首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
High-calorie food leads to nonalcoholic fatty liver disease (NAFLD) through dysregulation of genes involved in lipid metabolism, but the precise mechanism remains unclear. DNA methylation represents one of the mechanisms that contributes to dysregulation of gene expression via interaction with environmental factors. Berberine can alleviate fatty liver in db/db and ob/ob mice. Here, we investigated whether DNA methylation is involved in the pathogenesis of NAFLD induced by a high-fat diet (HFD) and whether berberine improves NAFLD through influencing the methylation status of promoters of key genes. HFD markedly decreased the mRNA levels encoding CPT-1α, MTTP, and LDLR in the liver. In parallel, DNA methylation levels in the MTTP promoter of rats with NAFLD were elevated in the liver. Interestingly, berberine reversed the downregulated expression of these genes and selectively inhibited HFD-induced increase in the methylation of MTTP. Consistently, berberine increased hepatic triglyceride (TG) export and ameliorated HFD-induced fatty liver. Furthermore, a close negative correlation was observed between the MTTP expression and its DNA methylation (at sites −113 and −20). These data indicate that DNA methylation of the MTTP promoter likely contributes to its downregulation during HFD-induced NAFLD and, further, that berberine can partially counteract the HFD-elicited dysregulation of MTTP by reversing the methylation state of its promoter, leading to reduced hepatic fat content.  相似文献   

2.
3.
This study concentrated on the initial events triggering the development of nonalcoholic fatty liver disease induced by a high-fat plus fructose (HF-F) diet and on the possibility of delaying nonalcoholic fatty liver disease progression by adding dehydroepiandrosterone (DHEA) to the diet. Sterol regulatory element binding protein-1c (SREBP-1c) activation plays a crucial role in the progression of nonalcoholic fatty liver disease induced by an HF-F diet. This study investigated the protective effects of DHEA, a compound of physiological origin with multitargeted antioxidant properties, against the induction of SREBP-1c and on liver insulin resistance in rats fed an HF-F diet, which mimics a typical unhealthy Western diet. An HF-F diet, fortified or not with DHEA (0.01%, w/w), was administered for 15 weeks to male Wistar rats. After HF-F the liver showed unbalanced oxidative status, fatty infiltration, hepatic insulin resistance, and inflammation. The addition of DHEA to the diet reduced both activation of oxidative-stress-dependent pathways and expression of SREBP-1c and partially restored the expression of liver X-activated receptor-α and insulin receptor substrate-2 genes. DHEA supplementation of the HF-F diet reduced de novo lipogenesis and delayed progression of nonalcoholic fatty liver disease, demonstrating a relationship between oxidative stress and nonalcoholic fatty liver disease via SREBP-1c.  相似文献   

4.
Imbalance in the supply and utilization of fatty acids (FA) is thought to contribute to intrahepatic lipid (IHL) accumulation in obesity. The aim of this study was to determine the time course of changes in the liver capacity to oxidize and store FA in response to high-fat diet (HFD). Adult male Wistar rats were fed either normal chow or HFD for 2.5weeks (short-term) and 25weeks (long-term). Short-term HFD feeding led to a 10% higher palmitoyl-l-carnitine-driven ADP-stimulated (state 3) oxygen consumption rate in isolated liver mitochondria indicating up-regulation of β-oxidation. This adaptation was insufficient to cope with the dietary FA overload, as indicated by accumulation of long-chain acylcarnitines, depletion of free carnitine and increase in FA content in the liver, reflecting IHL accumulation. The latter was confirmed by in vivo((1))H magnetic resonance spectroscopy and Oil Red O staining. Long-term HFD feeding caused further up-regulation of mitochondrial β-oxidation (24% higher oxygen consumption rate in state 3 with palmitoyl-l-carnitine as substrate) and stimulation of mitochondrial biogenesis as indicated by 62% higher mitochondrial DNA copy number compared to controls. These adaptations were paralleled by a partial restoration of free carnitine levels and a decrease in long-chain acylcarnitine content. Nevertheless, there was a further increase in IHL content, accompanied by accumulation of lipid peroxidation and protein oxidation products. In conclusion, partially effective adaption of hepatic FA metabolism to long-term HFD feeding came at a price of increased oxidative stress, caused by a combination of higher FA oxidation capacity and oversupply of FA.  相似文献   

