首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protein energy malnutrition is common in the elderly, especially in hospitalized patients. The development of strategies designed to correct such malnutrition is essential. Our working hypothesis was that poor response to nutrition with advancing age might be related to splanchnic sequestration of amino acids, which implies that fewer amino acids reach the systemic circulation. Administration of citrulline, which is not taken up by the liver, can offer a means of increasing whole body nitrogen availability and, hence, improve nutritional status. Thirty old (19 mo) rats were submitted to dietary restriction (50% of food intake) for 12 wk. They were randomized into three groups: 10 rats (R group) were killed and 20 others refed (90% of food intake) for 1 wk with a standard diet (NEAA group) or a citrulline-supplemented diet (Cit group). Before being killed, the rats were injected with [(13)C]valine, and the absolute protein synthesis rate (ASR) was measured in the tibialis using the flooding-dose method. When the rats were killed, the tibialis was removed for protein content analysis. Blood was sampled for amino acid and insulin analysis. The standard diet did not have any effect on protein synthesis or on the protein content in the muscle. Citrulline supplementation led to higher protein synthesis and protein content in muscle (117 +/- 9, 120 +/- 14, and 163 +/- 4 mg/organ for protein content in R, NEAA, and Cit groups, P < 0.05). The ASR were 0.30 +/- 0.04, 0.31 +/- 0.04, and 0.56 +/- 0.10 mg/h in the three groups, respectively (R and NEAA vs. Cit, P < 0.05). Insulinemia was significantly higher in the Cit group. For the first time, a realistic therapeutic approach is proposed to improve muscle protein content in muscle in frail state related to malnutrition in aging.  相似文献   

2.
Animal studies have suggested that nitric oxide (NO) synthases (NOS) play a role in the regulation of protein metabolism in endotoxemia. We therefore investigated the role of inducible NOS (NOS2) on intestinal protein and neuronal NOS (NOS1) and endothelial NOS (NOS3) on amino acid metabolism. Three groups of mice were studied: 1) wild-type (WT), 2) NOS2 knockout (NOS2-KO), and 3) NOS2-KO + N(omega)-nitro-l-arginine methyl ester (NOS2-KO + l-NAME), both in nonstimulated and LPS-treated conditions. By infusion of the stable isotopes l-[phenyl-(2)H(5)]Phe, l-[phenyl-(2)H(2)]Tyr, l-[guanidino-(15)N(2)]Arg, and l-[ureido-(13)C; (2)H(2)]citrulline (Cit), intestinal protein, amino acid, and Arg/NO metabolism were studied on the whole body level and across intestine. In nonstimulated situations, NOS2 deficiency increased whole body protein turnover and intestinal Gln uptake and Cit production. In NOS2-KO + l-NAME, the above-mentioned changes were reversed. After LPS in WT, whole body NO and Cit production increased. In contrast to this, LPS decreased net intestinal Gln uptake, whole body NO, and Cit production in NOS2-KO mice. Treatment of NOS2-KO + l-NAME with LPS was lethal in eight of eleven mice (73%). The surviving mice in this group showed a major drop in intestinal protein breakdown and synthesis to almost zero. Thus both in baseline conditions and during endotoxemia, the absence of NOS2 upregulated NOS1 and/or NOS3, which increased intestinal metabolism. The drop in intestinal protein metabolism in the endotoxemic NOS2-KO + l-NAME group might play a role in mortality in that group.  相似文献   

