首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mangrove soils are anaerobic environments rich in sulphate and organic matter. Although the sulphur cycle is one of the major actors in this ecosystem, little is known regarding the sulphur bacteria communities in mangrove soils. We investigated the abundance, composition and diversity of sulphur‐oxidizing (SOB) and sulphate‐reducing (SRB) bacteria in sediments from three Brazilian mangrove communities: two contaminated, one with oil (OilMgv) and one with urban waste and sludge (AntMgv), and one pristine (PrsMgv). The community structures were assessed using quantitative real‐time polymerase chain reaction (qPCR), polymerase chain reaction‐denaturing gradient gel electrophoresis (PCR‐DGGE) and clone libraries, using genes for the enzymes adenosine‐5′‐phosphosulphate reductase (aprA) and sulphite reductase (Dsr) (dsrB). The abundance for qPCR showed the ratio dsrB/aprA to be variable among mangroves and higher according to the gradient observed for oil contamination in the OilMgv. The PCR‐DGGE patterns analysed by Nonmetric Multidimensional Scaling revealed differences among the structures of the three mangrove communities. The clone libraries showed that Betaproteobacteria, Gammaproteobacteria and Deltaproteobacteria were the most abundant groups associated with sulphur cycling in mangrove sediments. We conclude that the microbial SOB and SRB communities in mangrove soils are different in each mangrove forest and that such microbial communities could possibly be used as a proxy for contamination in mangrove forests.  相似文献   

2.
ABSTRACT: BACKGROUND: Mangrove forests are coastal wetlands that provide vital ecosystem services and serve as barriers against natural disasters like tsunamis, hurricanes and tropical storms. Mangroves harbour a large diversity of organisms, including microorganisms with important roles in nutrient cycling and availability. Due to tidal influence, mangroves are sites where crude oil from spills farther away can accumulate. The relationship between mangrove bacterial diversity and oil degradation in mangrove sediments remains poorly understood. RESULTS: Mangrove sediment was sampled from 0--5, 15--20 and 35--40 cm depth intervals from the Surui River mangrove (Rio de Janeiro, Brazil), which has a history of oil contamination. DGGE fingerprinting for bamA, dsr and 16S rRNA encoding fragment genes, and qPCR analysis using dsr and 16S rRNA gene fragment revealed differences with sediment depth. CONCLUSIONS: Analysis of bacterial 16S rRNA gene diversity revealed changes with depth. DGGE for bamA and dsr genes shows that the anaerobic hydrocarbon-degrading community profile also changed between 5 and 15 cm depth, and is similar in the two deeper sediments, indicating that below 15 cm the anaerobic hydrocarbon-degrading community appears to be well established and homogeneous in this mangrove sediment. qPCR analysis revealed differences with sediment depth, with general bacterial abundance in the top layer (0--5 cm) being greater than in both deeper sediment layers (15--20 and 35--40 cm), which were similar to each other.  相似文献   

3.
16S ribosomal DNA (rDNA) clone library analysis was conducted to assess prokaryotic diversity and community structural changes within a surficial sediment core obtained from an Antarctic continental shelf area (depth, 761 m) within the Mertz Glacier Polynya (MGP) region. Libraries were created from three separate horizons of the core (0- to 0.4-cm, 1.5- to 2.5-cm, and 20- to 21-cm depth positions). The results indicated that at the oxic sediment surface (depth, 0 to 0.4 cm) the microbial community appeared to be dominated by a small subset of potentially r-strategist (fast-growing, opportunistic) species, resulting in a lower-than-expected species richness of 442 operational taxonomic units (OTUs). At a depth of 1.5 to 2.5 cm, the species richness (1,128 OTUs) was much higher, with the community dominated by numerous gamma and delta proteobacterial phylotypes. At a depth of 20 to 21 cm, a clear decline in species richness (541 OTUs) occurred, accompanied by a larger number of more phylogenetically divergent phylotypes and a decline in the predominance of Proteobacteria. Based on rRNA and clonal abundance as well as sequence comparisons, syntrophic cycling of oxidized and reduced sulfur compounds appeared to be the dominant process in surficial MGP sediment, as phylotype groups putatively linked to these processes made up a large proportion of clones throughout the core. Between 18 and 65% of 16S rDNA phylotypes detected in a wide range of coastal and open ocean sediments possessed high levels of sequence similarity (>95%) with the MGP sediment phylotypes, indicating that many sediment prokaryote phylotype groups defined in this study are ubiquitous in marine sediment.  相似文献   

