首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The intrinsically disordered C‐terminal domain (NTAIL) of the measles virus (MeV) nucleoprotein undergoes α‐helical folding upon binding to the C‐terminal X domain (XD) of the phosphoprotein. The NTAIL region involved in binding coupled to folding has been mapped to a conserved region (Box2) encompassing residues 489–506. In the previous studies published in this journal, we obtained experimental evidence supporting a KD for the NTAIL–XD binding reaction in the nM range and also showed that an additional NTAIL region (Box3, aa 517–525) plays a role in binding to XD. In striking contrast with these data, studies published in this journal by Kingston and coworkers pointed out a much less stable complex (KD in the μM range) and supported lack of involvement of Box3 in complex formation. The objective of this study was to critically re‐evaluate the role of Box3 in NTAIL–XD binding. Since our previous studies relied on NTAIL‐truncated forms possessing an irrelevant Flag sequence appended at their C‐terminus, we, herein, generated an NTAIL devoid of Box3 and any additional C‐terminal residues, as well as a form encompassing only residues 482–525. We then used isothermal titration calorimetry to characterize the binding reactions between XD and these NTAIL forms. Results effectively argue for the presence of a single XD‐binding site located within Box2, in agreement with the results by Kingston et al., while providing clear experimental support for a high‐affinity complex. Altogether, the present data provide mechanistic insights into the replicative machinery of MeV and clarify a hitherto highly debated point.  相似文献   

2.
As one of the most abundant and highly conserved molecular chaperones, the 70‐kDa heat shock proteins (Hsp70s) play a key role in maintaining cellular protein homeostasis (proteostasis), one of the most fundamental tasks for every living organism. In this role, Hsp70s are inextricably linked to many human diseases, most notably cancers and neurodegenerative diseases, and are increasingly recognized as important drug targets for developing novel therapeutics for these diseases. Hsp40s are a class of essential and universal partners for Hsp70s in almost all aspects of proteostasis. Thus, Hsp70s and Hsp40s together constitute one of the most important chaperone systems across all kingdoms of life. In recent years, we have witnessed significant progress in understanding the molecular mechanism of this chaperone system through structural and functional analysis. This review will focus on this recent progress, mainly from a structural perspective.  相似文献   

3.
4.
《Molecular cell》2022,82(3):555-569.e7
  1. Download : Download high-res image (114KB)
  2. Download : Download full-size image
  相似文献   

5.
Hsp70 chaperones mediate folding of proteins and prevent their misfolding and aggregation. We report here on a new kind of Hsp70 interacting protein in mitochondria, Hep1. Hep1 is a highly conserved protein present in virtually all eukaryotes. Deletion of HEP1 results in a severe growth defect. Cells lacking Hep1 are deficient in processes that need the function of mitochondrial Hsp70s, such as preprotein import and biogenesis of proteins containing FeS clusters. In the mitochondria of these cells, Hsp70s, Ssc1 and Ssq1 accumulate as insoluble aggregates. We show that it is the nucleotide-free form of mtHsp70 that has a high tendency to self-aggregate. This process is efficiently counteracted by Hep1. We conclude that Hep1 acts as a chaperone that is necessary and sufficient to prevent self-aggregation and to thereby maintain the function of the mitochondrial Hsp70 chaperones.  相似文献   

6.
Kim SA  Chang S  Yoon JH  Ahn SG 《FEBS letters》2008,582(5):734-740
Heat shock protein 40 (Hsp40) functions as a co-chaperone of mammalian Heat shock protein 70 (Hsp70) and facilitates the ATPase activity of Hsp70, and also promotes the cellular protein folding and renaturation of misfolded proteins. In an effort to assess the effects of Hsp40, we generated TAT-fused Hsp40 (TAT-Hsp40). The cells were transduced with TAT-Hsp40 and exposed to H(2)O(2). We demonstrated that the TAT-Hsp40-transduced cells were more resistant to cellular cytotoxicity and cell death. In particular, the degradation of Hsp70 was significantly reduced in TAT-Hsp40-containing cells as a consequence of reduced ubiquitin-proteasome activity after oxidative injury. These data support the notion that Hsp40 may confer resistance to oxidative stress via the prevention of proteasome activity.  相似文献   

