首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
IL-33, the natural ligand of the IL-1 receptor family member ST2L, is known to enhance experimental allergic-type inflammatory responses by costimulating the production of cytokines from activated Th2 lymphocytes. Although ST2L has long been known to be expressed by mast cells, its role in their biology has not been explored. In this study we report that IL-33 directly stimulates primary human mast cells (MCs) to produce several proinflammatory cytokines and chemokines and also exerts a permissive effect on the MCs response to thymic stromal lymphopoietin, a recently described potent MCs activator. IL-33 also acts both alone and in concert with thymic stromal lymphopoietin to accelerate the in vitro maturation of CD34(+) MC precursors and induce the secretion of Th2 cytokines and Th2-attracting chemokines. Taken together, these results suggest that IL-33 may play an important role in mast cell-mediated inflammation and further emphasize the role of innate immunity in allergic diseases.  相似文献   

2.
Uncontrolled or sustained inflammation is the underlying cause of or actively contributes to the progression of many chronic pathologies such as atherosclerosis, arthritis, or neuroinflammatory diseases. Matricellular proteins of the CCN family (CYR61/CTGF/NOV) have emerged as localized multitasking signal integrators. These structurally conserved secreted proteins specifically interact with and signal through various extracellular partners, in particular integrins, which enable them to play crucial roles in various processes including development, angiogenesis, wound healing and diseases such as fibrosis, vascular disease and cancer. In this review, we discuss the possibility that the CCN family members could represent a putative new class of modulators of inflammation. In this context, we focused on their relationship with cytokines and chemokines. In vitro, CCN expression is finely regulated by diverse inflammatory mediators including cytokines (TNFα, IL1β, TGF-β), small factors such as prostaglandins, nitric oxide, histamine and serotonin, and extracellular matrix enzymes. In addition, CCN proteins acting alone or in concert with their specific partners appear to be potent regulators of the production of cytokines and chemokines in a context-dependent manner. Finally, emerging studies suggest a potential role for CCN proteins in chronic inflammatory diseases such as atherosclerosis, rheumatoid arthritis, inflammatory kidney diseases and neuroinflammatory pathologies such as Alzheimer’s disease. CCN members could therefore represent new potential therapeutic targets for drug development against such diseases.  相似文献   

3.
In addition to their well-known role in acute injury and chronic inflammation, "innate" cytokines play an important role in health and the maintenance of normal immune homeostasis. This group includes the prototypic cytokines IL-1 and TNFα, as well as several other members belonging to the IL-1 and TNF family, such as IL-18, IL-33, IL-36-38, and TL1A. The dichotomous role of these cytokines has been best characterized in the intestine where innate cytokines may play both a protective and a pro-inflammatory role, depending upon the immmunological status of the host or the type and phase of the inflammatory process. This new information has produced novel pathogenetic hypotheses that have important translational implications both in regard to the prevention and treatment of chronic intestinal inflammation, including Crohn's disease and ulcerative colitis, the two major forms of inflammatory bowel disease. This review will discuss and summarize current data regarding the role of IL-1, TNFα, and their family members in regulating gut mucosal homeostasis and chronic intestinal inflammation.  相似文献   

4.
Ultraviolet (UV) B can lead to inflammatory responses such as sunburn, which involves the production of various inflammatory cytokines and chemokines, and the induction of cell death. Keratinocytes in the skin has one of the highest risks of exposure to UV. However, the detailed mechanisms underlying UVB irradiation-induced inflammation and cell death are not well known. Thus, we investigated the effect of UVB irradiation on the production of various cytokines/chemokines and the induction of cell death in UVB-irradiated human keratinocytes (HaCaT cells). We evaluated 11 cytokines/chemokines in cell culture supernatants from HaCaT cells exposed to 0-400 mJ/cm(2) UVB irradiation. UVB at a dose 400 mJ/cm(2) induced the release of various cytokines; interleukin (IL)-1beta, IL-6, IL-8, interferon (IFN)-gamma, granulocyte-colony stimulating factor (G-CSF), macrophage inflammatory protein (MIP)-1beta, and tumor necrosis factor (TNF)-alpha. These results suggest that UVB irradiation-induced the release of several cytokines/chemokines and led to cell death in human keratinocytes. UV exposure may be associated with multiple physiological events in the human skin.  相似文献   