4.
The phylogenetic diversity and composition of the bacterial community in anaerobic sediments from Sapelo Island, GA, USA were examined using 16S rRNA gene libraries. The diversity of this community was comparable to that of soil, and 1,186 clones formed 817 OTUs at 99% sequence similarity. Chao1 estimators for the total richness were also high, at 3,290 OTUs at 99% sequence similarity. The program RDPquery was developed to assign clones to taxonomic groups based upon comparisons to the RDP database. While most clones could be assigned to describe phyla, fewer than 30% of the clones could be assigned to a described order. Similarly, nearly 25% of the clones were only distantly related (<90% sequence similarity) to other environmental clones, illustrating the unique composition of this community. One quarter of the clones were related to one or more undescribed orders within the γ-Proteobacteria. Other abundant groups included the δ-Proteobacteria, Bacteroidetes, and Cyanobacteria. While these phyla were abundant in other estuarine sediments, the specific members at Sapelo Island appeared to be different from those previously described in other locations, suggesting that great diversity exists between as well as within estuarine intertidal sediments. In spite of the large differences in pore water chemistry with season and depth, differences in the bacterial community were modest over the temporal and spatial scales examined and generally restricted to only certain taxa. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

5.
16S ribosomal DNA (rDNA) clone library analysis was conducted to assess prokaryotic diversity and community structural changes within a surficial sediment core obtained from an Antarctic continental shelf area (depth, 761 m) within the Mertz Glacier Polynya (MGP) region. Libraries were created from three separate horizons of the core (0- to 0.4-cm, 1.5- to 2.5-cm, and 20- to 21-cm depth positions). The results indicated that at the oxic sediment surface (depth, 0 to 0.4 cm) the microbial community appeared to be dominated by a small subset of potentially r-strategist (fast-growing, opportunistic) species, resulting in a lower-than-expected species richness of 442 operational taxonomic units (OTUs). At a depth of 1.5 to 2.5 cm, the species richness (1,128 OTUs) was much higher, with the community dominated by numerous gamma and delta proteobacterial phylotypes. At a depth of 20 to 21 cm, a clear decline in species richness (541 OTUs) occurred, accompanied by a larger number of more phylogenetically divergent phylotypes and a decline in the predominance of Proteobacteria. Based on rRNA and clonal abundance as well as sequence comparisons, syntrophic cycling of oxidized and reduced sulfur compounds appeared to be the dominant process in surficial MGP sediment, as phylotype groups putatively linked to these processes made up a large proportion of clones throughout the core. Between 18 and 65% of 16S rDNA phylotypes detected in a wide range of coastal and open ocean sediments possessed high levels of sequence similarity (>95%) with the MGP sediment phylotypes, indicating that many sediment prokaryote phylotype groups defined in this study are ubiquitous in marine sediment.  相似文献   

6.
Pockmarks are seabed geological structures sustaining methane seepage in cold seeps. Based on RNA-derived sequences the active fraction of the archaeal community was analysed in sediments associated with the G11 pockmark, in the Nyegga region of the Norwegian Sea. The anaerobic methanotrophic Archaea (ANME) and sulfate-reducing bacteria (SRB) communities were studied as well. The vertical distribution of the archaeal community assessed by PCR-DGGE highlighted the presence of ANME-2 in surface sediments, and ANME-1 in deeper sediments. Enrichments of methanogens showed the presence of hydrogenotrophic methanogens of the Methanogenium genus in surface sediment layers as well. The active fraction of the archaeal community was uniquely composed of ANME-2 in the shallow sulfate-rich sediments. Functional methyl coenzyme M reductase gene libraries showed that sequences affiliated with the ANME-1 and ANME-3 groups appeared in the deeper sediments but ANME-2 dominated both surface and deeper layers. Finally, dissimilatory sulfite reductase gene libraries revealed a high SRB diversity (i.e. Desulfobacteraceae, Desulfobulbaceae, Syntrophobacteraceae and Firmicutes) in the shallow sulfate-rich sediments. The SRB diversity was much lower in the deeper section. Overall, these results show that the microbial community in sediments associated with a pockmark harbour classical cold seep ANME and SRB communities.  相似文献   

