首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 0 毫秒
1.
We report the generation and initial characterization of a mouse line expressing tamoxifen‐inducible improved Cre (iCre) recombinase (iCre‐ERT2) under the regulation of NPHS2 (podocin) gene promoter. The resulting transgenic mouse line was named podocin‐iCreERT2 mice. The efficiency of iCre activity was confirmed by crossing podocin‐iCreERT2 with the ROSA26 reporter mouse. By using the floxed ROSA reporter mice, we found that tamoxifen specifically induced recombination in the kidneys. In the absence of tamoxifen, recombination was undetectable in podocin‐iCreERT2;ROSA26 mice. However, following intraperitoneal injection of tamoxifen, selective recombination was observed in the podocytes of adult animals. We further examined the efficiency of recombination by assessing various tamoxifen exposure regimens in adult mice. These results suggest that podocin‐iCre‐ERT2 mouse provides an excellent genetic tool to examine the function of candidate genes in podocytes in a spatially and temporally‐restricted manner. genesis 48:446–451, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

2.
Mifepristone, also known as RU486, is a potent glucocorticoid receptor (GR) antagonist that inhibits GR-mediated transactivation. As an alternative to existing antidepressants, RU486 has been shown to rapidly reverse psychotic depression, most likely by blocking GR. Although a number of studies have demonstrated RU486-induced GR antagonism, the precise mechanism of action still remains unclear. To identify the GR domain involved in RU486-induced suppression, GR transactivation and nuclear translocation were examined using cells transfected with human GR (hGR), Guyanese squirrel monkey GR (gsmGR), and GR chimeras into COS-1 cells. RU486 showed a much more potent suppressive effect in gsmGR-expressing cells versus hGR-expressing cells, without significant cortisol- or RU486-induced changes in nuclear translocation. A GR chimera containing the gsmGR AF1 domain (amino acids 132–428) showed a marked decrease in luciferase activity, suggesting that this domain plays an important role in RU486-induced GR antagonism. Furthermore, fluorescence recovery after photobleaching (FRAP) analysis indicated that, in the presence of RU486, gsmGR AF1 domain contributes to GR mobility in living COS-1 cells. Taken together, these results demonstrate, for the first time, that the antagonistic effects of RU486 on GR transactivation involve a specific GR domain.  相似文献   

3.
The node and the notochord are important embryonic signaling centers that control embryonic pattern formation. Notochord progenitor cells present in the node and later in the posterior end of the notochord move anteriorly to generate the notochord. To understand the dynamics of cell movement during notochord development and the molecular mechanisms controlling this event, analyses of cell movements using time‐lapse imaging and conditional manipulation of gene activities are required. To achieve this goal, we generated two knock‐in mouse lines that simultaneously express nuclear enhanced green fluorescent protein (EGFP) and tamoxifen‐inducible Cre, CreERT2, from two notochord gene loci, Foxa2 and T (Brachury). In Foxa2nEGFP‐CreERT2/+ and TnEGFP‐CreERT2/+ embryos, nuclei of the Foxa2 or T‐expressing cells, which include the node, notochord, and endoderm (Foxa2) or wide range of posterior mesoderm (T), were labeled with EGFP at intensities that can be used for live imaging. Cre activity was also induced in cells expressing Foxa2 and T 1 day after tamoxifen administration. These mice are expected to be useful tools for analyzing the mechanisms of notochord development. genesis 51:210–218, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

4.
Cervical dilatation and softening after pretreatment with mifepristone are well documented. As this effect is similar to that observed after local application of prostaglandin E2 (PGE2) it is tempting to speculate that the effect of mifepristone is mediated via an increase of the endogenous secretion of prostaglandins from the cervical mucosa. Eighteen healthy women in the first trimester of pregnancy were treated with oral mifepristone (200 mg) 48 and 24 hours before legal abortion by vacuum aspiration and 18 women in the same age of gestation without any pretreatment served as controls. Cervical mucus was collected for measurement of prostaglandins by radioimmunoassay before administration of the drug and in connection with vacuum aspiration. The cervical dilatation at the time of surgery was significantly increased in women given mifepristone as compared with untreated women (7.6 versus 5.8 mm). The wet weight of collected cervical mucus was significantly increased in mifepristone treated women. The amount of PGE2 and prostaglandin F per sample was unchanged in mifepristone-treated women, whereas the concentration was lower as an effect of dilution due to an increased yield in cervical secretion observed after mifepristone treatment. The present observation does not give any support to the hypothesis that mifepristone-induced cervical maturation is mediated via an increase in cervical prostaglandin production.  相似文献   

5.
6.
Diabetes has been implicated in the dryness of the mouth, loss of taste sensation, sialosis, and other disorders of the oral cavity, by impairment of the salivary glands. The aim of the present study was to examine the plasma membrane, microsomal, and homogenate Ca2+‐ATPase activity in the rat submandibular and parotid salivary glands of streptozotocin‐induced diabetes. We have also examined the influence of the acidosis state on this parameter. Diabetes was induced by an intraperitoneal injection of streptozotocin and acidosis was induced by daily injection of NH4Cl. At 15 and 30 days after diabetes induction, the animals were euthanized and the submandibular and parotid salivary glands were removed and analyzed. Ca2+‐ATPase (total, independent, and dependent) was determined in the homogenate, microsomal, and plasma membranes of the salivary glands of diabetic and control rats. Calcium concentration was also determined in the glands and showed to be higher in the diabetic animals. Ca2+‐ATPase activity was found to be reduced in all cell fractions studied in the diabetic animals compared with control. Similar results were obtained for the submandibular salivary glands of acidotic animals; however in the parotid salivary glands it was found an increase in the enzyme activity. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
8.
9.
We have identified specific GABAergic‐modulated behaviors in the juvenile stage of the fruit fly, Drosophila melanogaster via systemic treatment of second instar larvae with the potent GABA transport inhibitor DL‐2,4‐diaminobutyric acid (DABA). DABA significantly inhibited motor‐controlled body wall and mouth hook contractions and impaired rollover activity and contractile responses to touch stimulation. The perturbations in locomotion and rollover activity were reminiscent of corresponding DABA‐induced deficits in locomotion and the righting reflex observed in adult flies. The effects were specific to these motor‐controlled behaviors, because DABA‐treated larvae responded normally in olfaction and phototaxis assays. Recovery of these behaviors was achieved by cotreatment with the vertebrate GABAA receptor antagonist picrotoxin. Pharmacological studies performed in vitro with plasma membrane vesicles isolated from second instar larval tissues verified the presence of high‐affinity, saturable GABA uptake mechanisms. GABA uptake was also detected in plasma membrane vesicles isolated from behaviorally quiescent stages. Competitive inhibition studies of [3H]‐GABA uptake into plasma membrane vesicles from larval and pupal tissues with either unlabeled GABA or the transport inhibitors DABA, nipecotic acid, or valproic acid, revealed differences in affinities. GABAergic‐modulation of motor behaviors is thus conserved between the larval and adult stages of Drosophila, as well as in mammals and other vertebrate species. The pharmacological studies reveal shared conservation of GABA transport mechanisms between Drosophila and mammals, and implicate the involvement of GABA and GABA transporters in regulating physiological processes distinct from neurotransmission during behaviorally quiescent stages of development. © 2004 Wiley Periodicals, Inc. J Neurobiol, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号