7.
Mortalin, a member of the Hsp70‐family of molecular chaperones, functions in a variety of processes including mitochondrial protein import and quality control, Fe‐S cluster protein biogenesis, mitochondrial homeostasis, and regulation of p53. Mortalin is implicated in regulation of apoptosis, cell stress response, neurodegeneration, and cancer and is a target of the antitumor compound MKT‐077. Like other Hsp70‐family members, Mortalin consists of a nucleotide‐binding domain (NBD) and a substrate‐binding domain. We determined the crystal structure of the NBD of human Mortalin at 2.8 Å resolution. Although the Mortalin nucleotide‐binding pocket is highly conserved relative to other Hsp70 family members, we find that its nucleotide affinity is weaker than that of Hsc70. A Parkinson's disease‐associated mutation is located on the Mortalin‐NBD surface and may contribute to Mortalin aggregation. We present structure‐based models for how the Mortalin‐NBD may interact with the nucleotide exchange factor GrpEL1, with p53, and with MKT‐077. Our structure may contribute to the understanding of disease‐associated Mortalin mutations and to improved Mortalin‐targeting antitumor compounds.  相似文献   

8.
Measles virus is a negative-sense, single-stranded RNA virus within the Mononegavirales order,which includes several human pathogens, including rabies, Ebola, Nipah, and Hendra viruses. The measles virus nucleoprotein consists of a structured N-terminal domain, and of an intrinsically disordered C-terminal domain, N(TAIL) (aa 401-525), which undergoes induced folding in the presence of the C-terminal domain (XD, aa 459-507) of the viral phosphoprotein. With in N(TAIL), an alpha-helical molecular recognition element (alpha-MoRE, aa 488-499) involved in binding to P and in induced folding was identified and then observed in the crystal structure of XD. Using small-angle X-ray scattering, we have derived a low-resolution structural model of the complex between XD and N(TAIL), which shows that most of N(TAIL) remains disordered in the complex despite P-induced folding within the alpha-MoRE. The model consists of an extended shape accommodating the multiple conformations adopted by the disordered N-terminal region of N(TAIL), and of a bulky globular region, corresponding to XD and to the C terminus of N(TAIL) (aa 486-525). Using surface plasmon resonance, circular dichroism, fluorescence spectroscopy, and heteronuclear magnetic resonance, we show that N(TAIL) has an additional site (aa 517-525) involved in binding to XD but not in the unstructured-to-structured transition. This work provides evidence that intrinsically disordered domains can establish complex interactions with their partners, and can contact them through multiple sites that do not all necessarily gain regular secondary structure.  相似文献   

9.
Substrate binding to Hsp70 chaperones is involved in many biological processes, and the identification of potential substrates is important for a comprehensive understanding of these events. We present a multi‐scale pipeline for an accurate, yet efficient prediction of peptides binding to the Hsp70 chaperone BiP by combining sequence‐based prediction with molecular docking and MMPBSA calculations. First, we measured the binding of 15mer peptides from known substrate proteins of BiP by peptide array (PA) experiments and performed an accuracy assessment of the PA data by fluorescence anisotropy studies. Several sequence‐based prediction models were fitted using this and other peptide binding data. A structure‐based position‐specific scoring matrix (SB‐PSSM) derived solely from structural modeling data forms the core of all models. The matrix elements are based on a combination of binding energy estimations, molecular dynamics simulations, and analysis of the BiP binding site, which led to new insights into the peptide binding specificities of the chaperone. Using this SB‐PSSM, peptide binders could be predicted with high selectivity even without training of the model on experimental data. Additional training further increased the prediction accuracies. Subsequent molecular docking (DynaDock) and MMGBSA/MMPBSA‐based binding affinity estimations for predicted binders allowed the identification of the correct binding mode of the peptides as well as the calculation of nearly quantitative binding affinities. The general concept behind the developed multi‐scale pipeline can readily be applied to other protein‐peptide complexes with linearly bound peptides, for which sufficient experimental binding data for the training of classical sequence‐based prediction models is not available. Proteins 2016; 84:1390–1407. © 2016 Wiley Periodicals, Inc.  相似文献   