7.
Although mangroves represent ecosystems of global importance, the genetic diversity and abundance of functional genes that are key to their functioning scarcely have been explored. Here, we present a survey based on the nifH gene across transects of sediments of two mangrove systems located along the coast line of São Paulo state (Brazil) which differed by degree of disturbance, i.e., an oil-spill-affected and an unaffected mangrove. The diazotrophic communities were assessed by denaturing gradient gel electrophoresis (DGGE), quantitative PCR (qPCR), and clone libraries. The nifH gene abundance was similar across the two mangrove sediment systems, as evidenced by qPCR. However, the nifH-based PCR-DGGE profiles revealed clear differences between the mangroves. Moreover, shifts in the nifH gene diversities were noted along the land-sea transect within the previously oiled mangrove. The nifH gene diversity depicted the presence of nitrogen-fixing bacteria affiliated with a wide range of taxa, encompassing members of the Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Firmicutes, and also a group of anaerobic sulfate-reducing bacteria. We also detected a unique mangrove-specific cluster of sequences denoted Mgv-nifH. Our results indicate that nitrogen-fixing bacterial guilds can be partially endemic to mangroves, and these communities are modulated by oil contamination, which has important implications for conservation strategies.  相似文献   

8.
We investigated the diversity, spatial distribution, and abundances of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in sediment samples of different depths collected from a transect with different distances to mangrove forest in the territories of Hong Kong. Both the archaeal and bacterial amoA genes (encoding ammonia monooxygenase subunit A) from all samples supported distinct phylogenetic groups, indicating the presences of niche-specific AOA and AOB in mangrove sediments. The higher AOB abundances than AOA in mangrove sediments, especially in the vicinity of the mangrove trees, might indicate the more important role of AOB on nitrification. The spatial distribution showed that AOA had higher diversity and abundance in the surface layer sediments near the mangrove trees (0 and 10 m) but lower away from the mangrove trees (1,000 m), and communities of AOA could be clustered into surface and bottom sediment layer groups. In contrast, AOB showed a reverse distributed pattern, and its communities were grouped by the distances between sites and mangrove trees, indicating mangrove trees might have different influences on AOA and AOB community structures. Furthermore, the strong correlations among archaeal and bacterial amoA gene abundances and their ratio with NH4+, salinity, and pH of sediments indicated that these environmental factors have strong influences on AOA and AOB distributions in mangrove sediments. In addition, AOA diversity and abundances were significantly correlated with hzo gene abundances, which encodes the key enzyme for transformation of hydrazine into N2 in anaerobic ammonium-oxidizing (anammox) bacteria, indicating AOA and anammox bacteria may interact with each other or they are influenced by the same controlling factors, such as NH4+. The results provide a better understanding on using mangrove wetlands as biological treatment systems for removal of nutrients.  相似文献   

9.
Household anaerobic digesters have been installed across rural China for biogas production, but information on methanogen community structure in these small biogas units is sparsely available. By creating clone libraries for 16S rRNA and methyl coenzyme M reductase alpha subunit (mcrA) genes, we investigated the methanogenic consortia in a household biogas digester treating swine manure. Operational taxonomic units (OTUs) were defined by comparative sequence analysis, seven OTUs were identified in the 16S rRNA gene library, and ten OTUs were identified in the mcrA gene library. Both libraries were dominated by clones highly related to the type strain Methanocorpusculum labreanum Z, 64.0 % for 16S rRNA gene clones and 64.3 % for mcrA gene clones. Additionally, gas chromatography assays showed that formic acid was 84.54 % of the total volatile fatty acids and methane was 57.20 % of the biogas composition. Our results may help further isolation and characterization of methanogenic starter strains for industrial biogas production.  相似文献   