5.
The aim of this study was to investigate the effects of a postweaning low-calcium diet on later obesity and explore the underlying mechanisms. Ninety-six male rats were weaned at 3 weeks of age, fed standard (STD: 0.50% calcium, n=48) and low-calcium (LC: 0.15% calcium, n=48) diets for 3 weeks, and then fed the standard diet for a 3-week washout period successively. Finally, the STD rats were divided into STD control and high-fat diet (HFD) groups, and the LC ones into LC control and LC+HFD (LCHF) groups. The STD and LC rats were fed the standard diet, while the HFD control and LCFD ones were fed a high-fat diet for 6 weeks to induce obesity. During the three feeding periods, adenosine-monophosphate-activated protein kinase (AMPK) and its responsive proteins phospho-acetyl-coA carboxylase, carnitine palmitoyltransferase 1 and uncoupling protein 3 were persistently down-regulated in the LC group (decreased by 18%, 24%, 18% and 20%, respectively) versus the STD group, and these effects were significantly more pronounced in the LCHFD group (decreased by 21%, 30%, 23% and 25%, respectively) than the HFD group by a later high-fat stimuli, causing more fat and body weight in adulthood. However, lipolysis enzymes, serum leptin, insulin and lipids were not significantly affected until the body weight and fat content changed at 15 weeks of age. The results suggest that the low-calcium diet after weaning promotes rat adult-onset obesity induced by high-fat diet, which might be achieved by programming expressions of genes involved in AMPK pathway.  相似文献   

6.
7.

Background

To evaluate whether co-administration of R/S-α-lipoic acid can prevent the development of oxidative stress and metabolic changes induced by a fructose-rich diet (F).

Methods

We assessed glycemia in the fasting state and during an oral glucose tolerance test, triglyceridemia and insulinemia in rats fed with standard diet (control) and fructose without or with R/S-α-lipoic acid. Insulin resistance and hepatic insulin sensitivity were also calculated. In liver, we measured reduced glutathione, protein carbonyl groups, antioxidant capacity by ABTS assay, antioxidant enzymes (catalase and superoxide dismutase 1 and 2), uncoupling protein 2, PPARδ and PPARγ protein expressions, SREBP-1c, fatty acid synthase and glycerol-3-phosphate acyltransferase-1 gene expression, and glucokinase activity.

Results

R/S-α-lipoic acid co-administration to F-fed rats a) prevented hyperinsulinemia, hypertriglyceridemia and insulin resistance, b) improved hepatic insulin sensitivity and glucose tolerance, c) decreased liver oxidative stress and increased antioxidant capacity and antioxidant enzymes expression, d) decreased uncoupling protein 2 and PPARδ protein expression and increased PPARγ levels, e) restored the basal gene expression of PPARδ, SREBP-1c and the lipogenic genes fatty acid synthase and glycerol-3-phosphate acyltransferase, and f) decreased the fructose-mediated enhancement of glucokinase activity.

Conclusions

Our results suggest that fructose-induced oxidative stress is an early phenomenon associated with compensatory hepatic metabolic mechanisms, and that treatment with an antioxidant prevented the development of such changes.

General significance

This knowledge would help to better understand the mechanisms involved in liver adaptation to fructose-induced oxidative stress and to develop effective strategies to prevent and treat, at early stages, obesity and type 2 diabetes mellitus.  相似文献   