10.
Yeast Zuotin and Ssz are members of the conserved Hsp40 and Hsp70 chaperone families, respectively, but compared with canonical homologs, they atypically form a stable heterodimer termed ribosome-associated complex (RAC). RAC acts as co-chaperone for another Hsp70 to assist de novo protein folding. In this study, we identified the molecular basis for the unusual Hsp70/Hsp40 pairing using amide hydrogen exchange (HX) coupled with mass spectrometry and mutational analysis. Association of Ssz with Zuotin strongly decreased the conformational dynamics mainly in the C-terminal domain of Ssz, whereas Zuotin acquired strong conformational stabilization in its N-terminal segment. Deletion of the highly flexible N terminus of Zuotin abolished stable association with Ssz in vitro and caused a phenotype resembling the loss of Ssz function in vivo. Thus, the C-terminal domain of Ssz, the N-terminal extension of Zuotin, and their mutual stabilization are the major structural determinants for RAC assembly. We furthermore found dynamic changes in the J-domain of Zuotin upon complex formation that might be crucial for RAC co-chaperone function. Taken together, we present a novel mechanism for converting Zuotin and Ssz chaperones into a functionally active dimer.  相似文献   

11.
Hepatitis B virus X (HBX) protein is required for the productive infection of hepatitis B virus (HBV) in vivo and implicated in the development of hepatocellular carcinoma. We have previously shown that hTid-1 and Hdj1, the human Hsp40/DnaJ chaperone proteins, bind the HBV core protein and inhibit viral replication in cell culture system. Here, we report evidences to suggest that HBX is the major target of Hdj1 in the inhibition of HBV replication. Expression of Hdj1 in cultured human hepatoma HepG2 cells facilitated degradation of HBX by the proteasome pathway, and thereby inhibited replication of the wild-type HBV as well as that of the HBX-deficient mutant virus rescued by HBX supplied in trans. Mutational analyses indicated that J domain of Hdj1 is required for the process. These results might provide a molecular basis for the antiviral effect of cellular chaperones.  相似文献   

12.
Alpha‐synuclein (αS) is the primary component of Lewy bodies, the pathological hallmark of Parkinson's Disease. Aggregation of αS is thought to proceed from a primarily disordered state with nascent secondary structure through intermediate conformations to oligomeric forms and finally to mature amyloid fibrils. Low pH conditions lead to conformational changes associated with increased αS fibril formation. Here we characterize these structural and dynamic changes using solution state NMR measurements of secondary chemical shifts, relaxation parameters, residual dipolar couplings, and paramagnetic relaxation enhancement. We find that the neutralization of negatively charged side‐chains eliminates electrostatic repulsion in the C‐terminal tail of αS and leads to a collapse of this region at low pH. Hydrophobic contacts between the compact C‐terminal tail and the NAC (non‐amyloid‐β component) region are maintained and may lead to the formation of a globular domain. Transient long‐range contacts between the C‐terminus of the protein and regions N‐terminal to the NAC region are also preserved. Thus, the release of long‐range contacts does not play a role in the increased aggregation of αS at low pH, which we instead attribute to the increased hydrophobicity of the protein.  相似文献   

13.
Abstract

The role of mitochondria within a cell has grown beyond being the prime source of cellular energy to one of the major signaling platforms. Recent evidence provides several insights into the crucial roles of mitochondrial chaperones in regulating the organellar response to external triggers. The mitochondrial Hsp70 (mtHsp70/Mortalin/Grp75) chaperone system plays a critical role in the maintenance of proteostasis balance in the organelle. Defects in mtHsp70 network result in attenuated protein transport and misfolding of polypeptides leading to mitochondrial dysfunction. The functions of Hsp70 are primarily governed by J-protein cochaperones. Although human mitochondria possess a single Hsp70, its multifunctionality is characterized by the presence of multiple specific J-proteins. Several studies have shown a potential association of Hsp70 and J-proteins with diverse pathological states that are not limited to their canonical role as chaperones. The role of mitochondrial Hsp70 and its co-chaperones in disease pathogenesis has not been critically reviewed in recent years. We evaluated some of the cellular interfaces where Hsp70 machinery associated with pathophysiological conditions, particularly in context of tumorigenesis and neurodegeneration. The mitochondrial Hsp70 machinery shows a variable localization and integrates multiple components of the cellular processes with varied phenotypic consequences. Although Hsp70 and J-proteins function synergistically in proteins folding, their precise involvement in pathological conditions is mainly idiosyncratic. This machinery is associated with a heterogeneous set of molecules during the progression of a disorder. However, the precise binding to the substrate for a specific physiological response under a disease subtype is still an undocumented area of analysis.  相似文献   

