首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The single-cell RNA sequencing (scRNA-seq) technologies obtain gene expression at single-cell resolution and provide a tool for exploring cell heterogeneity and cell types. As the low amount of extracted mRNA copies per cell, scRNA-seq data exhibit a large number of dropouts, which hinders the downstream analysis of the scRNA-seq data. We propose a statistical method, SDImpute (Single-cell RNA-seq Dropout Imputation), to implement block imputation for dropout events in scRNA-seq data. SDImpute automatically identifies the dropout events based on the gene expression levels and the variations of gene expression across similar cells and similar genes, and it implements block imputation for dropouts by utilizing gene expression unaffected by dropouts from similar cells. In the experiments, the results of the simulated datasets and real datasets suggest that SDImpute is an effective tool to recover the data and preserve the heterogeneity of gene expression across cells. Compared with the state-of-the-art imputation methods, SDImpute improves the accuracy of the downstream analysis including clustering, visualization, and differential expression analysis.  相似文献   

2.
《Genomics》2021,113(3):1308-1324
Single-cell RNA sequencing (scRNA-seq) is a powerful technology that is capable of generating gene expression data at the resolution of individual cell. The scRNA-seq data is characterized by the presence of dropout events, which severely bias the results if they remain unaddressed. There are limited Differential Expression (DE) approaches which consider the biological processes, which lead to dropout events, in the modeling process. So, we develop, SwarnSeq, an improved method for DE, and other downstream analysis that considers the molecular capture process in scRNA-seq data modeling. The performance of the proposed method is benchmarked with 11 existing methods on 10 different real scRNA-seq datasets under three comparison settings. We demonstrate that SwarnSeq method has improved performance over the 11 existing methods. This improvement is consistently observed across several public scRNA-seq datasets generated using different scRNA-seq protocols. The external spike-ins data can be used in the SwarnSeq method to enhance its performance.Availability and implementationThe method is implemented as a publicly available R package available at https://github.com/sam-uofl/SwarnSeq.  相似文献   

3.
4.
The freshwater planarian Dugesia japonica maintains an abundant heterogeneous cell population called neoblasts, which include adult pluripotent stem cells. Thus, it is an excellent model organism for stem cell and regeneration research. Recently, many single-cell RNA sequencing (scRNA-seq) databases of several model organisms, including other planarian species, have become publicly available; these are powerful and useful resources to search for gene expression in various tissues and cells. However, the only scRNA-seq dataset for D. japonica has been limited by the number of genes detected. Herein, we collected D. japonica cells, and conducted an scRNA-seq analysis. A novel, automatic, iterative cell clustering strategy produced a dataset of 3,404 cells, which could be classified into 63 cell types based on gene expression profiles. We introduced two examples for utilizing the scRNA-seq dataset in this study using D. japonica. First, the dataset provided results consistent with previous studies as well as novel functionally relevant insights, that is, the expression of DjMTA and DjP2X-A genes in neoblasts that give rise to differentiated cells. Second, we conducted an integrative analysis of the scRNA-seq dataset and time-course bulk RNA-seq of irradiated animals, demonstrating that the dataset can help interpret differentially expressed genes captured via bulk RNA-seq. Using the R package “Seurat” and GSE223927, researchers can easily access and utilize this dataset.  相似文献   

5.
6.
Single-cell RNA sequencing enables us to characterize the cellular heterogeneity in single cell resolution with the help of cell type identification algorithms. However, the noise inherent in single-cell RNA-sequencing data severely disturbs the accuracy of cell clustering, marker identification and visualization. We propose that clustering based on feature density profiles can distinguish informative features from noise. We named such strategy as ‘entropy subspace’ separation and designed a cell clustering algorithm called ENtropy subspace separation-based Clustering for nOise REduction (ENCORE) by integrating the ‘entropy subspace’ separation strategy with a consensus clustering method. We demonstrate that ENCORE performs superiorly on cell clustering and generates high-resolution visualization across 12 standard datasets. More importantly, ENCORE enables identification of group markers with biological significance from a hard-to-separate dataset. With the advantages of effective feature selection, improved clustering, accurate marker identification and high-resolution visualization, we present ENCORE to the community as an important tool for scRNA-seq data analysis to study cellular heterogeneity and discover group markers.  相似文献   

