首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two slightly different protocols, the plate incorporation method and the preincubation method, are used in the Ames Salmonella mutagen test. Using a preincubation method, we recently demonstrated efficient activation of a number of food-derived promutagens by extracts of mammalian cells expressing cDNAs of rat-liver cytochrome P450IA2 and of a P450IA2-IA1 hybrid. We report here that, for 2-amino-3,4-dimethylimidazo[4,5-ƒ]quinoline (MeIQ), 1-aminoanthracene and several other promutagens, preincubation dramatically increased the number of revertant colonies in the Ames test when extracts of cytochrome P450IA2-containing transfected cells or low concentrations of rat-liver extracts were used as the source of activating enzymes. At higher concentrations of rat-liver extract protein, the effect of preincubation was less pronounced. The effect of preincubation was not due to the low protein concentrations in the assays since increasing the total protein concentration did not abolish the requirement for preincubation for the detection of MeIQ activation at low concentrations of rat-liver extract. In experiments where P450IA2 synthesized in transfected cells in culture is used to study promutagen activation, the plate incorporation protocol may seriously underestimate the capacity of cell extracts to activate promutagens. Thus, interlaboratory comparisons become difficult and unnecessarily large quantities of cell extract protein may be needed to detect promutagen activation. Whenever Ames test assays are carried out under conditions where P450 concentration limits revertant yield, it would be prudent to examine both the preincubation and plate incorporation protocol.  相似文献   

2.
Previous work suggested that the oxidation of uroporphyrinogen to uroporphyrin is catalyzed by cytochrome P450IA2. Here we determined whether purified reconstituted mouse P450IA1 and IA2 oxidize uroporphyrinogen. Cytochromes P450IA1 and IA2 were purified from hepatic microsomes from 3-methylcholanthrene (MC)-treated C57BL/6 mice, using a combination of affinity chromatography and high performance liquid chromatography. Reconstituted P450IA1 was more active than P450IA2 in catalyzing ethoxyresorufin-O-deethylase (EROD) activity, whereas P450IA2 was more active than P450IA1 in catalyzing uroporphyrinogen oxidation (UROX). Both reactions required NADPH, NADPH-cytochrome P450 reductase, and either P450IA1 or IA2. Ketoconazole competitively inhibited both EROD and UROX activities, in microsomes from MC-treated mice. Ketoconazole also inhibited UROX catalyzed by reconstituted P450IA2. In contrast, ketoconazole did not inhibit UROX catalyzed by xanthine oxidase in the presence of iron-EDTA. Superoxide dismutase, catalase, and mannitol inhibited UROX catalyzed by xanthine oxidase/iron-EDTA, but did not affect UROX catalyzed by either microsomes or reconstituted P450IA2. These results suggest that UROX catalyzed by P450IA2 in microsomes and reconstituted systems does not involve free reactive oxygen species. Two known substrates of cytochrome P450IA2, 2-amino-3,4-dimethylimidazole[4,5-f]quinoline and phenacetin, were shown to inhibit the microsomal UROX reaction, suggesting that uroporphyrinogen binds to a substrate-binding site on the cytochrome P450.  相似文献   

3.
Cytochrome P450IA1 (purified from hepatic microsomes of beta-naphthoflavone-treated rats) has been covalently modified with the lysine-modifying reagent acetic anhydride. Different levels of lysine residue modification in cytochrome P450IA1 can be achieved by varying the concentration of acetic anhydride. Modification of lysine residues in P450IA1 greatly inhibits the interaction of P450IA1 with NADPH-cytochrome P450 reductase. Modification of 1.0 and 3.3 mol lysine residues per mole P450IA1 resulted in 30 and 95% decreases, respectively, in 7-ethoxycoumarin hydroxylation by a reconstituted P450IA1/reductase complex. However, modification of 3.3 mol lysine residues per mole P450IA1 decreased only cumene hydroperoxide-supported P450-dependent 7-ethoxycoumarin hydroxylation by 30%. Spectral and fluorescence studies showed no indication of global conformational change of P450IA1 even with up to 8.8 mol lysine residues modified per mole P450IA1. These data suggest that at least three lysine residues in P450IA1 may be involved in the interaction with reductase. Identification of lysine residues in P450IA1 possibly involved in this interaction was carried out by [14C]acetic anhydride modification, trypsin digestion, HPLC separation, and amino acid sequencing. The lysine residue candidates identified in this manner were K97, K271, K279, and K407.  相似文献   