10.
Microorganisms are known to play fundamental roles in the biogeochemical cycling of carbon in the coastal environments. To get to know the composition and ecological roles of the archaeal communities within the sediments of the Pearl River Estuary, Southern China, the diversity and vertical distribution of archaea in a sediment core was reported based on the 16S rRNA and mcrA genes for the first time. Quantitative PCR analysis revealed that archaea were present at 106–107 16S rRNA gene copies/g (wet weight) in the sediment core, and the proportion of mcrA versus 16S rRNA gene copies varied from 11 to 45%. 16S rRNA gene libraries were constructed and analyzed for the top layer (0–6 cm), middle layer (18–24 cm), sulfate-methane transition zone (SMTZ, 32–42 cm), and bottom layer (44–50 cm) sediments. The results indicated that Miscellaneous Crenarchaeotal Group (MCG) was the main component in the sediments. The MCG archaea could be further divided into six subgroups: MCG-A, B, C, D, E, and F. On the other hand, mcrA sequences from methanogens related to the order Methanomicrobiales and ANME-2 methanotrophs were detected in all sediment layers. Taken together, our data revealed a largely unknown archaeal community in which MCG dominated within the Pearl River estuarine sediments, while methanogens and methane-oxidizing archaea putatively involving in methane metabolism, were also found in the community. This is the first important step towards elucidating the biogeochemical roles of these archaea in the Pearl River Estuary.  相似文献   

11.
Solid phases of phosphorus fractions in the surface and core sediments were studied to understand the biogeochemical cycling and bioavailability of phosphorus in the Pichavaram intertidal mangrove sediments of India. Total P in surface and core sediments ranged between 451–552 and 459–736 μg g−1 respectively and Fe bound P was the dominant fraction. Low levels of Fe bound P in the mangrove zone than the two estuarine zones may be because of high salinity inhibition of phosphate adsorption onto the Fe-oxides/hydroxides. Post-depositional reorganization of P was observed in surface sediments, converting organic P and Fe bound P into the authigenic P. High levels of organic P in the mangrove zone is primarily due to intensive cycling and degradation of organic matter and adsorption of phosphate on the organic molecules. The burial rates and regeneration efficiency of P in the intertidal mangrove ecosystem ranged from 5.41 to 7.27 μmol P cm−2 year−1 and 0.122 to 0.233 μmol P cm−2 year−1, respectively. High burial efficiency (≈99%) of P proves the earlier observation of limiting nature of P for the biological productivity. Further, bioavailable P (exchangeable P + Fe bound P + organic P) constituted a considerable proportion of sedimentary P pool of which an average accounted for 55 and 50% in surface and core sediments respectively. The results indicate that significant amount of P is locked in sediments in the form of authigenic P and detrital P which makes P as a limiting nutrient for the biological productivity.  相似文献   

12.
Culture-independent PCR–denaturing gradient gel electrophoresis (DGGE) was employed to assess the composition of diazotroph species from the sediments of three mangrove ecosystem sites in Sanya, Hainan Island, China. A strategy of removing humic acids prior to DNA extraction was conducted, then total community DNA was extracted using the soil DNA kit successfully for nifH PCR amplification, which simplified the current procedure and resulted in good DGGE profiles. The results revealed a novel nitrogen-fixing bacterial profile and fundamental diazotrophic biodiversity in mangrove sediments, as reflected by the numerous bands present DGGE patterns. Canonical correspondence analysis (CCA) revealed that the sediments organic carbon concentration and available soil potassium accounted for a significant amount of the variability in the nitrogen-fixing bacterial community composition. The predominant DGGE bands were sequenced, yielding 31 different nifH sequences, which were used in phylogenetic reconstructions. Most sequences were from Proteobacteria, e.g. α, γ, β, δ-subdivisions, and characterized by sequences of members of genera Azotobacter, Desulfuromonas, Sphingomonas, Geobacter, Pseudomonas, Bradyrhizobium and Derxia. These results significantly expand our knowledge of the nitrogen-fixing bacterial diversity of the mangrove environment.  相似文献   

