首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Wang F  Yin Y  Ye X  Liu K  Zhu H  Wang L  Chiourea M  Okuka M  Ji G  Dan J  Zuo B  Li M  Zhang Q  Liu N  Chen L  Pan X  Gagos S  Keefe DL  Liu L 《Cell research》2012,22(4):757-768
Rejuvenation of telomeres with various lengths has been found in induced pluripotent stem cells (iPSCs). Mechanisms of telomere length regulation during induction and proliferation of iPSCs remain elusive. We show that telomere dynamics are variable in mouse iPSCs during reprogramming and passage, and suggest that these differences likely result from multiple potential factors, including the telomerase machinery, telomerase-independent mechanisms and clonal influences including reexpression of exogenous reprogramming factors. Using a genetic model of telomerase-deficient (Terc(-/-) and Terc(+/-)) cells for derivation and passages of iPSCs, we found that telomerase plays a critical role in reprogramming and self-renewal of iPSCs. Further, telomerase maintenance of telomeres is necessary for induction of true pluripotency while the alternative pathway of elongation and maintenance by recombination is also required, but not sufficient. Together, several aspects of telomere biology may account for the variable telomere dynamics in iPSCs. Notably, the mechanisms employed to maintain telomeres during iPSC reprogramming are very similar to those of embryonic stem cells. These findings may also relate to the cloning field where these mechanisms could be responsible for telomere heterogeneity after nuclear reprogramming by somatic cell nuclear transfer.  相似文献   

4.
《Cell Stem Cell》2021,28(9):1657-1670.e10
  1. Download : Download high-res image (200KB)
  2. Download : Download full-size image
  相似文献   

5.
诱导性多能干细胞(Induced pluripotent stem cells, iPSCs)是采用特定转录因子,将体细胞重编程为具有多能性的干细胞。iPSCs已成功由多种体细胞诱导出来,不仅具有发育多能性还能避免胚胎干细胞(Embryonic stem cells, ESCs)的伦理道德问题,已成为生命科学领域不可或缺的研究工具,具有广阔的应用前景。但获得高质量、遗传稳定的iPSCs是当前亟须解决的问题。文章对iPSCs重编程机制和遗传稳定性的研究进展进行了综述,以期为提高iPSCs的诱导效率、降低诱导成本、掌握iPSCs质量控制的关键点提供参考,从而推进多能性干细胞临床应用的发展。  相似文献   

6.
It remains controversial whether the abnormal epigenetic modifications accumulated in the induced pluripotent stem cells (iPSCs) can ultimately affect iPSC pluripotency. To probe this question, iPSC lines with the same genetic background and proviral integration sites were established, and the pluripotency state of each iPSC line was characterized using tetraploid (4N) complementation assay. Subsequently, gene expression and global epigenetic modifications of “4N-ON” and the corresponding “4N-OFF” iPSC lines were compared through deep sequencing analyses of mRNA expression, small RNA profile, histone modifications (H3K27me3, H3K4me3, and H3K4me2), and DNA methylation. We found that methylation of an imprinted gene, Zrsr1, was consistently disrupted in the iPSC lines with reduced pluripotency. Furthermore, the disrupted methylation could not be rescued by improving culture conditions or subcloning of iPSCs. Moreover, the relationship between hypomethylation of Zrsr1 and pluripotency state of iPSCs was further validated in independent iPSC lines derived from other reprogramming systems.  相似文献   

7.
Induced pluripotent stem (iPS) cells are an attractive source for potential cell-replacement therapy. However, transplantation of differentiated products harbors the risk of teratoma formation, presenting a serious health risk. Thus, we characterized Nanog-expressing (undifferentiated) cells remaining after induction of differentiation by cytological examination. To induce differentiation of iPS cells, we generated embryoid bodies (EBs) derived from iPS cells carrying a Nanog–green fluorescent protein (GFP) reporter and then injected GFP-positive and GFP-negative EBs into nude mice. GFP-positive EB transplantation resulted in the formation of immature teratoma grade 3, but no tumors were induced by GFP-negative EB. GFP-positive cells revealed significantly lower cytoplasmic area and higher nucleus/cytoplasm ratio than those of GFP-negative cells. Our results suggest that morphological analysis might be a useful method for distinguishing between tumorigenic and nontumorigenic iPS cells.  相似文献   

8.
9.
The recent progress in derivation of pluripotent stem cells(PSCs)from farm animals opens new approaches not only for reproduction,genetic engineering,treatment and conservation of these species,but also for screening novel drugs for their efficacy and toxicity,and modelling of human diseases.Initial attempts to derive PSCs from the inner cell mass of blastocyst stages in farm animals were largely unsuccessful as either the cells survived for only a few passages,or lost their cellular potency;indicating that the protocols which allowed the derivation of murine or human embryonic stem(ES)cells were not sufficient to support the maintenance of ES cells from farm animals.This scenario changed by the innovation of induced pluripotency and by the development of the 3 inhibitor culture conditions to support na?ve pluripotency in ES cells from livestock species.However,the long-term culture of livestock PSCs while maintaining the full pluripotency is still challenging,and requires further refinements.Here,we review the current achievements in the derivation of PSCs from farm animals,and discuss the potential application areas.  相似文献   

