首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Acrolein is a cell metabolic product and a main component of cigarette smoke. Its reaction with DNA produces two guanine lesions γ-OH-PdG, a major adduct that is nonmutagenic in mammalian cells, and the positional isomer α-OH-PdG. We describe here the solution structure of a short DNA duplex containing a single α-OH-PdG lesion, as determined by solution NMR spectroscopy and restrained molecular dynamics simulations. The spectroscopic data show a mostly regular right-handed helix, locally perturbed at its center by the presence of the lesion. All undamaged residues of the duplex are in anti orientation, forming standard Watson–Crick base-pair alignments. Duplication of proton signals near the damaged site differentiates two enantiomeric duplexes, thus establishing the exocyclic nature of the lesion. At the lesion site, α-OH-PdG rotates to a syn conformation, pairing to its counter cytosine residue that is protonated at pH 5.9. Three-dimensional models produced by restrained molecular dynamics simulations show different hydrogen-bonding patterns between the lesion and its cytosine partner and identify further stabilization of α-OH-PdG in a syn conformation by intra-residue hydrogen bonds. We compare the α-OH-PdG•dC duplex structure with that of duplexes containing the analogous lesion propano-dG and discuss the implications of our findings for the mutagenic bypass of acrolein lesions.  相似文献   

2.
Solution structural studies have been undertaken on the aminopyrene-C(8)-dG ([AP]dG) adduct in the d(C5-[AP]G6-C7). d(G16-A17-G18) sequence context in an 11-mer duplex with dA opposite [AP]dG, using proton-proton distance and intensity restraints derived from NMR data in combination with distance-restrained molecular mechanics and intensity-restrained relaxation matrix refinement calculations. The exchangeable and nonexchangeable protons of the aminopyrene and the nucleic acid were assigned following analysis of two-dimensional NMR data sets on the [AP]dG.dA 11-mer duplex in H2O and D2O solution. The broadening of several resonances within the d(G16-A17-G18) segment positioned opposite the [AP]dG6 lesion site resulted in weaker NOEs, involving these protons in the adduct duplex. Both proton and carbon NMR data are consistent with a syn glycosidic torsion angle for the [AP]dG6 residue in the adduct duplex. The aminopyrene ring of [AP]dG6 is intercalated into the DNA helix between intact Watson-Crick dC5.dG18 and dC7.dG16 base pairs and is in contact with dC5, dC7, dG16, dA17, and dG18 residues that form a hydrophobic pocket around it. The intercalated AP ring of [AP]dG6 stacks over the purine ring of dG16 and, to a lesser extent dG18, while the looped out deoxyguanosine ring of [AP]dG6 stacks over dC5 in the solution structure of the adduct duplex. The dA17 base opposite the adduct site is not looped out of the helix but rather participates in an in-plane platform with adjacent dG18 in some of the refined structures of the adduct duplex. The solution structures are quite different for the [AP]dG.dA 11-mer duplex containing the larger aminopyrene ring (reported in this study) relative to the previously published [AF]dG.dA 11-mer duplex containing the smaller aminofluorene ring (Norman et al., Biochemistry 28, 7462-7476, 1989) in the same sequence context. Both the modified syn guanine and the dA positioned opposite it are stacked into the helix with the aminofluorene chromophore displaced into the minor groove in the latter adduct duplex. By contrast, the aminopyrenyl ring participates in an intercalated base-displaced structure in the present study of the [AP]dG.dA 11-mer duplex and in a previously published study of the [AP]dG.dC 11-mer duplex (Mao et al., Biochemistry 35, 12659-12670, 1996). Such intercalated base-displaced structures without hydrogen bonding between the [AP]dG adduct and dC or mismatched dA residues positioned opposite it, if present at a replication fork, may cause polymerase stalling and formation of a slipped intermediate that could produce frameshift mutations, the most dominant mutagenic consequence of the [AP]dG lesion.  相似文献   

3.
Two-dimensional proton NMR studies are reported on the complementary d(C-A-T-G-T-G-T-A-C).d(G-T-A-C-epsilon A-C-A-T-G) nonanucleotide duplex (designated epsilon dA.dT 9-mer duplex) containing 1,N6-ethenodeoxyadenosine (epsilon dA), a carcinogen-DNA adduct, positioned opposite thymidine in the center of the helix. Our NMR studies have focused on the conformation of the epsilon dA.dT 9-mer duplex at neutral pH with emphasis on defining the alignment at the dT5.epsilon dA14 lesion site. The through-space NOE distance connectivities establish that both dT5 and epsilon dA14 adopt anti glycosidic torsion angles, are directed into the interior of the helix, and stack with flanking Watson-Crick dG4.dC15 and dG6.dC13 pairs. Furthermore, the d(G4-T5-G6).d(C13-epsilon A14-C15) trinucleotide segment centered about the dT5.epsilon dA14 lesion site adopts a right-handed helical conformation in solution. Energy minimization computations were undertaken starting from six different alignments of dT5(anti) and epsilon dA14(anti) at the lesion site and were guided by distance constraints defined by lower and upper bounds estimated from NOESY data sets on the epsilon dA.dT 9-mer duplex. Two families of energy-minimized structures were identified with the dT5 displaced toward either the flanking dG4.dC15 or the dG6.dC13 base pair. These structures can be differentiated on the basis of the observed NOEs from the imino proton of dT5 to the imino proton of dG4 but not dG6 and to the amino protons of dC15 but not dC13 that were not included in the constraints data set used in energy minimization. Our NMR data are consistent with a nonplanar alignment of epsilon dA14(anti) and dT5(anti) with dT5 displaced toward the flanking dG4.dC15 base pair within the d(G4-T5-G6).d(C13-epsilon A14-C15) segment of the epsilon dA.dT 9-mer duplex.  相似文献   