13.
PCR-based methods for rRNA gene analysis have been widely used to study diversity of microbiology. However, the analysis would be difficult when the DNA content in samples is too low to be amplified by conventional PCR. Nested PCR comes up with the advantage of higher sensitivity. It can detect target DNA at several-fold lower concentrations than conventional PCR. However, the amplification bias and factors that potentially affect measurement of sample diversity associated with nested PCR method has received little attention. Here, nested PCR was compared to reconditioning PCR which is based on conventional PCR and it would reduce the formation of heteroduplex. We investigated the use of both nested and reconditioning PCR methods to construct clone libraries of 16S rRNA genes from four swimming pool water samples. Abundances of OTUs (operational taxonomic units) were correlated between the libraries (r 2 = 0.88, P < 0.0005), and some OTUs had equivalent abundances in the two libraries using the Chi-square test. Differences in taxonomic groups, as well as diversity and richness estimators, were compared by paired t-test and the Wilcoxon test, respectively. There were no significant differences between clone libraries using these two PCR methods. The results of ∫-Libshuff analysis suggested that nested PCR have no particular biases in revealing OTU diversity of a bacterial community. Thus, nested PCR produce congruent pictures with reconditioning PCR in the microbial community analysis.  相似文献   

14.
Although the deep-sea sediments harbor diverse and novel bacteria with important ecological and environmental functions, a comprehensive view of their community characteristics is still lacking, considering the vast area and volume of the deep-sea sedimentary environments. Sediment bacteria vertical distribution and community structure were studied of the E272 site in the East Pacific Ocean with the molecular methods of 16S rRNA gene T-RFLP (terminal restriction fragment length polymorphism) and clone library analyses. Layered distribution of the bacterial assemblages was detected by both methods, indicating that the shallow sediments (40 cm in depth) harbored a diverse and distinct bacterial composition with fine-scale spatial heterogeneity. Substantial bacterial diversity was detected and nine major bacterial lineages were obtained, including Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Nitrospirae, Planctomycetes, Proteobacteria, and the candidate divisions OP8 and TM6. Three subdivisions of the Proteobacteria presented in our libraries, including the α-, γ- and δ-Proteobacteria. Most of our sequences have low similarity with known bacterial 16S rRNA genes, indicating that these sequences may represent as-yet-uncultivated novel bacteria. Most of our sequences were related to the GenBank nearest neighboring sequences retrieved from marine sediments, especially from deep-sea methane seep, gas hydrate or mud volcano environments. Several sequences were related to the sequences recovered from the deep-sea hydrothermal vent or basalt glasses-bearing sediments, indicating that our deep-sea sampling site might be influenced to certain degree by the nearby hydrothermal field of the East Pacific Rise at 13°N. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
A. Rusch  E. Gaidos 《Geobiology》2013,11(5):472-484
In the coarse‐grained carbonate sediments of coral reefs, advective porewater flow and the respiration of organic matter establish redox zones that are the scene of microbially mediated transformations of N compounds. To investigate the geobiology of N cycling in reef sediments, the benthic microbiota of Checker Reef in Kaneohe Bay, Hawaii, were surveyed for candidate nitrate reducers, ammonifying nitrite reducers, aerobic and anaerobic ammonia oxidizers (anammox) by identifying phylotypes of their key metabolic genes (napA, narG, nrfA, amoA) and ribotypes (unique RNA sequences) of anammox‐like 16S rRNA. Putative proteobacteria with the catalytic potential for nitrate reduction were identified in oxic, interfacial and anoxic habitats. The estimated richness of napA (≥202 in anoxic sediment) and narG (≥373 and ≥441 in oxic and interfacial sediment, respectively) indicates a diverse guild of nitrate reducers. The guild of nrfA hosts in interfacial reef sediment was dominated by Vibrio species. The identified members of the aerobic ammonium oxidizing guild (amoA hosts) were Crenarchaeota or close relatives of Nitrosomonadales. Putative anammox bacteria were detected in the RNA pool of Checker Reef sediment. More than half of these ribotypes show ≥90% identity with homologous sequences of Scalindua spp., while no evidence was found for members of the genera Brocadia or Kuenenia. In addition to exploring the diversity of these four nitrogen‐cycling microbial guilds in coral reef sediments, the abundances of aerobic ammonium oxidizers (amoA), nitrite oxidizers (nxrAB), ammonifying nitrite reducers (nrfA) and denitrifiers (nosZ) were estimated using real‐time PCR. Representatives of all targeted guilds were detected, suggesting that most processes of the biogeochemical N cycle can be catalyzed by the benthic microbiota of tropical coral reefs.  相似文献   