5.
Cardiovascular diseases are the human diseases with the highest death rate and atherosclerosis is one of the major underlying causes of cardiovascular diseases. Inflammatory and innate immune mechanisms, employing monocytes, innate receptors, innate cytokines, or chemokines are suggested to be involved in atherogenesis. Among the inflammatory pathways the cytokines are central players. Plasma levels of cytokines and related proteins, such as CRP, have been investigated in cardiovascular patients, tissue mRNA expression was analyzed and correlations to vascular diseases established. Consistent with these findings the generation of cytokine-deficient animals has provided direct evidence for a role of cytokines in atherosclerosis. In vitro cell culture experiments further support the suggestion that cytokines and other innate mechanisms contribute to atherogenesis. Among the initiation pathways of atherogenesis are innate mechanisms, such as toll-like-receptors (TLRs), including the endotoxin receptor TLR4. On the other hand, innate cytokines, such as IL-1 or TNF, or even autoimmune triggers may activate the cells. Cytokines potently activate multiple functions relevant to maintain or spoil homeostasis within the vessel wall. Vascular cells, not least smooth muscle cells, can actively contribute to the inflammatory cytokine-dependent network in the blood vessel wall by: (i) production of cytokines; (ii) response to these potent cell activators; and (iii) cytokine-mediated interaction with invading cells, such as monocytes, T-cells, or mast cells. Activation of these pathways results in accumulation of cells and increased LDL- and ECM-deposition which may serve as an 'immunovascular memory' resulting in an ever-growing response to subsequent invasions. Thus, vascular cells may potently contribute to the inflammatory pathways involved in development and acceleration of atherosclerosis.  相似文献   

6.
Inflammation characterized by the expression and release of cytokines and chemokines is implicated in the development and progression of atherosclerosis. Oxidatively modified low density lipoproteins, central to the formation of atherosclerotic plaques, have been reported to signal through Toll-like receptors (TLRs), TLR4 and TLR2, in concert with scavenger receptors to regulate the inflammatory microenvironment in atherosclerosis. This study evaluates the role of low density lipoproteins (LDL) and oxidatively modified LDL (oxmLDL) in the expression and release of proinflammatory mediators IκBζ, IL-6, IL-1β, TNFα, and IL-8 in human monocytes and macrophages. Although standard LDL preparations induced IκBζ along with IL-6 and IL-8 production, this inflammatory effect was eliminated when LDL was isolated under endotoxin-restricted conditions. However, when added with TLR4 and TLR2 ligands, this low endotoxin preparation of oxmLDL suppressed the expression and release of IL-1β, IL-6, and TNFα but surprisingly spared IL-8 production. The suppressive effect of oxmLDL was specific to monocytes as it did not inhibit LPS-induced proinflammatory cytokines in human macrophages. Thus, TLR ligand contamination of LDL/oxmLDL preparations can complicate interpretations of inflammatory responses to these modified lipoproteins. In contrast to providing a proinflammatory function, oxmLDL suppresses the expression and release of selected proinflammatory mediators.  相似文献   

7.
Cytokines, released by T cells, participate in inflammation and produce tissue injury. Excess production of cytokines such as interleukins (ILs) and tumor necrosis factor (TNF) is believed to be involved in the pathobiology of conditions such as septicemia and septic shock, collagen vascular diseases, glomerulonephritis etc. On the other hand, prostaglandins (PGs) are known to modulate inflammation, immune response, and T-cell response to antigens. But relatively little information is available on the effects of PGs and PG precursors on the release of cytokines. Here the authors present data which suggests that PGs including thromboxane B2 (TXB2) and their precursors such as dihomo-gamma linolenic acid (DGLA), arachidonic acid (AA) and eicosapentaenoic acid (EPA) can inhibit T-cell proliferation and influence their ability to secrete IL-2, IL-4, IL-6 and TNF in vitro. These results may have relevance to the use of PG-precursors in various inflammatory conditions including collagen vascular diseases.  相似文献   