10.
Cancer stem cells (CSCs) are capable of continuous proliferation and self-renewal and are proposed to play significant roles in oncogenesis, tumor growth, metastasis and cancer recurrence. CSCs are considered derived from normal stem cells affected by the tumor microenvironment although the mechanism of development is not clear yet. In 2007, Yamanaka's group succeeded in generating Nanog mouse induced pluripotent stem (miPS) cells, in which green fluorescent protein (GFP) has been inserted into the 5'-untranslated region of the Nanog gene. Usually, iPS cells, just like embryonic stem cells, are considered to be induced into progenitor cells, which differentiate into various normal phenotypes depending on the normal niche. We hypothesized that CSCs could be derived from Nanog miPS cells in the conditioned culture medium of cancer cell lines, which is a mimic of carcinoma microenvironment. As a result, the Nanog miPS cells treated with the conditioned medium of mouse Lewis lung carcinoma acquired characteristics of CSCs, in that they formed spheroids expressing GFP in suspension culture, and had a high tumorigenicity in Balb/c nude mice exhibiting angiogenesis in vivo. In addition, these iPS-derived CSCs had a capacity of self-renewal and expressed the marker genes, Nanog, Rex1, Eras, Esg1 and Cripto, associated with stem cell properties and an undifferentiated state. Thus we concluded that a model of CSCs was originally developed from miPS cells and proposed the conditioned culture medium of cancer cell lines might perform as niche for producing CSCs. The model of CSCs and the procedure of their establishment will help study the genetic alterations and the secreted factors in the tumor microenvironment which convert miPS cells to CSCs. Furthermore, the identification of potentially bona fide markers of CSCs, which will help the development of novel anti-cancer therapies, might be possible though the CSC model.  相似文献   

11.
Han X  Han J  Ding F  Cao S  Lim SS  Dai Y  Zhang R  Zhang Y  Lim B  Li N 《Cell research》2011,21(10):1509-1512
  相似文献   

12.
13.
Human pluripotent stem cells (hPSCs) include human embryonic stem cells (hESCs) derived from blastocysts and human induced pluripotent stem cells (hiPSCs) generated from somatic cell reprogramming. Due to their self-renewal ability and pluripotent differentiation potential, hPSCs serve as an excellent experimental platform for human development, disease modeling, drug screening, and cell therapy. Traditionally, hPSCs were considered to form a homogenous population. However, recent advances in single cell technologies revealed a high degree of variability between individual cells within a hPSC population. Different types of heterogeneity can arise by genetic and epigenetic abnormalities associated with long-term in vitro culture and somatic cell reprogramming. These variations initially appear in a rare population of cells. However, some cancer-related variations can confer growth advantages to the affected cells and alter cellular phenotypes, which raises significant concerns in hPSC applications. In contrast, other types of heterogeneity are related to intrinsic features of hPSCs such as asynchronous cell cycle and spatial asymmetry in cell adhesion. A growing body of evidence suggests that hPSCs exploit the intrinsic heterogeneity to produce multiple lineages during differentiation. This idea offers a new concept of pluripotency with single cell heterogeneity as an integral element. Collectively, single cell heterogeneity is Janus-faced in hPSC function and application. Harmful heterogeneity has to be minimized by improving culture conditions and screening methods. However, other heterogeneity that is integral for pluripotency can be utilized to control hPSC proliferation and differentiation.  相似文献   

14.
Spermatogonial stem cells (SSCs) are essential for long-term spermatogenesis and are the subject of considerable clinical interest, as ‘SSC therapy’ has the potential to cure some forms of male infertility. Recently, we have learned more about SSCs and spermatogenesis in general from a plethora of studies that performed single-cell RNA sequencing (scRNAseq) analysis on dissociated cells from human, macaque, and/or mice testes. Here, we discuss what scRNAseq analysis has revealed about SSC precursor cells, the initial generation of SSCs during perinatal development, and their heterogeneity once established. scRNAseq studies have also uncovered unexpected heterogeneity of the larger class of cells that includes SSCs — undifferentiated spermatogonia. This raises the controversial possibility that multiple SSC subsets exist, which has implications for mechanisms underlying spermatogenesis and future SSC therapeutic approaches.  相似文献   