16.
Distinct horizontal water column concentration gradients of nutrients and chlorophyll a (Chl a) occur within large, shallow, eutrophic Lake Taihu, China. Concentrations are high in the north, where some of the major polluted tributaries enter the lake, and relatively low in the south, where macrophytes generally are abundant. It is not clear, however, whether these water column concentration gradients are similarly reflected in spatial heterogeneity of nutrient concentrations within the bottom sediments. The main objective of this study was therefore to test if horizontal and vertical variations in the phosphorus and nitrogen content in bottom sediments of Lake Taihu are significantly related to (1) horizontal variations in overlying water column nutrient concentrations and (2) other sediment geochemical constituents. We measured the concentration of total phosphorus (TP) and total nitrogen (TN) in surficial sediments (0–2 cm) and TP, TN and Chl a concentrations in water column samples, collected from 32 sites in 2005. In 2006 sediment, TP, TN, carbon, iron and manganese concentrations were measured vertically at 2 cm intervals, extending to a depth of approximately 20 cm, at an additional eight sites. Linear correlation analysis revealed that surficial sediment TP concentrations across the 32 stations were related significantly, though weakly, to annual mean water column concentrations of TP, TN as well as Chl a. Correlations of surficial sediment TN with water column variables were, however, not significant (P > 0.05). Amongst the geochemical variables tested, the vertical variability of sediment TP concentrations was most strongly related to sediment manganese and carbon concentrations. A multiple stepwise linear regression revealed that the combination of sediment manganese and carbon concentrations explained 91% of the horizontal variability in sediment TP concentrations and 65% of the vertical variability. Handling editor: Luigi Naselli-Flores  相似文献   

17.
Microbial communities play a major role in terrestrial ecosystem functioning, but the determinates of their diversity and functional interactions are not well known. In this study, we explored leaf litter fungal diversity in a diverse Panama lowland tropical forest in which a replicated factorial N, P, K and micronutrient fertilization experiment of 40 × 40 m plots had been ongoing for nine years. We extracted DNA from leaf litter samples and used fungal‐specific amplification and a 454 pyrosequencing approach to sequence two loci, the nuclear ribosomal internal transcribed spacer (ITS) region and the nuclear ribosomal large subunit (LSU) D1 region. Using a 95% sequence similarity threshold for ITS1 spacer recovered a total of 2523 OTUs, and the number of unique ITS1 OTUs per 0.5–1.0 g leaf litter sample ranged from 55 to 177. Ascomycota were the dominant phylum among the leaf litter fungi (71% of the OTUs), followed by Basidiomycota (26% of the OTUs). In contrast to our expectations based on temperate ecosystems, long‐term addition of nutrients increased, rather than decreased, species richness relative to controls. Effect of individual nutrients was more subtle and seen primarily as changes in community compositions especially at lower taxonomic levels, rather than as significant changes in species richness. For example, plots receiving P tended to show a greater similarity in community composition compared to the other nutrient treatments, the +PK, +NK and +NPK plots appeared to be more dominated by the Nectriaceae than other treatments, and indicator species for particular nutrient combinations were identified.  相似文献   