8.
9.
《Cytokine》2015,74(2):326-334
Cutaneous lupus erythematosus (CLE) is an inflammatory disease with a broad range of cutaneous manifestations that may be accompanied by systemic symptoms. The pathogenesis of CLE is complex, multifactorial and incompletely defined. Below we review the current understanding of the cytokines involved in these processes. Ultraviolet (UV) light plays a central role in the pathogenesis of CLE, triggering keratinocyte apoptosis, transport of nucleoprotein autoantigens to the keratinocyte cell surface and the release of inflammatory cytokines (including interferons (IFNs), tumor necrosis factor (TNF)-α, interleukin (IL)-1, IL-6, IL-8, IL-10 and IL-17). Increased IFN, particularly type I IFN, is central to the development of CLE lesions. In CLE, type I IFN is produced in response to nuclear antigens, immune complexes and UV light. Type I IFN increases leukocyte recruitment to the skin via inflammatory cytokines, chemokines, and adhesion molecules, thereby inducing a cycle of cutaneous inflammation. Increased TNFα in CLE may also cause inflammation. However, decreasing TNFα with an anti-TNFα agent can induce CLE-like lesions. TNFα regulates B cells, increases the production of inflammatory molecules and inhibits the production of IFN-α. An increase in the inflammatory cytokines IL-1, IL-6, IL-10, IL-17 and IL-18 and a decrease in the anti-inflammatory cytokine IL-12 also act to amplify inflammation in CLE. Specific gene mutations may increase the levels of these inflammatory cytokines in some CLE patients. New drugs targeting various aspects of these cytokine pathways are being developed to treat CLE and systemic lupus erythematosus (SLE).  相似文献   

10.
11.
Targeting major proinflammatory cytokines such as IL-1β and TNFα is of great interest in patients with chronic inflammatory diseases, including rheumatoid arthritis, colitis, and psoriasis. The cytokine Interleukin (IL)-32 induces proinflammatory cytokines such as TNFα, IL-1β, IL-6, and chemokines. We previously used an IL-32 ligand-affinity column to purify proteinase 3, which is abundantly expressed in neutrophil and monocytic leukocytes but not in other cell types, and found that IL-32 is mainly produced by monocytic leukocytes. This evidence suggested that silencing endogenous IL-32 by short hairpin RNA (shRNA) in monocytic cells might reveal the precise function of endogenous IL-32. Indeed, lipopolysaccharide (LPS)- or phorbol myristate acetate (PMA)-induced proinflammatory cytokine production was significantly inhibited in shRNA/IL-32 stable clones as compared to control clones. Furthermore, macrophages in PMA-differentiated shRNA/IL-32 stable clones displayed remarkably impaired LPS- and IL-1β-induced proinflammatory cytokine production. These data suggest that IL-32 is not only involved in host defense against pathogens, but also might play a role in chronic inflammatory diseases. IL-32 production leads to major proinflammatory cytokine production during the initial immune response.  相似文献   

12.
Recent studies suggest that tumor necrosis factor (TNF) family members such as TNFalpha and lymphotoxin alphabeta (LTalpha1beta2) are important in the development of follicular dendritic cells (FDCs) and maintenance of FDC function. In this study we used FDC-like cells (FDC-LC) cultured from normal human tonsil and investigated the effects of TNF and LTalpha1beta2 on expression of adhesion molecules and the production of cytokines and chemokines. TNF and LTalpha1beta2 both increased the expression of VCAM-1 and ICAM-1 on FDC-LC. In addition, IL-4 with LTalpha1beta2 synergistically increased the expression of VCAM-1, but not ICAM-1. Cytokine IL-6 and IL-15 mRNAs were induced following stimulation with TNF and LTalpha1beta2. These two cytokines were present in FDC-LC supernatants by ELISA and increased following TNF and LTalpha1beta2 stimulation. We also examined FDC-LC for chemokines, which affect B cells, including IL-8, SDF-1, MIP3beta/ELC, and BCA-1/BLC. SDF-1 mRNA and protein were expressed by FDC-LC, and following stimulation with TNF and LTalpha1beta2, decreases in both were observed. Therefore, TNF and LTalpha1beta2, which are produced by activated B cells, increased the expression of adhesion molecules and cytokines from FDC-LC, potentially providing key signals to support germinal center B cell survival and differentiation.  相似文献   