8.
Fetuin-A is synthesized in the liver and is secreted into the bloodstream. Clinical studies suggest involvement of fetuin-A in metabolic disorders such as visceral obesity, insulin resistance, diabetes, and fatty liver. Curcumin is extracted from the rhizome Curcuma longa and has been shown to possess potent antioxidant, anticarcinogenic, anti-inflammatory, and hypoglycemic properties. In this study, we investigated the effect of curcumin treatment on serum fetuin-A levels as well as hepatic lipids and prooxidant–antioxidant status in rats fed a high-fat diet (HFD). Male Sprague–Dawley rats were divided into six groups. Group 1 was fed control diet (10 % of total calories from fat). Groups 2 and 3 were given curcumin (100 and 400 mg/kg bw/day, respectively ) by gavage for 8 weeks and were fed control diet. Group 4 was fed with HFD (60 % of total calories from fat). Groups 5 and 6 received HFD together with the two doses of curcumin, respectively. Curcumin treatment appeared to be effective in reducing liver triglycerides and serum fetuin-A levels. These findings suggest that the reduction of fetuin-A may contribute to the beneficial effects of curcumin in the pathogenesis of obesity.  相似文献   

9.
The aims of this study were to determine in the marsupial Sminthopsis crassicaudata, the effects of leptin on food intake, body weight, tail width (a reflection of fat stores), and leptin mRNA, after caloric restriction followed by refeeding ad libitum with either a standard or high-fat preferred diet. S. crassicaudata (n = 32), were fed standard laboratory diet (LabD; 1.01 kcal/g, 20% fat) ad libitum fo 3 days. On days 4-10, animals received LabD at 75% of basal intake and then (days 11-25) were fed either LabD or a choice of LabD and mealworms (MW; 2.99 kcal/g, 30% fat); during this time, half the animals (n = 8) in each group received either leptin (2.5 mg/kg) or PBS intraperitoneally two times daily. On day 26, animals were killed and fat was removed for assay of leptin mRNA. At baseline, body weight, tail width, and food intake were similar in each group. After caloric restriction, body weight (P < 0.001) and tail width (P < 0.001) decreased. On return to ad libitum feeding in the PBS-treated animals, body weight and tail width returned to baseline in the LabD-fed animals (P < 0.001) and increased above baseline in the MW-fed animals (P < 0.001). In the LabD groups, tail width (P < 0.001) and body weight (P < 0.001) decreased after leptin compared with PBS. In the MW groups, the increase in tail width (P < 0.001) and body weight (P = 0.001) were attenuated after leptin compared with PBS. The expression of leptin mRNA in groups fed MW were greater in PBS than in leptin-treated animals (P < 0.05). Therefore, after diet-induced weight loss, leptin prevents a gain in fat mass in S. crassicaudata; this has potential implications for the therapeutic use of leptin.  相似文献   

10.
Nonalcoholic fatty liver disease (NAFLD) is a chronic disease affecting the health of many people worldwide. Previous studies have shown that dietary calcium supplementation may alleviate NAFLD, but the underlying mechanism is not clear. In this study investigating the effect of calcium on hepatic lipid metabolism, 8-week-old male C57BL/6J mice were divided into four groups (n = 6): (1) mice given a normal chow containing 0.5% calcium (CN0.5), (2) mice given a normal chow containing 1.2% calcium (CN1.2), (3) mice given a high-fat diet (HFD) containing 0.5% calcium (HFD0.5), and (4) mice fed a HFD containing 1.2% calcium (HFD1.2). To understand the underlying mechanism, cells were treated with oleic acid and palmitic acid to mimic the HFD conditions in vitro. The results showed that calcium alleviated the increase in triglyceride accumulation induced by oleic acid and/or palmitic acid in HepG2, AML12, and primary hepatocyte cells. Our data demonstrated that calcium supplementation alleviated HFD-induced hepatic steatosis through increased liver lipase activity, proving calcium is involved in the regulation of hepatic lipid metabolism. Moreover, calcium also increased the level of glycogen in the liver, and at the same time had the effect of reducing glycolysis and promoting glucose absorption. Calcium addition increased calcium levels in the mitochondria and cytoplasm. Taken together, we concluded that calcium supplementation could relieve HFD-induced hepatic steatosis by changing energy metabolism and lipase activity.  相似文献   