3.
Storage protein synthesis is dependent on available nitrogen in the seed, which may be controlled by amino acid import via specific transporters. To analyze their rate-limiting role for seed protein synthesis, a Vicia faba amino acid permease, VfAAP1, has been ectopically expressed in pea (Pisum sativum) and Vicia narbonensis seeds under the control of the legumin B4 promoter. In mature seeds, starch is unchanged but total nitrogen is 10% to 25% higher, which affects mainly globulin, vicilin, and legumin, rather than albumin synthesis. Transgenic seeds in vitro take up more [14C]-glutamine, indicating increased sink strength for amino acids. In addition, more [14C] is partitioned into proteins. Levels of total free amino acids in growing seeds are unchanged but with a shift toward higher relative abundance of asparagine, aspartate, glutamine, and glutamate. Hexoses are decreased, whereas metabolites of glycolysis and the tricarboxylic acid cycle are unchanged or slightly lower. Phosphoenolpyruvate carboxylase activity and the phosphoenolpyruvate carboxylase-to-pyruvate kinase ratios are higher in seeds of one and three lines, indicating increased anaplerotic fluxes. Increases of individual seed size by 20% to 30% and of vegetative biomass indicate growth responses probably due to improved nitrogen status. However, seed yield per plant was not altered. Root application of [15N] ammonia results in significantly higher label in transgenic seeds, as well as in stems and pods, and indicates stimulation of nitrogen root uptake. In summary, VfAAP1 expression increases seed sink strength for nitrogen, improves plant nitrogen status, and leads to higher seed protein. We conclude that seed protein synthesis is nitrogen limited and that seed uptake activity for nitrogen is rate limiting for storage protein synthesis.  相似文献   

4.
GCN2 is a sensor of amino acid deprivation that triggers a repression of global protein synthesis while simultaneously inducing translation of specific proteins. In this issue of Cell Metabolism, Guo and Cavener (2007) present a much broader role for GCN2 in controlling lipid homeostasis in response to amino acid deprivation.  相似文献   

5.
Amino acids are essential for cell growth and proliferation for they can serve as precursors of protein synthesis, be remodelled for nucleotide and fat biosynthesis, or be burnt as fuel. Mitochondria are energy producing organelles that additionally play a central role in amino acid homeostasis. One might expect mitochondrial metabolism to be geared towards the production and preservation of amino acids when cells are deprived of an exogenous supply. On the contrary, we find that human cells respond to amino acid starvation by upregulating the amino acid-consuming processes of respiration, protein synthesis, and amino acid catabolism in the mitochondria. The increased utilization of these nutrients in the organelle is not driven primarily by energy demand, as it occurs when glucose is plentiful. Instead it is proposed that the changes in the mitochondrial metabolism complement the repression of cytosolic protein synthesis to restrict cell growth and proliferation when amino acids are limiting. Therefore, stimulating mitochondrial function might offer a means of inhibiting nutrient-demanding anabolism that drives cellular proliferation.  相似文献   

6.
The study of the amino acid metabolism in Penicillium chrysogenum with the use of washed mycelium showed that the amount of the free intracellular amino acids significantly decreased during the process of penicillin production. Still, such a decrease did not cover the nitrogen requirements of the culture for the antibiotic synthesis and mobilization of the protein nitrogen took place. By the end of the process the amount of the protein nitrogen markedly decreased. At the same time alpha-amino nitrogen was absent in the fermentation broth filtrate. About 14 amino acids (including cysteine and valine) which participate in constriuction of the penicillin molecule nucleus were found in the amino acid poll. However, the amounts of cysteine and valine were not high and probably other free intracellular amino acids participated in their synthesis. It was shown that one of the limiting factors in the process of penicillin biosynthesis was synthesis of cysteine, a sulphur-containing amino acid which is one of the precursors of the antibiotic molecule nucleus.  相似文献   

7.
8.
The nonessential amino acids are involved in a large number of functions that are not directly associated with protein synthesis. Recent studies using a combination of transorgan balance and stable isotopic tracers have demonstrated that a substantial portion of the extra‐splanchnic flux of glutamate, glutamine, glycine and cysteine derives from tissue synthesis. A key amino acid in this respect is glutamic acid. Little glutamic acid of dietary origin escapes metabolism in the small intestinal mucosa. Furthermore, because glutamic acid is the only amino acid that can be synthesized by mammals by reductive amination of a ketoacid, it is the ultimate nitrogen donor for the synthesis of other nonessential amino acids. Because the synthesis of glutamic acid and its product glutamine involve the expenditure of adenosine triphosphate (ATP), it seems possible that nonessential amino acid synthesis might have a significant bearing on the energetics of protein synthesis and, hence, of protein deposition. This paper discusses the topic of the energy cost of protein deposition, considers the metabolic physiology of amino acid oxidation and nonessential amino acid synthesis, and attempts to combine the information to speculate on the overall impact of amino acid metabolism on the energy exchanges of animals.  相似文献   