4.
Two cDNA clones, 2C19 and 4C1, were isolated from a lung cDNA library of 3-methylcholanthrene (MC)-treated hamster by using rat P-450c cDNA as a probe. The cDNA determined from 2C19 and 4C1 was 2,916 bp long and contained an entire coding region for 524 amino acids with a molecular weight of 59,408. The deduced amino acid sequence showed a 85% identity with that of rat P-450c indicating 2C19 and 4C1 encode the hamster P-450IA1 protein. Another cDNA clone, designated H28, was isolated from a MC-induced hamster liver cDNA library by using the hamster lung 2C19 or 4C1 cDNA clone as a probe. H28 was 1,876 bp long and encoded a polypeptide of 513 amino acids with a molecular weight of 58,079. The N-terminal 20 residues deduced from nucleotide sequence of H28 were identical to those determined by sequence analysis of purified hamster hepatic P-450MCI. The high similarity of the nucleotide and deduced amino acid sequences between H28 and P-450IA2 of other species indicated that H28 encoded a P-450 protein which belongs to the P-450IA2 family. Northern blot analysis revealed that the mRNAs for hamster P-450IA1 and IA2 were about 2.9 and 1.9 kb long, respectively. Hamster P-450IA1 mRNA was induced to the same level in lungs as in livers by MC treatment, whereas hamster P-450IA2 mRNA was induced and expressed only in hamster liver.  相似文献   

5.
A standard calcium phosphate technique was used to obtain transient expression of cDNAs for rat liver cytochrome P450s in COS-1 cells. Cells transfected with a pMT2-based vector expressing P450IA2 cDNA (pMT2-IA2) had high acetanilide-4-hydroxylase activity and very low aryl hydrocarbon hydroxylase (AHH) activity. Cells transfected with a hybrid expression vector, pMT2-IA2/IA1, coding for a P450IA2/IA1 fusion protein (consisting of the amino-terminal region of P450IA2 and the central and carboxy-terminal regions of P450IA1) had high AHH activity. This result and other data indicate that the P450IA2/IA1 fusion protein has the substrate specificity of P450IA1. Extracts of cells transfected with pMT2-IA2 readily converted 2-amino-3,4-dimethylimidazo[4,5-f]quinoline (MeIQ) and related food-derived promutagens into mutagenic forms. Extracts of cells transfected with pMT2-IA2/IA1 showed efficient activation of 3-amino-1-methyl-5H-pyrido[4,3-b]indole (Trp P-2). To facilitate comparison of activities of P450s synthesized from cDNA expression vectors, the promutagen activation assays were carried out with limiting enzyme and saturating or nearly saturating substrate concentrations. The transient expression system described here uses a standard expression vector and requires only microgram quantities of cell extract protein for activation of food-derived promutagens such as MeIQ and Trp P-2. It will be useful for identifying P450s active in promutagen activation and for analyzing structure-function relationships of different P450 molecules.  相似文献   

6.
In this study, the human cytochrome P450 (CYP) 2A6 was used in order to modify the alkaloid production of tobacco plants. The cDNA for human CYP2A6 was placed under the control of the constitutive 35S promoter and transferred into Nicotiana tabacum via Agrobacterium-mediated transformation. Transgenic plants showed formation of the recombinant CYP2A6 enzyme but no obvious phenotypic changes. Unlike wild-type tobacco, the transgenic plants accumulated cotinine, a metabolite which is usually formed from nicotine in humans. This result substantiates that metabolic engineering of the plant secondary metabolism via mammalian P450 enzymes is possible in vivo.  相似文献   