13.
The skin is an immune organ that contains innate and acquired immune systems and thus is able to respond to exogenous stimuli producing large amount of proinflammatory cytokines including IL-1 and IL-1 family members. The role of the epidermal IL-1 is not limited to initiation of local inflammatory responses, but also to induction of systemic inflammation. However, association of persistent release of IL-1 family members from severe skin inflammatory diseases such as psoriasis, epidermolysis bullosa, atopic dermatitis, blistering diseases and desmoglein-1 deficiency syndrome with diseases in systemic organs have not been so far assessed. Here, we showed the occurrence of severe systemic cardiovascular diseases and metabolic abnormalities including aberrant vascular wall remodeling with aortic stenosis, cardiomegaly, impaired limb and tail circulation, fatty tissue loss and systemic amyloid deposition in multiple organs with liver and kidney dysfunction in mouse models with severe dermatitis caused by persistent release of IL-1s from the skin. These morbid conditions were ameliorated by simultaneous administration of anti-IL-1α and IL-1β antibodies. These findings may explain the morbid association of arteriosclerosis, heart involvement, amyloidosis and cachexia in severe systemic skin diseases and systemic autoinflammatory diseases, and support the value of anti-IL-1 therapy for systemic inflammatory diseases.  相似文献   

14.
Although being largely used for pathobiological models of cartilage diseases such as osteoarthritis (OA), human chondrocytes are still enigmatic cells, in as much as a large part of their secretome is unknown. We took advantage of the recent development of antibody-based microarrays to study multiple protein expression by human chondrocytes obtained from one healthy and five osteoarthritic joints, in unstimulated conditions or after stimulation by the proinflammatory cytokines interleukin-1 (IL-1) or tumour necrosis factor (TNF). The secretion media of chondrocytes were incubated with array membranes consisting of 79 antibodies directed against cytokines, chemokines, and angiogenic or growth factors. Several proteins were identified as new secretion products of chondrocytes, including the growth or angiogenic factors EGF, thrombopoietin, GDNF, NT-3 and -4, and PlGF, the chemokines ENA-78, MCP-2, IP-10, MIP-3alpha, NAP-2, PARC, and the cytokines MIF, IL-12, and IL-16. Most of the newly identified chemokines were increased intensely after stimulation by IL-1 or TNF, as for other proteins of the array, including GRO proteins, GM-CSF, IL-6, IL-8, MIP-1beta, GCP-2, and osteoprotegerin. The up-regulation by cytokines suggested that these proteins may participate in the destruction of cartilage and/or in the initiation of chemotactic events within the joint during OA. In conclusion, the microarray approach enabled to unveil part of an as yet unexplored chondrocyte secretome. Our findings demonstrated that chondrocytes were equipped with a proinflammatory arsenal of proteins which may play an important part in the pathogenesis of OA and/or its drift towards an inflammatory, rheumatoid phenotype.  相似文献   

