculated to be approximately zero at 298 K, the model results suggest that adsorption alters the thermodynamic driving force for the reaction but has no other effect on the direct electron transfer kinetics. Given that simply altering the thermodynamic driving force will not reduce dinitrogen, we can make mechanistic connections between possible prebiotic pathways and biological N2 reduction. The key to reduction in both cases is N2 adsorption to multiple transition metal centers with competitive H2 production. 相似文献
11.
Anatoly A. Fagin 《Inorganica chimica acta》2007,360(9):2923-2928
The reaction of neodymium diiodide NdI2 (1) with acetonitrile is accompanied by C-C coupling and formation of bis(ethylimine)ethylamine/acetonitrile complexes {[(MeCNH)2CMeNH2]NdI(MeCN)5}I2 (2) and {[(MeCNH)2CMeNH2]Nd(MeCN)6}I3 (3). Yields of the products are 9% and 50%, respectively. Probable scheme of the complexes formation is discussed. Treatment of 3 with 2 equiv. of 1 in THF affords NdI3(THF)3, hydrogen and monoiodide complex containing presumably bis(imide)amine ligand, NdI[(MeCN)2CMeNH2]. The X-ray analysis revealed that in the molecule of 2 one I− anion is directly bonded to Nd3+ cation while two other I−anions are not in contact to the metal centre. The molecule of 3 is isostructural to previously obtained Dy and Tm analogues. All three I− anions in it are located away from Nd3+ cation. 相似文献
12.
13.
Graeme Milligan Philip G. Strange 《Biochimica et Biophysica Acta (BBA)/Molecular Cell Research》1983,762(4):585-592
The accumulation of [3H]triphenylmethylphosphonium cation in neuroblastoma N1E 115 cells in the presence of tetraphenylboron is reduced by 3,3′-diethylthiadicarbocyanine iodide and by 3,3′-dipropylthiadicarbocyanine iodide. This reduction in uptake of the lipophilic cation is not due to the carbocyanine dyes depolarizing the plasma membrane of these cells but due to an interaction between the carbocyanine dyes and tetraphenylboron leaving less of the lipophilic anion free in solution to assist uptake of the lipophilic cation. This interaction is shown to have a 1:1 stoicheiometry. 相似文献
14.
15.
16.
Tao Wang Changying Chen Leon M. Larcher Roberto A. Barrero Rakesh N. Veedu 《Biotechnology advances》2019,37(1):28-50
Aptamers are short single-stranded nucleic acid sequences capable of binding to target molecules in a way similar to antibodies. Due to various advantages such as prolonged shelf life, low batch to batch variation, low/no immunogenicity, freedom to incorporate chemical modification for enhanced stability and targeting capacity, aptamers quickly found their potential in diverse applications ranging from therapy, drug delivery, diagnosis, and functional genomics to bio-sensing. Aptamers are generated by a process called SELEX. However, the current overall success rate of SELEX is far from being satisfactory, and still presents a major obstacle for aptamer-based research and application. The need for an efficient selection strategy consisting of defined procedures to deal with a wide variety of targets is significantly important. In this work, by analyzing key aspects of SELEX including initial library design, target preparation, PCR optimization, and single strand DNA separation, we provide a comprehensive analysis of individual steps to facilitate researchers intending to develop personalized protocols to address many of the obstacles in SELEX. In addition, this review provides suggestions and opinions for future aptamer development procedures to address the concerns on key SELEX steps, and post-SELEX modifications. 相似文献