18.
《Anaerobe》2001,7(3):119-134
Bacterial community structure and diversity in the rumen of steers in conditions of hay and corn diets was assessed by in vitro retrieval and analysis of the variable region (V3) of 16S rDNA. Two types of libraries were generated in this study: DGGE libraries, which further were analysed by excising, reamplification, and sequencing, and random shotgun sequence libraries. Phylogenetic and sequence similarity analyses of the resultant 68 clone sequences in DGGE libraries revealed the presence of 42 operational taxonomic units (OTUs) or phylotypes defined as having more than 97% of sequence similarity. One hundred and thirty four clone sequences in shotgun libraries were clustered into 72 phylotypes. The phylotype similarity, diversity, richness, and evenness in these libraries were estimated using a variety of diversity indices. In relation to diet, the corn-fed animals displayed more diverse and rich bacterial populations, which were mostly contributed by CFB-related phylotypes. Proteobacteria were also numerically prevalent on this diet (27%) but were represented by a few phylotypes thus diminishing the overall diversity and species richness values. On hay diet, the principal contributors to general diversity and species richness appeared to be low-G + C gram-positives. Although the ruminal Treponemaes were encountered only in hay-fed animals, their impact on species diversity on hay diet was low because of the limited number of phylotypes.  相似文献   

19.
Arsenic (As) cycling within soils and sediments of the Mekong Delta of Cambodia is affected by drastic redox fluctuations caused by seasonal monsoons. Extensive flooding during monsoon seasons creates anoxic soil conditions that favor anaerobic microbial processes, including arsenate [As(V)] respiration—a process contributing to the mobilization of As. Repeated oxidation and reduction in near‐surface sediments, which contain 10–40 mg kg?1 As, lead to the eventual downward movement of As to the underlying aquifer. Amplification of a highly conserved functional gene encoding dissimilatory As(V) reductase, arrA, can be used as a molecular marker to detect the genetic potential for As(V) respiration in environmental samples. However, few studies have successfully amplified arrA from sediments without prior enrichment, which can drastically shift community structure. In the present study, we examine the distribution and diversity of arrA genes amplified from multiple sites within the Cambodian Mekong Delta as a function of near‐surface depth (10, 50, 100, 200, and 400 cm), where sediments undergo seasonal redox fluctuations. We report successful amplification of 302 arrA gene sequences (72 OTUs) from near‐surface Cambodian soils (without prior enrichment or stimulation with carbon amendments), where a large majority (>70%) formed a well‐supported clade that is phylogenetically distinct from previously reported sequences from Cambodia and other South and Southeast Asian sediments, with highest sequence similarity to known Geobacter species capable of As(V) respiration, further supporting the potentially important role of Geobacter sp. in arsenic mobilization in these regions.  相似文献   

20.
Extremophilic archaeal communities living in serpentinized muds influenced by pH 12.5 deep-slab derived fluids were detected and their richness and relatedness assessed from across seven serpentinite mud volcanoes located along the Mariana forearc. In addition, samples from two near surface core sections (Holes D and E) at ODP Site 1200 from South Chamorro were subjected to SSU rDNA clone library and phylogenetic analysis resulting in the discovery of several novel operational taxonomic units (OTUs). Five dominant OTUs of Archaea from Hole 1200D and six dominant OTUs of Archaea from Hole 1200E were determined by groups having three or more clones. Terminal-restriction fragment length polymorphism (T-RFLP) analysis revealed all of the dominant OTUs were detected within both clone libraries. Cluster analysis of the T-RFLP data revealed archaeal community structures from sites on Big Blue and Blue Moon to be analogous to the South Chamorro Hole 1200E site. These unique archaeal community fingerprints resulted from an abundance of potential methane-oxidizing and sulfate-reducing phylotypes. This study used deep-sea sediment coring techniques across seven different mud volcanoes along the entire Mariana forearc system. The discovery and detection of both novel Euryarchaeota and Marine Benthic Group B Crenarcheaota phylotypes could be efficacious archaeal indicator populations involved with anaerobic methane oxidation (AMO) and sulfate reduction fueled by deep subsurface serpentinization reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号