15.
16.
Adipose tissue may release mediators that induce a chronic inflammatory state and alterations in coagulation, which contribute to insulin resistance, atherosclerosis, and thrombosis. We investigated whether inflammatory and/or prothrombotic states exist in obese children and assessed their interrelationship. Sixty-one subjects were recruited, aged between 6 and 16 years, to participate in a cross-sectional study at Children's University Hospital of Geneva. Selected pro/anti-inflammatory cytokines/chemokines and hemostasis parameters were measured in obese children and lean controls. Cardiovascular risk factors in the family were indexed. Fasting glucose level, insulin, prothrombin time (PT), fibrinogen, activated partial thromboplastin time (aPTT), D-dimer, endogenous thrombin potential (ETP), C-reactive protein (CRP), interleukin-6 (IL-6), interleukin-10 (IL-10), interferon-γ-inducible-protein (IP-10), monocyte chemoattractant protein 1 (MCP-1), and interleukin-1 receptor antagonist (IL-1Ra) were measured. We estimated insulin resistance by homeostatic model assessment (HOMA). Anti- (IL-1Ra) and proinflammatory cytokines (MCP-1, IL-6) were significantly increased in obese children in comparison to the control group, even before puberty. Hemostasis was also altered in obese children with a significantly increased fibrinogen level, increased D-dimer, a shortened PT, as well as an increased ETP. No correlation was found between cytokine levels and hemostasis parameters, except for IL-6 and fibrinogen. Obese children present with inflammatory and prothrombotic states as early as 6 years of age and these states are similar in prepubertal and pubertal obese children. The cytokines IL-1Ra and MCP-1 were most significantly increased in obese children. Further investigation is necessary to determine if these cytokines, together with ETP, can reliably predict the development of diabetes and atherosclerosis.  相似文献   

17.
18.
Inflammatory cytokines and chemokines play important roles in inflammation during viral infection. Hepatitis C virus (HCV) is a hepatotropic RNA virus that is closely associated with chronic liver inflammation, fibrosis, and hepatocellular carcinoma. During the progression of HCV-related diseases, hepatic stellate cells (HSCs) contribute to the inflammatory response triggered by HCV infection. However, the underlying molecular mechanisms that mediate HSC-induced chronic inflammation during HCV infection are not fully understood. By coculturing HSCs with HCV-infected hepatocytes in vitro, we found that HSCs stimulated HCV-infected hepatocytes, leading to the expression of proinflammatory cytokines and chemokines such as interleukin-6 (IL-6), IL-8, macrophage inflammatory protein 1α (MIP-1α), and MIP-1β. Moreover, we found that this effect was mediated by IL-1α, which was secreted by HSCs. HCV infection enhanced production of CCAAT/enhancer binding protein (C/EBP) β mRNA, and HSC-dependent IL-1α production contributed to the stimulation of C/EBPβ target cytokines and chemokines in HCV-infected hepatocytes. Consistent with this result, knockdown of mRNA for C/EBPβ in HCV-infected hepatocytes resulted in decreased production of cytokines and chemokines after the addition of HSC conditioned medium. Induction of cytokines and chemokines in hepatocytes by the HSC conditioned medium required a yet to be identified postentry event during productive HCV infection. The cross talk between HSCs and HCV-infected hepatocytes is a key feature of inflammation-mediated, HCV-related diseases.  相似文献   

19.
Mast cells can play detrimental roles in the pathophysiology and mortality observed in anaphylaxis and other Th2-dominated allergic diseases. In contrast, these cells contribute to protective host defense mechanisms against parasitic worm infections. After IgE/Ag activation, mast cells can produce multiple cytokines that may enhance allergic inflammations, while a similar panel of Th2-related cytokines may support immunological strategies against parasites. Here we report that in primary mouse bone marrow-derived mast cells activated by ionomycin or IgE/Ag, the proinflammatory mediator IL-1 (alpha or beta) up-regulated production of IL-3, IL-5, IL-6, and IL-9 as well as TNF, i.e., cytokines implicated in many inflammatory processes including those associated with allergies and helminthic infections. IL-1 did not induce significant cytokine release in the absence of ionomycin or IgE/Ag, suggesting that Ca-dependent signaling was required. IL-1-mediated enhancement of cytokine expression was confirmed at the mRNA level by Northern blot and/or RT-PCR analysis. Our study reveals a role for IL-1 in the up-regulation of multiple mast cell-derived cytokines. Moreover, we identify mast cells as a novel source of IL-9. These results are of particular importance in the light of recent reports that strongly support a central role of IL-9 in allergic lung inflammation and in host defense against worm infections.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号