11.
12.
An evident fatty liver, corroborated morphologically and chemically, was produced in CD-1 mice after five daily doses of simvastatin 75 mg/Kg body weight, a hypercholesterolemic diet and 20 percent ethanol in the drinking water. After treating the animals, they presented serum triacylglycerols levels five times higher than the control mice, total lipids, cholesterol and triacylglycerols in the liver were 2, 2 and 1.5 times higher, respectively, than in control animals. When Arthrospira maxima was given with diet two weeks prior the onset of fatty liver induction, there was a decrement of liver total lipids (40%), liver triacylglycerols (50%) and serum triacylglycerols (50%) compared to the animals with the same treatment but without Arthrospira maxima. In addition to the mentioned protective effect, the administration of this algae, produced a significant increase (45%) in serum high density lipoproteins. The mechanism for this protective effect was not established in these experiments.  相似文献   

13.
This study was conducted to obtain additional information about the adaptations after 12 wk of high-fat diet (HFD) per se or HFD combined with endurance training in the rat using a two [diet: carbohydrate (CHO) or HFD] by two (training: sedentary or trained) by two (condition at death: rested or exercised) factorial design. Adaptation to prolonged HFD increases maximal O2 uptake (VO2max; 13%, P less than 0.05) and submaximal running endurance (+64%, P less than 0.05). This enhancement in exercise capacity could be attributed to 1) an increase in skeletal muscle aerobic enzyme activities (3-hydroxyacyl-CoA dehydrogenase and citrate synthase in soleus and red quadriceps) or 2) a decrease in liver glycogen breakdown in response to 1 h exercise at 80% VO2max. When training is superimposed to HFD, the most prominent finding provided by this study is that the diet-induced effects are cumulative with the well-known training effect on VO2max, exercise endurance, oxidative capacity of red muscle, and metabolic responses to exercise, with a further reduction in liver glycogen breakdown.  相似文献   

14.
Hepatocyte growth factor (HGF) has various effects especially on epithelial cells. However, the precise role of HGF on lipogenesis is still not fully understood. A high-fat diet was administered to HGF transgenic mice and wild-type control mice in vivo. Furthermore, recombinant human HGF (rhHGF) was administered to HepG2 cell line in vitro. We performed an analysis regarding the factors relating to lipid metabolism. An overexpression of HGF dramatically ameliorates a high-fat diet-induced fatty liver. HGF transgenic mice showed an apparently reduced lipid accumulation in the liver. The activation of microsomal triglyceride transfer protein (MTP) and apolipoprotein B (ApoB) accompanying higher triglyceride levels in the serum were found in HGF transgenic mice on a normal diet. Interestingly, this upregulation of the MTP activation became more apparent in the high-fat diet. In addition, the administration of rhHGF stimulated MTP and ApoB expression while reducing reduced the intracellular lipid content in HepG2 cell line. However, this induction of MTP and ApoB by HGF was clearly inhibited by PD98059 (MAPK inhibitor). In conclusion, the data presented in this study indicated that HGF ameliorates a high-fat diet-induced fatty liver via the activation of MTP and ApoB.  相似文献   

15.
Niemann-Pick C1-Like 1 (NPC1L1) mediates intestinal absorption of dietary and biliary cholesterol. Ezetimibe, by inhibiting NPC1L1 function, is widely used to treat hypercholesterolemia in humans. Interestingly, ezetimibe treatment appears to attenuate hepatic steatosis in rodents and humans without a defined mechanism. Overconsumption of a high-fat diet (HFD) represents a major cause of metabolic disorders including fatty liver. To determine whether and how NPC1L1 deficiency prevents HFD-induced hepatic steatosis, in this study, we fed NPC1L1 knockout (L1-KO) mice and their wild-type (WT) controls an HFD, and found that 24 weeks of HFD feeding causes no fatty liver in L1-KO mice. Hepatic fatty acid synthesis and levels of mRNAs for lipogenic genes are substantially reduced but hepatic lipoprotein-triglyceride production, fatty acid oxidation, and triglyceride hydrolysis remain unaltered in L1-KO versus WT mice. Strikingly, L1-KO mice are completely protected against HFD-induced hyperinsulinemia under both fed and fasted states and during glucose challenge. Despite similar glucose tolerance, L1-KO relative WT mice are more insulin sensitive and in the overnight-fasted state display significantly lower plasma glucose concentrations. In conclusion, NPC1L1 deficiency in mice prevents HFD-induced fatty liver by reducing hepatic lipogenesis, at least in part, through attenuating HFD-induced insulin resistance, a state known to drive hepatic lipogenesis through elevated circulating insulin levels.  相似文献   