7.
Pseudotime analysis from scRNA-seq data enables to characterize the continuous progression of various biological processes, such as the cell cycle. Cell cycle plays an important role in cell fate decisions and differentiation and is often regarded as a confounder in scRNA-seq data analysis when analyzing the role of other factors. Therefore, accurate prediction of cell cycle pseudotime and identification of cell cycle stages are important steps for characterizing the development-related biological processes. Here, we develop CCPE, a novel cell cycle pseudotime estimation method to characterize cell cycle timing and identify cell cycle phases from scRNA-seq data. CCPE uses a discriminative helix to characterize the circular process of the cell cycle and estimates each cell''s pseudotime along the cell cycle. We evaluated the performance of CCPE based on a variety of simulated and real scRNA-seq datasets. Our results indicate that CCPE is an effective method for cell cycle estimation and competitive in various applications compared with other existing methods. CCPE successfully identified cell cycle marker genes and is robust to dropout events in scRNA-seq data. Accurate prediction of the cell cycle using CCPE can also effectively facilitate the removal of cell cycle effects across cell types or conditions.  相似文献   

8.
Here, we introduce scMAGIC (Single Cell annotation using MArker Genes Identification and two rounds of reference-based Classification [RBC]), a novel method that uses well-annotated single-cell RNA sequencing (scRNA-seq) data as the reference to assist in the classification of query scRNA-seq data. A key innovation in scMAGIC is the introduction of a second-round RBC in which those query cells whose cell identities are confidently validated in the first round are used as a new reference to again classify query cells, therefore eliminating the batch effects between the reference and the query data. scMAGIC significantly outperforms 13 competing RBC methods with their optimal parameter settings across 86 benchmark tests, especially when the cell types in the query dataset are not completely covered by the reference dataset and when there exist significant batch effects between the reference and the query datasets. Moreover, when no reference dataset is available, scMAGIC can annotate query cells with reasonably high accuracy by using an atlas dataset as the reference.  相似文献   

9.
Though single cell RNA sequencing (scRNA-seq) technologies have been well developed, the acquisition of large-scale single cell expression data may still lead to high costs. Single cell expression profile has its inherent sparse properties, which makes it compressible, thus providing opportunities for solutions. Here, by computational simulation as well as experiment of 54 single cells, we propose that expression profiles can be compressed from the dimension of samples by overlapped assigning each cell into plenty of pools. And we prove that expression profiles can be inferred from these pool expression data with overlapped pooling design and compressed sensing strategy. We also show that by combining this approach with plate-based scRNA-seq measurement, it can maintain its superiorities in gene detection sensitivity and individual identity and recover the expression profile with high precision, while saving about half of the library cost. This method can inspire novel conceptions on the measurement, storage or computation improvements for other compressible signals in many biological areas.  相似文献   

10.
Technological advances have enabled us to profile multiple molecular layers at unprecedented single-cell resolution and the available datasets from multiple samples or domains are growing. These datasets, including scRNA-seq data, scATAC-seq data and sc-methylation data, usually have different powers in identifying the unknown cell types through clustering. So, methods that integrate multiple datasets can potentially lead to a better clustering performance. Here we propose coupleCoC+ for the integrative analysis of single-cell genomic data. coupleCoC+ is a transfer learning method based on the information-theoretic co-clustering framework. In coupleCoC+, we utilize the information in one dataset, the source data, to facilitate the analysis of another dataset, the target data. coupleCoC+ uses the linked features in the two datasets for effective knowledge transfer, and it also uses the information of the features in the target data that are unlinked with the source data. In addition, coupleCoC+ matches similar cell types across the source data and the target data. By applying coupleCoC+ to the integrative clustering of mouse cortex scATAC-seq data and scRNA-seq data, mouse and human scRNA-seq data, mouse cortex sc-methylation and scRNA-seq data, and human blood dendritic cells scRNA-seq data from two batches, we demonstrate that coupleCoC+ improves the overall clustering performance and matches the cell subpopulations across multimodal single-cell genomic datasets. coupleCoC+ has fast convergence and it is computationally efficient. The software is available at https://github.com/cuhklinlab/coupleCoC_plus.  相似文献   