9.
10.
The changes in hind leg tissue (muscle and skin) amono acid pool size and arteriovenous balance were measured in rats subjected to 0–90 min of cold exposure (4°C). Tissue free amino acid pools presented a different composition pattern from protein amino acids. Muscle rapidly reacted to cold exposure by releasing small amounts of some amino acids (alanine, aspartate), with only small changes in pool size during the first 30 min. Amino acid oxidation was very limited during the whole period of cold exposure, since at all times tested there was either nil ammonia efflux or net absorption of ammonia and glutamine; i.e. the muscle was in positive nitrogen balance throughout the period studied. Thus most of the amino acid nitrogen taken up from the blood and not found in the free amino pools must have been incorporated into protein, since it was not oxidized, as shown by the glutamine and ammonia blance. The data on amino acid incorporation into proteins indicate that hind leg protein turnover is rapidly and widely modulated from a low initial setting upon cold exposure to a higher protein synthesis rate immediately afterwards, suggesting that protein turnover may have an important role in short-term events in cold-exposed muscle, in addition to its influence in long-term adaptation.  相似文献   

11.
12.
Autophagy is a transport system of cytoplasmic components to the lysosome/vacuole for degradation well conserved in eukaryotes. Autophagy is strongly induced by nutrient starvation. Several specific proteins, including amino acid synthesis enzymes and vacuolar enzymes, are increased during nitrogen starvation in wild-type cells but not in autophagy-defective delta atg7 cells despite similar mRNA levels. We further examined deficiencies in these cells. Bulk protein synthesis was substantially reduced in delta atg7 cells under nitrogen starvation compared with wild-type cells. The total intracellular amino acid pool was reduced in delta atg7 cells, and the levels of several amino acids fell below critical values. In contrast, wild-type cells maintained amino acid levels compatible with life. Autophagy-defective cells fail to maintain physiologic amino acid levels, and their inability to synthesize new proteins may explain most phenotypes associated with autophagy mutants at least partly.  相似文献   

13.
14.
Using an auxotrophic strain of Saccharomyces cerevisiae, we examined the kinetics of ribonucleic acid (RNA) synthesis following inhibition of protein synthesis caused by amino acid starvation or cycloheximide. Removal of a required amino acid immediately stopped net protein synthesis. After a brief lag, RNA synthesis also ceased. Cycloheximide, a ribosome-inhibiting drug, also immediately halted net protein synthesis. Again RNA synthesis stopped after a brief lag. Although cycloheximide and amino acid starvation affect different steps in protein biosynthesis, both inhibited RNA synthesis in identical fashion. This indicates that amino acids do not play a unique role in the control of RNA production in rapidly growing yeast; rather, it suggests that RNA synthesis is responsive to the overall rate of protein synthesis itself.  相似文献   

15.
l-Amino acid oxidase is synthesized in Neurospora crassa in response to three different physiological stimuli: (i) starvation in phosphate buffer, (ii) mating, and (iii) nitrogen derepression in the presence of amino acids. During starvation in phosphate buffer, or after mating, l-amino acid oxidase synthesis occurred in parallel with that of tyrosinase. Exogenous sulfate repressed the formation of the two enzymes in starved cultures, but not in mated cultures. Sulfate repression was relieved by protein synthesis inhibitors, suggesting that the effect of sulfate required the synthesis of a metabolically unstable protein repressor. With amino acids as the sole nitrogen source only l-amino acid oxidase was produced. Under these conditions enzyme synthesis was repressed by ammonium and was insensitive to sulfate. Biochemical evidence suggested that the l-amino acid oxidase formed under the three different conditions was the same protein. Therefore, the expression of l-amino acid oxidase appeared to be under the control of least two regulatory circuits. One, also controlling tyrosinase, seems to respond to developmental signals related to sexual morphogenesis. The other, controlling other enzymes of the nitrogen catabolic system, is used by the organism to obtain nitrogen from alternative sources such as proteins and amino acids.  相似文献   