16.
目的:探讨富硒大豆多肽改善高脂所致脂肪肝大鼠肝抗氧化功能的影响及机制。方法:将40只Wistar大鼠分成4组(n=10),分别饲喂标准饲料+水(NC)、标准饲料+富硒大豆多肽液(SeN)、高脂饲料+水(HC)、高脂饲料+富硒大豆多肽液(SeH),10周后处死,用苏丹Ⅲ染色肝脏组织切片观察脂肪变性程度,免疫组织化学方法测定肝组织葡萄糖调节蛋白78(GRP78)表达情况,并分析其肝功能、血脂及血清和肝匀浆中谷胱甘肽过氧化物酶(GSH-Px)、超氧化物歧化酶(SOD)活性和丙二醛(MDA)含量的变化情况。结果:HC组在血清TC、TG水平、肝脏脂肪化程度、GRP78表达情况都明显高于NC、SeN、SeH组(P〈0.01)。SeH组血清和肝组织中MDA含量较HC组降低(P〈0.01),GSH-Px、SOD活性升高。NC和SeN两组各项指标之间无明显差异。结论:富硒大豆多肽能有效提高脂肪肝大鼠肝内抗氧化酶活性,抑制脂质过氧化反应,降低肝组织内GRP78表达。  相似文献   

17.
18.
Non-alcoholic fatty liver disease (NAFLD) is an increasingly reported pathology, characterized by fat accumulation within the hepatocyte. Growing evidences suggest specific effects on mitochondrial metabolism, but it is still unclear the relationship between fatty liver progression and mitochondrial function. In the present work we have investigated the impact of fatty liver on mitochondrial bioenergetic functions and susceptibility to mitochondrial permeability transition (MPT) induction in animals fed a choline-deficient diet (CDD) for 4, 8, 12 or 16 weeks. Mitochondria isolated from CDD animals always exhibited higher state 4 respiration. Mitochondrial membrane potential was decreased in CDD animals at 4 and 16 weeks. At 12 weeks, oxidative phosphorylation was more efficient in CDD animals, suggesting a possible early response trying to revert the deleterious effect of increased triglyceride storage in the liver. However, mitochondrial dysfunction was evident in CDD animals at 16 weeks as indicated by decreased RCR and ADP/O, with a corresponding decrease in respiratory chain enzymes activities. Such loss of respiratory efficiency was associated with accumulation of protein oxidation products, in tissue and mitochondrial fraction. Additionally, although no differences in ATPase activity, the lag phase was increased in mitochondria from CDD animals at 16 weeks, associated with decreased content of the adenine nucleotide translocator. Increased susceptibility to calcium-induced MPT was evident in CDD animals at all time points. These results suggest a dynamic mechanism for the development of NALFD associated with altered mitochondrial function.  相似文献   

19.
Jin H  Sakaida I  Tsuchiya M  Okita K 《Life sciences》2005,76(24):2805-2816
The aim of this study was to investigate whether herbal medicine Rhei rhizome, extract powder from herbs, has influences on the development of liver fibrosis. In in vivo studies the effects of Rhei rhizome were examined using the choline-deficient L-amino acid-defined (CDAA) diet-induced liver fibrosis model. In In vitro studies the effects of Rhei rhizome on type I procollagen mRNA expression, alpha-smooth muscle actin (alpha-SMA), metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) of isolated hepatic stellate cell were examined. In vivo Rhei rhizome prevented fibrosis in a dose-dependent manner up to 1.0% (w/w) with a reduced number of activated stellate cells. In vitro the Rhei rhizome prevented stellate cell activation resulting in reduced type I procollagen mRNA, alpha-SMA and TIMP-1, 2 expression. These results indicate that Rhei rhizome significantly reduces liver fibrosis by the direct inhibition of stellate cell activation without reducing hepatocyte cell death.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号