11.
12.
13.
Clustering is a prevalent analytical means to analyze single cell RNA sequencing (scRNA-seq) data but the rapidly expanding data volume can make this process computationally challenging. New methods for both accurate and efficient clustering are of pressing need. Here we proposed Spearman subsampling-clustering-classification (SSCC),a new clustering framework based on random projection and feature construction,for large-scale scRNA-seq data. SSCC greatly improves clustering accuracy,robustness,and computational efficacy for various state-of-the-art algorithms benchmarked on multiple real datasets. On a dataset with 68,578 human blood cells,SSCC achieved 20%improvement for clustering accuracy and 50-fold acceleration,but only consumed 66%memory usage,compared to the widelyused software package SC3. Compared to k-means,the accuracy improvement of SSCC can reach 3-fold. An R implementation of SSCC is available at https://github.com/Japrin/sscClust.  相似文献   

14.
15.
Hepatocellular carcinoma (HCC) tumors exhibit high heterogeneity. However, current understanding of tumor cell heterogeneity of HCC and the association with prognosis remains very limited. In the present study, we collected and examined tumor tissue from one HCC patient by single-cell RNA sequencing (scRNA-seq). We identified 5753 cells and 16 clusters including hepatocytes/cancer cells, T cells, macrophages, endothelial cells, fibroblasts, NK cells, neutrophils, and B cells. In six tumor cell subclusters, we identified a cluster of proliferative tumor cells associated with poor prognosis. We downloaded scRNA-seq data of GSE125449 from the NCBI-GEO as validation dataset, and found that a cluster of hepatocytes exhibited high proliferation activity in HCC. Furthermore, we identified a gene signature related to the proliferation of HCC cells. This gene signature is efficient to classify HCC patients into two groups with distinct prognosis in both TCGA and ICGC database cohorts. Our results reveal the intratumoral heterogeneity of HCC at single cell level and identify a gene signature associated with HCC prognosis.  相似文献   

16.
Advances in single-cell RNA sequencing (scRNA-seq) have led to successes in discovering novel cell types and understanding cellular heterogeneity among complex cell populations through cluster analysis. However, cluster analysis is not able to reveal continuous spectrum of states and underlying gene expression programs (GEPs) shared across cell types. We introduce scAAnet, an autoencoder for single-cell non-linear archetypal analysis, to identify GEPs and infer the relative activity of each GEP across cells. We use a count distribution-based loss term to account for the sparsity and overdispersion of the raw count data and add an archetypal constraint to the loss function of scAAnet. We first show that scAAnet outperforms existing methods for archetypal analysis across different metrics through simulations. We then demonstrate the ability of scAAnet to extract biologically meaningful GEPs using publicly available scRNA-seq datasets including a pancreatic islet dataset, a lung idiopathic pulmonary fibrosis dataset and a prefrontal cortex dataset.  相似文献   

17.
Accurate identification of cell types from single-cell RNA sequencing(scRNA-seq) data plays a critical role in a variety of scRNA-seq analysis studies. This task corresponds to solving an unsupervised clustering problem, in which the similarity measurement between cells affects the result significantly. Although many approaches for cell type identification have been proposed,the accuracy still needs to be improved. In this study, we proposed a novel single-cell clustering framework based on similarity learning, called SSRE. SSRE models the relationships between cells based on subspace assumption, and generates a sparse representation of the cell-to-cell similarity.The sparse representation retains the most similar neighbors for each cell. Besides, three classical pairwise similarities are incorporated with a gene selection and enhancement strategy to further improve the effectiveness of SSRE. Tested on ten real scRNA-seq datasets and five simulated datasets, SSRE achieved the superior performance in most cases compared to several state-of-the-art single-cell clustering methods. In addition, SSRE can be extended to visualization of scRNA-seq data and identification of differentially expressed genes. The matlab and python implementations of SSRE are available at https://github.com/CSUBioGroup/SSRE.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号