15.
诱导多能干细胞 (Induced pluripotent stem cells,iPSCs) 是通过体细胞重编程得到类似胚胎干细胞特性的一种细胞类型。通过iPSCs的体外分化,可以了解巨噬细胞的进化历史和各种特性。iPSCs来源的巨噬细胞不仅是药物筛选的良好模型,也是进行免疫治疗的重要手段。本文综述了近年来iPSCs及其向巨噬细胞分化的相关研究进展、所面临的问题以及未来的发展方向。  相似文献   

16.
Pluripotent stem cells from domesticated animals have potential applications in transgenic breeding. Here, we describe induced pluripotent stem (iPS) cells derived from bovine fetal fibroblasts by lentiviral transduction of Oct4, Sox2, Klf4 and c-Myc defined-factor fusion proteins. Bovine iPS cells showed typical colony morphology, normal karyotypes, stained positively for alkaline phosphatase (AP) and expressed Oct4, Nanog and SSEA1. The CpG in the promoter regions of Oct4 and Nanog were highly unmethylated in bovine iPS cells compared to the fibroblasts. The cells were able to differentiate into cell types of all three germ layers in vitro and in vivo. In addition, these cells were induced into female germ cells under defined culture conditions and expressed early and late female germ cell-specific genes Vasa, Dazl, Gdf9, Nobox, Zp2, and Zp3. Our data suggest that bovine iPS cells were generated from bovine fetal fibroblasts with defined-factor fusion proteins mediated by lentivirus and have potential applications in bovine transgenic breeding and gene-modified animals.  相似文献   

17.
Induced pluripotent stem(i PS) cells, somatic cells reprogrammed to the pluripotent state by forced expression of defined factors, represent a uniquely valuable resource for research and regenerative medicine. However, this methodology remains inefficient due to incomplete mechanistic understanding of the reprogramming process. In recent years, various groups have endeavoured to interrogate the cell signalling that governs the reprogramming process, including LIF/STAT3, BMP, PI3 K, FGF2, Wnt, TGFβ and MAPK pathways, with the aim of increasing our understanding and identifying new mechanisms of improving safety, reproducibility and efficiency. This has led to a unified model of reprogramming that consists of 3 stages: initiation, maturation and stabilisation. Initiation of reprogramming occurs in almost all cells that receive the reprogramming transgenes; most commonly Oct4, Sox2, Klf4 and c Myc, and involves a phenotypic mesenchymal-to-epithelial transition. The initiation stage is also characterised by increased proliferation and a metabolic switch from oxidative phosphorylation to glycolysis. The maturation stage is considered the major bottleneck within the process, resulting in very few "stabilisation competent" cells progressing to the final stabilisation phase. To reach this stage in both mouse and human cells, pre-i PS cells must activate endogenous expression of the core circuitry of pluripotency, comprising Oct4, Sox2, and Nanog, and thus reach a state of transgene independence. By the stabilisation stage, i PS cells generally use the same signalling networks that govern pluripotency in embryonic stem cells. These pathways differ between mouse and human cells although recent work has demonstrated that this is context dependent. As i PS cell generation technologies move forward, tools are being developed to interrogate the process in more detail, thus allowing a greater understanding of this intriguing biological phenomenon.  相似文献   

18.
Induced pluripotent stem cells (iPSCs) were first generated from mouse embryonic fibroblasts in the year 2006. These cells resemble the typical morphology of embryonic stem cells, express pluripotency markers, and are able to transmit through germlines. To date, iPSCs of many species have been generated, whereas generation of bat iPSCs (biPSCs) has not been reported. To facilitate in-depth study of bats at the molecular and cellular levels, we describe the successful derivation of biPSCs with a piggyBac (PB) vector that contains eight reprogramming factors Oct4, Sox2, Klf4, Nanog, cMyc, Lin28, Nr5a2, and miR302/367. These biPSCs were cultured in media containing leukemia inhibitory factor and three small molecule inhibitors (CHIR99021, PD0325901, and A8301). They retained normal karyotype, displayed alkaline phosphatase activity, and expressed pluripotency markers Oct4, Sox2, Nanog, TBX3, and TRA-1-60. They could differentiate in vitro to form embryoid bodies and in vivo to form teratomas that contained tissue cells of all three germ layers. Generation of biPSCs will facilitate future studies on the mechanisms of antiviral immunity and longevity of bats at the cellular level.  相似文献   

19.
A molecular view on pluripotent stem cells   总被引:8,自引:0,他引:8  
Eiges R  Benvenisty N 《FEBS letters》2002,529(1):135-141
Pluripotent stem cells are undifferentiated cells that are capable of differentiating to all three embryonic germ layers and their differentiated derivatives. They are transiently found during embryogenesis, in preimplantation embryos and fetal gonads, or as established cell lines. These unique cell types are distinguished by their wide developmental potential and by their ability to be propagated in culture indefinitely, without loosing their undifferentiated phenotype. This short review intends to give a general overview on the pluripotent nature of embryo-derived stem cells with a focus on human embryonic stem cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号