16.
The IgE of sera from patients with a history of allergy to oranges (Citrus sinensis) binds a number of proteins in orange extract, including Cit s 1, a germin-like protein. In the present study, we have analyzed its immunological cross-reactivity and its molecular nature. Sera from many of the patients examined recognize a range of glycoproteins and neoglycoconjugates containing beta1,2-xylose and core alpha1,3-fucose on their N-glycans. These reagents also inhibited the interaction of Cit s 1 with patients' sera, thus underlining the critical role of glycosylation in the recognition of this protein by patients' IgE and extending previous data showing that deglycosylated Cit s 1 does not possess IgE epitopes. In parallel, we examined the peptide sequence and glycan structure of Cit s 1, using mass spectrometric techniques. Indeed, we achieved complete sequence coverage of the mature protein compared with the translation of an expressed sequence tag cDNA clone and demonstrated that the single N-glycosylation site of this protein carries oligosaccharides with xylose and fucose residues. Owing to the presumed requirement for multivalency for in vivo allergenicity, our molecular data showing that Cit s 1 is monovalent as regards glycosylation and that the single N-glycan is the target of the IgE response to this protein explain the immunological cross-reactive properties of Cit s 1 as well as its equivocal nature as a clinically relevant allergen.  相似文献   

17.
Proline is an amino acid with a unique cyclic structure that facilitates the folding of many proteins, but also impedes the rate of peptide bond formation by the ribosome. As a ribosome substrate, proline reacts markedly slower when compared with other amino acids both as a donor and as an acceptor of the nascent peptide. Furthermore, synthesis of peptides with consecutive proline residues triggers ribosome stalling. Here, we report crystal structures of the eukaryotic ribosome bound to analogs of mono‐ and diprolyl‐tRNAs. These structures provide a high‐resolution insight into unique properties of proline as a ribosome substrate. They show that the cyclic structure of proline residue prevents proline positioning in the amino acid binding pocket and affects the nascent peptide chain position in the ribosomal peptide exit tunnel. These observations extend current knowledge of the protein synthesis mechanism. They also revise an old dogma that amino acids bind the ribosomal active site in a uniform way by showing that proline has a binding mode distinct from other amino acids.  相似文献   

18.
19.
V A Konyshev 《Biofizika》1983,28(4):590-594
Relations between amino acid properties and their averaged content in protein are discovered. Some groups of amino acids are delimited; they differ in equation parameters describing relations between amino acid properties and their content in protein. Dependence of amino acid molar content on weights of their residues in protein are hyperbolic (4 groups of amino acids with different parameters of the equations are delimited); the same relations are discovered between amino acid hydrophobicity and their molar content in protein (3 groups of amino acids are delimited). Graphs representing the relations between the content of amino acid residues in protein expressed as weight per cent and molar weights of residues and their volumes in protein look like bunches of divergent lines, each represents one group of amino acids. Delimitation of amino acids into groups correlates with ATP expenditures for their synthesis. The connection between the discovered regularities and the fact that amino acid content of averaged protein followed the Zipf law, is discussed. The role of these regularities in solving several biological problems is analysed.  相似文献   

20.
The in vivo capacity of urea nitrogen synthesis (CUNS) during alanine stimulation was measured within the blood amino acid concentration interval 7.3-11.6 mmol/l, where urea synthesis is at maximum and independent of substrate concentration. Three groups of rats were fed for 14 days, either a low protein diet (8%), a normal diet (17%), or a high protein diet (53%). Diet protein modified both CUNS and plasma glucagon concentration. CUNS was 5.86 +/- 2.93, 7.43 +/- 2.16, and 19.31 +/- 4.32 mumol/(min.100 g BW) (mean +/- SD, N = 6), respectively. The corresponding plasma glucagon concentrations after alanine stimulation were 222 +/- 400, 633 +/- 229, and 1700 +/- 627 ng/l, respectively. The in vivo kinetics of urea production is regulated by dietary protein, possibly via glucagon. This implies that the liver plays an active part in adaptation of whole body nitrogen homeostasis to dietary changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号