7.
A full-length cDNA encoding human cytochrome P450 2E1 was expressed in mammalian cell lines using the vaccinia virus expression system. Immunoblot analysis showed that the expressed protein reacted with a polyclonal antibody against rat 2E1 and comigrated with P450 2E1 from human liver microsomes. P450 2E1 expressed in Hep G2 cells, a human cell line which contains both cytochrome b5 and NADPH:P450 oxidoreductase, was able to metabolize several known P450 2E1 substrates: N-nitrosodimethylamine (NDMA), N-nitrosomethylbenzylamine (NMBzA), p-nitrophenol, phenol, and acetaminophen. Apparent Km and Vmax values for NDMA demethylation were 22 microM and 173 pmol/min/mg microsomal protein, respectively. P450 2E1 expressed in TK-143 cells, which do not contain b5, displayed Km and Vmax values of 31 microM and 34 pmol/min/mg microsomal protein, respectively. Incorporation of purified rat liver b5 into TK-143 microsomes increased the Vmax 2.2-fold and decreased the Km to 22 microM. Addition of b5 to Hep G2 microsomes resulted in a 1.6-fold increase in Vmax, but showed no effect on the Km. P450 2E1 expressed in Hep G2 cells was shown to metabolize NMBzA with a Km of 47 microM and Vmax of 213 pmol/min/mg microsomal protein. Addition of b5 lowered the Km to 27 microM, but had no effect on Vmax. These results demonstrate conclusively that P450 2E1 is responsible for the low Km forms of NDMA demethylase and NMBzA debenzylase observed in liver microsomes and that these activities are affected by cytochrome b5.  相似文献   

8.
The role of P450 IA2 in the hydroxylation of acetanilide was examined using an inhibitory monoclonal antibody (MAb) 1-7-1 and vaccinia cDNA expression producing murine P450 IA1 (mIA1), murine P450 IA2 (mIA2), or human P450 IA2 (hIA2). Acetanilide hydroxylase (AcOH) activity was measured using an HPLC method with more than 500-fold greater sensitivity than previously described procedures. This method, which does not require the use of radioactive acetanilide, was achieved by optimizing both the gradient system and the amount of enzyme needed to achieve detection by uv light. MAb 1-7-1 inhibits up to 80% of the AcOH activity in both rat liver microsomes and cDNA expressed mouse and human P450 IA2. MAb 1-7-1, which recognizes both P450 IA1 and P450 IA2, completely inhibits the aryl hydrocarbon hydroxylase (AHH) activity of cDNA expressed in IA1. The inhibition of only 80% of the AHH activity present in MC liver microsomes by MAb 1-7-1 suggests that additional P450 forms are contributing to the overall AHH activity present in methylcholanthrene (MC)-liver microsomes as MAb 1-7-1 almost completely inhibits the AHH activity of expressed mIA1. Maximal inhibition of IA2 by 1-7-1 results in an 80% decrease in acetanilide hydroxylase activity in both liver microsomes and expressed mouse and human IA2. The capacity of MAb 1-7-1 to produce identical levels of inhibition of acetanilide hydroxylase activity in rat MC microsomes (80%) and in expressed mouse (81%) and human P450 IA2 (80%) strongly suggests that P450 IA2 is the major and perhaps the only enzyme responsible for the metabolism of acetanilide. These results demonstrate the complementary utility of monoclonal antibodies and cDNA expression for defining the contribution of specific P450 enzymes to the metabolism of a given substrate. This complementary approach allows for a more precise determination of the inhibitory capacity of MAb with respect to the metabolic capacity of the target P450.  相似文献   