14.
Molecular mechanisms by which protein–protein interactions are preserved or lost after gene duplication are not understood. Taking advantage of the well–studied yeast mtHsp70:J–protein molecular chaperone system, we considered whether changes in partner proteins accompanied specialization of gene duplicates. Here, we report that existence of the Hsp70 Ssq1, which arose by duplication of the gene encoding multifunction mtHsp70 and specializes in iron–sulphur cluster biogenesis, correlates with functional and structural changes in the J domain of its J–protein partner Jac1. All species encoding this shorter alternative version of the J domain share a common ancestry, suggesting that all short JAC1 proteins arose from a single deletion event. Construction of a variant that extended the length of the J domain of a ‘short’ Jac1 enhanced its ability to partner with multifunctional Hsp70. Our data provide a causal link between changes in the J protein partner and specialization of duplicate Hsp70.  相似文献   

15.
Using site-directed spin-labeling EPR spectroscopy, we mapped the region of the intrinsically disordered C-terminal domain of measles virus nucleoprotein (N(TAIL)) that undergoes induced folding. In addition to four spin-labeled N(TAIL) variants (S407C, S488C, L496C, and V517C) (Morin et al. (2006), J Phys Chem 110: 20596-20608), 10 new single-site cysteine variants were designed, purified from E. coli, and spin-labeled. These 14 spin-labeled variants enabled us to map in detail the gain of rigidity of N(TAIL) in the presence of either the secondary structure stabilizer 2,2,2-trifluoroethanol or the C-terminal domain X (XD) of the viral phosphoprotein. Different regions of N(TAIL) were shown to contribute to a different extent to the binding to XD, while the mobility of the spin labels grafted at positions 407 and 460 was unaffected upon addition of XD; that of the spin labels grafted within the 488-502 and the 505-522 regions was severely and moderately reduced, respectively. Furthermore, EPR experiments in the presence of 30% sucrose allowed us to precisely map to residues 488-502, the N(TAIL) region undergoing alpha-helical folding. The mobility of the 488-502 region was found to be restrained even in the absence of the partner, a behavior that could be accounted for by the existence of a transiently populated folded state. Finally, we show that the restrained motion of the 505-522 region upon binding to XD is due to the alpha-helical transition occurring within the 488-502 region and not to a direct interaction with XD.  相似文献   

16.
Virtually nothing is known about the interaction of co-translationally active chaperones with nascent polypeptides and the resulting effects on peptide conformation and folding. We have explored this issue by NMR analysis of apomyoglobin N-terminal fragments of increasing length, taken as models for different stages of protein biosynthesis, in the absence and presence of the substrate binding domain of Escherichia coli Hsp70, DnaK-beta. The incomplete polypeptides misfold and self-associate under refolding conditions. In the presence of DnaK-beta, however, formation of the original self-associated species is completely or partially prevented. Chaperone interaction with incomplete protein chains promotes a globally unfolded dynamic DnaK-beta-bound state, which becomes folding-competent only upon incorporation of the residues corresponding to the C-terminal H helix. The chaperone does not bind the full-length protein at equilibrium. However, its presence strongly disfavors the kinetic accessibility of misfolding side-routes available to the full-length chain. This work supports the role of DnaK as a "holder" for incomplete N-terminal polypeptides. However, as the chain approaches its full-length status, the tendency to intramolecularly bury non-polar surface efficiently outcompetes chaperone binding. Under these conditions, DnaK serves as a "folding enhancer" by supporting folding of a population of otherwise folding-incompetent full-length protein chains.  相似文献   