9.
The levels of the messenger RNAs for the cytochromes P450IA1 (CYPIA1) and P450IA2 (CYPIA2) were determined in liver cytoplasmic RNA of rats of various ages after maximal induction with either 3-methylcholanthrene or isosafrole and in untreated rats. An increase in the CYPIA1 mRNA levels was observed only after treatment with 3-methylcholanthrene, whereas both 3-methylcholanthrene and isosafrole were able to induce the levels of CYPIA2 mRNA. The study presented here shows that the maximal induction of these 2 mRNAs did not change with age when 3-methylcholanthrene was used as the inducing agent. Isosafrole induction did not yield higher CYPIA1 mRNA levels in young rats but reduced the amount of this mRNA in old animals to levels below the detection limit of our assay. After induction with isosafrole the levels of the CYPIA2 mRNAs in the older age groups were lower than those observed in young rats. It is concluded that with age the responsiveness to cytochrome P450 inducers may change. This change is different for the various cytochrome P450 enzymes and depends on which inducer is used.  相似文献   

10.
The kinetics of product formation by cytochrome P450 2B4 were compared in the presence of cytochrome b(5) (cyt b(5)) and NADPH-cyt P450 reductase (CPR) under conditions in which cytochrome P450 (cyt P450) underwent a single catalytic cycle with two substrates, benzphetamine and cyclohexane. At a cyt P450:cyt b(5) molar ratio of 1:1 under single turnover conditions, cyt P450 2B4 catalyzes the oxidation of the substrates, benzphetamine and cyclohexane, with rate constants of 18 +/- 2 and 29 +/- 4.5 s(-1), respectively. Approximately 500 pmol of norbenzphetamine and 58 pmol of cyclohexanol were formed per nmol of cyt P450. In marked contrast, at a cyt P450:CPR molar ratio of 1:1, cyt P450 2B4 catalyzes the oxidation of benzphetamine congruent with100-fold (k = 0.15 +/- 0.05 s(-1)) and cyclohexane congruent with10-fold (k = 2.5 +/- 0.35 s(-1)) more slowly. Four hundred picomoles of norbenzphetamine and 21 pmol of cyclohexanol were formed per nmol of cyt P450. In the presence of equimolar concentrations of cyt P450, cyt b(5), and CPR, product formation is biphasic and occurs with fast and slow rate constants characteristic of catalysis by cyt b(5) and CPR. Increasing the concentration of cyt b(5) enhanced the amount of product formed by cyt b(5) while decreasing the amount of product generated by CPR. Under steady-state conditions at all cyt b(5):cyt P450 molar ratios examined, cyt b(5) inhibits the rate of NADPH consumption. Nevertheless, at low cyt b(5):cyt P450 molar ratios 相似文献   

11.
Attempts to covalently link NADPH-cytochrome P450 reductase to cytochrome P450 2B4 using a water-soluble carbodiimide, 1-ethyl-3-(3-dimethylisopropyl)carbodiimide, were unsuccessful, despite the fact that under the same conditions about 30% of P450 2B4 could be covalently linked with cytochrome b5 in a functionally active complex (Tamburini, P. P., and Schenkman, J. B. (1987) Proc. Natl. Acad. Sci. U. S. A. 84, 11-15). This suggested that the functional electron transfer complex between P450 2B4 and reductase is not stabilized by electrostatic forces. Raising the ionic strength of the medium is disruptive to salt bridges and was used to further test whether P450 2B4 and the reductase form charge-pairing complexes. Instead of inhibiting electron transfer, high ionic strength increased the apparent fast phase rate constant and the fraction of P450 2B4 reduced in the fast phase. The possibility that electron transfer between NADPH-cytochrome P450 reductase and P450 2B4 is diminished by charge repulsion was examined. Consistent with this hypothesis, the Km of P450 2B4 for reductase was decreased 26-fold by increasing the ionic strength from 10 to 100 mM sodium phosphate without affecting the Vmax. The rate of benzphetamine N-demethylation also was increased by elevation of the ionic strength. Electron transfer from the reductase to other charged redox acceptors, e.g. cytochrome c and ferricyanide, was also stimulated by increased ionic strength. However, no similar stimulation was observed with the uncharged acceptor 1,4-benzoquinone. Polylysine, a polypeptide that binds to anionic sites, enhanced electron transfer from NADPH to ferricyanide and the apparent fast phase of reduction of cytochrome P450. The results are consistent with the hypothesis that charges on NADPH-cytochrome P450 reductase and cytochrome P450 decrease the stability of the electron transfer complex.  相似文献   