17.
The Cu+‐ATPase CopA from Archaeoglobus fulgidus belongs to the P1B family of the P‐type ATPases. These integral membrane proteins couple the energy of ATP hydrolysis to heavy metal ion translocation across membranes. A defining feature of P1B‐1‐type ATPases is the presence of soluble metal binding domains at the N‐terminus (N‐MBDs). The N‐MBDs exhibit a conserved ferredoxin‐like fold, similar to that of soluble copper chaperones, and bind metal ions via a conserved CXXC motif. The N‐MBDs enable Cu+ regulation of turnover rates apparently through Cu‐sensitive interactions with catalytic domains. A. fulgidus CopA is unusual in that it contains both an N‐terminal MBD and a C‐terminal MBD (C‐MBD). The functional role of the unique C‐MBD has not been established. Here, we report the crystal structure of the apo, oxidized C‐MBD to 2.0 Å resolution. In the structure, two C‐MBD monomers form a domain‐swapped dimer, which has not been observed previously for similar domains. In addition, the interaction of the C‐MBD with the other cytoplasmic domains of CopA, the ATP binding domain (ATPBD) and actuator domain (A‐domain), has been investigated. Interestingly, the C‐MBD interacts specifically with both of these domains, independent of the presence of Cu+ or nucleotides. These data reinforce the uniqueness of the C‐MBD and suggest a distinct structural role for the C‐MBD in CopA transport. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

18.
New strategies in vaccine development are urgently needed to combat emerging influenza viruses and to reduce the risk of pandemic disease surfacing. Being conserved, the M2 e protein, is a potential candidate for universal vaccine development against influenza A viruses. Mycobacterium tuberculosis Hsp70(mHsp70) is known to cultivate the function of immunogenic antigen-presenting cells, stimulate a strong cytotoxic T lymphocyte(CTL) response, and stop the induction of tolerance. Thus, in this study, a recombinant protein from the extracellular domain of influenza A virus matrix protein 2(M2e), was fused to the C-terminus of Mycobacterium tuberculosis Hsp70(Hsp70c), to generate a vaccine candidate. Humoral immune responses, IFN-γ-producing lymphocyte, and strong CTL activity were all induced to confirm the immunogenicity of M2 e.Hsp70c(Hsp70359–610). And challenge tests showed protection against H1N1 and H9N2 strains in vaccinated groups. Finally these results demonstrates M2 e.Hsp70c fusion protein can be a candidate for a universal influenza A vaccine.  相似文献   

19.
Plasmodium falciparum FK506‐binding protein 35 (PfFKBP35) that binds to FK506 contains a conserved tetratricopeptide repeat (TPR) domain. Several known TPR domains such as Hop, PPP5, CHIP, and FKBP52 are structurally conserved and are able to interact with molecular chaperones such as Hsp70/Hsp90. Here, we present the crystal structure of PfFKBP35‐TPR and demonstrate its interaction with Hsp90 C‐terminal pentapeptide (MEEVD) by surface plasmon resonance and nuclear magnetic resonance spectroscopy‐based binding studies. Our sequence and structural analyses reveal that PfFKBP35 is similar to Hop and PPP5 in possessing all the conserved residues which are important for carboxylate clamping with Hsp90. Mutational studies were carried out on positively charged clamp residues that are crucial for binding to carboxylate groups of aspartate, showing that all the mutated residues are important for Hsp90 binding. Molecular docking and electrostatic calculations demonstrated that the MEEVD peptide of Hsp90 can form aspartate clamp unlike FKBP52. Our results provide insightful information and structural basis about the molecular interaction between PfFKBP35‐TPR and Hsp90.  相似文献   

20.
The chaperone heat shock protein 70 (Hsp70) and its network of co-chaperones serve as a central hub of cellular protein quality control mechanisms. Domain organization in Hsp70 dictates ATPase activity, ATP dependent allosteric regulation, client/substrate binding and release, and interactions with co-chaperones. The protein quality control activities of Hsp70 are classified as foldase, holdase, and disaggregase activities. Co-chaperones directly assisting protein refolding included J domain proteins and nucleotide exchange factors. However, co-chaperones can also be grouped and explored based on which domain of Hsp70 they interact. Here we discuss how the network of cytosolic co-chaperones for Hsp70 contributes to the functions of Hsp70 while closely looking at their structural features. Comparison of domain organization and the structures of co-chaperones enables greater understanding of the interactions, mechanisms of action, and roles played in protein quality control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号