12.
R H Tukey  D W Nebert 《Biochemistry》1984,23(25):6003-6008
The Ah locus in the C57BL/6N mouse regulates at least two cytochrome P-450 gene products, termed in the mouse P1-450 and P3-450; these two enzymes are so named because each is responsible for the highest turnover number for the substrates benzo[a]pyrene and acetanilide, respectively. A cDNA library was prepared in pBR322 from sucrose gradient fractionated total liver poly(A+)-enriched RNA (approximately 20 S) from 2,3,7,8-tetrachlorodibenzo-p-dioxin- (TCDD) treated C57BL/6N (Ahb/Ahb) mice. Differential colony hybridization screening, with [32P]cDNA probes derived from total liver mRNA of both TCDD-treated and control C57BL/6N mice, yielded pP(3)450-21 (1710 base pair) and pP(1)450-57 (1770 base pair) cDNA clones. pP(1)450-57 was found to have 690 base pairs 5'-ward of the original P1-450 cDNA cloned in this laboratory. Restriction maps of pP(3)450-21 and pP(1)450-57 are markedly different and clearly are derived from separate genes. By means of hybridization-translation-arrest experiments, anti-(P3-450) precipitates the translation product (Mr approximately equal to 55000) of mRNA specifically hybridizing to pP(3)450-21. It is also shown that hybridization-translation-arrest experiments using polyclonal antibodies are not specific for proof of a P-450 cDNA clone. pP(3)450-21 was used to probe liver mRNA from Ahb/Ahb, Ahb/Ahd, and Ahd/Ahd mice treated with 3-methylcholanthrene, beta-naphthoflavone, aroclor 1254, isosafrole, low TCDD, or high TCDD. These genetic data rigorously demonstrate control of the P3-450 (20S) mRNA induction process by the Ah receptor. pP(3)450-21 fragments hybridized to TCDD-induced C57BL/6N mRNA and to a portion of the cloned 5' end of the P1-450 gene from a mouse MOPC 41 plasmacytoma library.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Dissociation constants K(d) for cytochrome P450 reductase (reductase) and cytochrome P450 2B4 are measured in the presence of various substrates. Aminopyrine increases the dissociation constant for binding of the two proteins. Furthermore, cytochrome b(5) (b(5)) stimulates metabolism of this substrate and dramatically decreases the substrate-related K(d) values. Experiments are performed to test if the b(5)-mediated stimulation is effected through a conformational change of P450. The effects of a redox-inactive analogue of b(5) (Mn b(5)) on product formation and reaction stoichiometry are determined. Variations in the concentration of Mn b(5) stock solution that have been shown to effect the aggregation state of the protein alter the rate of P450-mediated NADPH oxidation but have no effect on the rate of product formation. Thus, the electron transfer capability of b(5) is necessary for stimulation of metabolism. Furthermore, stopped flow spectrometry measurements of the rate of first electron reduction of the P450 by reductase indicate that the coupling of P450 2B4-mediated metabolism improves, in the presence of Mn b(5), with slower delivery of the first electron of the catalytic cycle by the reductase. These results are consistent with a model involving the regulation of the P450 catalytic cycle by conformational changes of the P450 enzyme. We propose that the conformational change(s) necessary for progression of the catalytic cycle is inhibited when reduced, but not oxidized, reductase is bound to the P450.  相似文献   

14.
15.
The neighbourhoods of cytochrome P450 (CYP) genes in deuterostome genomes, as well as those of the cnidarians Nematostella vectensis and Acropora digitifera and the placozoan Trichoplax adhaerens were examined to find clues concerning the evolution of CYP genes in animals. CYP genes created by the 2R whole genome duplications in chordates have been identified. Both microsynteny and macrosynteny were used to identify genes that coexisted near CYP genes in the animal ancestor. We show that all 11 CYP clans began in a common gene environment. The evidence implies the existence of a single locus, which we term the ‘cytochrome P450 genesis locus’, where one progenitor CYP gene duplicated to create a tandem set of genes that were precursors of the 11 animal CYP clans: CYP Clans 2, 3, 4, 7, 19, 20, 26, 46, 51, 74 and mitochondrial. These early CYP genes existed side by side before the origin of cnidarians, possibly with a few additional genes interspersed. The Hox gene cluster, WNT genes, an NK gene cluster and at least one ARF gene were close neighbours to this original CYP locus. According to this evolutionary scenario, the CYP74 clan originated from animals and not from land plants nor from a common ancestor of plants and animals. The CYP7 and CYP19 families that are chordate-specific belong to CYP clans that seem to have originated in the CYP genesis locus as well, even though this requires many gene losses to explain their current distribution. The approach to uncovering the CYP genesis locus overcomes confounding effects because of gene conversion, sequence divergence, gene birth and death, and opens the way to understanding the biodiversity of CYP genes, families and subfamilies, which in animals has been obscured by more than 600 Myr of evolution.  相似文献   

16.
A monkey cytochrome P-450IA1 cDNA (MKah1) was transfected into Chinese hamster CHL cells using a vector containing the SR alpha promoter, and sublines stably expressing P-450IA1 were established. The cells showed 25-fold higher sensitivity to the cytotoxic effect of aflatoxin B1 than the parental CHL cells. This hypersensitivity was almost completely suppressed by alpha-naphthoflavone, which is a known specific inhibitor of P-450IA. The cells expressing P-450IA1, but not CHL cells, showed a positive response to aflatoxin B1 in an assay for mutagenicity at the HGPRT locus.  相似文献   

17.
The pre-steady-state reduction of cytochrome P450 (P450) 2B4 by P450 reductase (reductase) was modeled by assuming that an equilibrium between three catalytic conformers of P450 regulates the multi-phasic reduction of the enzyme. This model was compared to a model of reduction involving a minimum number of phases. Based on several criteria, the former model seems to provide an improved fit to the reduction data. Substrates were divided into two groups based on their effects at different concentrations of reductase. Surprisingly, in the presence of some substrates (group 1) but not others (group 2), the rate of reduction was actually slower with an excess of reductase than with equimolar reductase and P450. Presumably, oxidized reductase binds differently to P450 than reduced reductase. A schematic model based on two sites of interaction between reductase and P450 2B4 is offered to explain the unusual reduction kinetics with the two different groups of substrates.  相似文献   

18.
A good correlation was observed between enhanced lung cancer risk and restriction fragment length polymorphisms (RFLPs) of the P450IA1 gene with the restriction enzyme MspI. Genotype frequencies of 0.49 for the predominant homozygote, 0.40 for the heterozygote, and 0.11 for the homozygous rare allele were observed in a healthy population. Among lung cancer patients, the frequency of homozygous rare allele of P450IA1 gene was found to be about 3-fold higher than that among healthy population, and this difference was statistically significant. This is the first report to identify the genetically high risk individuals to lung cancer at the gene level.  相似文献   

19.
20.
A novel member of the cytochrome P450 2C gene subfamily was identified by screening rat prostate cDNA libraries. Two independent clones were isolated. Clone pros1 was 1031 bp long and contained a bizarre replacement in place of putative exon 1. Clone pros2 was 1755 bp long, contained a complete 3' end, and also had bizarre sequences in place of exon 1, which in this case were compatible with an unspliced intron. Northern analysis revealed mRNA expression in the liver and the kidney. Interestingly, although livers of mature rats of both sexes have comparable amounts of P4502C24 mRNA, a dramatic sex difference is seen in the kidney where only males express detectable levels of this mRNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号