4.
We have used high-resolution NMR spectroscopy and molecular dynamics simulations to determine the solution structure of DNA containing the genotoxic lesion 1, N (2)-etheno-2'-deoxyguanosine (epsilonG), paired to dC. The NMR data suggest the presence of a major, minimally perturbed structure at neutral pH. NOESY spectra indicate the presence of a right-handed helix with all nucleotides in anti, 2'-deoxyribose conformations within the C2'-endo/C1'-exo range and proper Watson-Crick base pair alignments outside the lesion site. The epsilonG residue remains deeply embedded inside the helix and stacks between the flanking base pairs. The lesion partner dC is extrahelical and is located in the minor groove of the duplex, where it is highly exposed to solvent. Upon acidification of the sample, a second conformation at the lesion site of the duplex emerges, with protonation of the lesion partner dC and possible formation of a Hoogsteen base pair. Restrained molecular dynamics simulations of the neutral-pH structure generated a set of three-dimensional models that show epsilonG inside the helix, where the lesion is stabilized by stacking interactions with flanking bases but without participating in hydrogen bonding. The lesion counterbase dC is displaced in the minor groove of the duplex where it can form a hydrogen bond with the sugar O4' atom of a residue 2 bp away.  相似文献   

5.
The major malondialdehyde-derived adduct in DNA is 3-(2'-deoxy-beta-D-erythro-pentofuranosyl)pyrimido[1,2-alpha]purin-10(3H)-one (M(1)dG). M(1)dG undergoes hydrolytic ring opening in duplex DNA to 9-(2'-deoxy-beta-D-erythro-pentofuranosyl)-N(2)-(3-oxo-1-propenyl)guanine (N(2)OPdG). Template-primers were constructed containing M(1)dG or N(2)OPdG in a (CpG)(4) repeat sequence and replicated with the Klenow fragment of DNA polymerase I (Kf). Incorporation opposite the lesion and replication beyond the adduct sites by Kf was reduced compared to unadducted controls. The amount of bypass to full-length products was significantly greater with the acyclic adduct, N(2)OPdG, than with the cyclic adduct, M(1)dG. Sequence analysis indicated that the fully extended primers contained dC opposite both adducts when replication was conducted with Kf exo(+). In contrast, with Kf exo(-), primers extended past M(1)dG contained T opposite the adduct, but primers extended past N(2)OPdG contained dC opposite the adduct. Single nucleotide incorporation experiments indicated that Kf exo(-) incorporates all four nucleotides opposite M(1)dG or N(2)OPdG. Kf exo(+) removed dA, dG, and T opposite M(1)dG and N(2)OPdG but was much less active when dC was opposite the adduct. NMR studies on duplex DNA indicated that N(2)OPdG hydrogen bonds with dC in the complementary strand. The fact that base pairing can occur for the acyclic adduct may explain why N(2)OPdG is less blocking than M(1)dG. These results support in vivo findings that the ring-closed adduct, M(1)dG, is more mutagenic than the ring-opened adduct, N(2)OPdG. They also provide a detailed picture of in vitro replication in which the outcome is determined primarily by the selectivity of template-primer extension beyond rather than insertion opposite the adducts.  相似文献   

6.
Translesional DNA synthesis past abasic sites proceeds with the preferential incorporation of dAMP opposite the lesion and, depending on the sequence context, one or two base deletions. High-resolution NMR spectroscopy and molecular dynamics simulations were used to determine the three-dimensional structure of a DNA heteroduplex containing a synthetic abasic site (tetrahydrofuran) residue positioned in a sequence that promotes one base deletions. Analysis of NMR spectra indicates that the stem region of the duplex adopts a right-handed helical structure and the glycosidic torsion angle is in anti orientation for all residues. NOE interactions establish Watson-Crick alignments for all canonical base pairs of the duplex. Measurement of distance interactions at the lesion site shows the abasic residue excluded from the helix. Restrained molecular dynamics simulations generated three-dimensional models in excellent agreement with the spectroscopic data. These structures show a regular duplex region and a slight bend at the lesion site. The tetrahydrofuran residue extrudes from the helix and is highly flexible. The model reported here, in conjunction with a previous study performed on abasic sites, explains the structural bias of one-base deletion mutations.  相似文献   

7.
Acrolein, a cell metabolic product and main component of cigarette smoke, reacts with DNA generating α‐OH‐PdG lesions, which have the ability to pair with dATP during replication thereby causing G to T transversions. We describe the solution structure of an 11‐mer DNA duplex containing the mutagenic α‐OH‐PdG·dA base pair intermediate, as determined by solution nuclear magnetic resonance (NMR) spectroscopy and retrained molecular dynamics (MD) simulations. The NMR data support a mostly regular right‐handed helix that is only perturbed at its center by the presence of the lesion. Undamaged residues of the duplex are in anti orientation, forming standard Watson‐Crick base pairs alignments. Duplication of proton signals at and near the damaged base pair reveals the presence of two enantiomeric duplexes, thus establishing the exocyclic nature of the lesion. The α‐OH‐PdG adduct assumes a syn conformation pairing to its partner dA base that is protonated at pH 6.6. The three‐dimensional structure obtained by restrained molecular dynamics simulations show hydrogen bond interactions that stabilize α‐OH‐PdG in a syn conformation and across the lesion containing base pair. We discuss the implications of the structures for the mutagenic bypass of acrolein lesions. © 2010 Wiley Periodicals, Inc. Biopolymers 93: 391–401, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

8.
The DNA duplexes shown below, with D indicating deoxyribose aldehyde absic sites and numbering from 5' to 3', have been investigated by NMR. The 31P and 31P-1H correlation data indicate [formula: see text] that the backbones of these duplex DNAs are regular. One- and two-dimensional 1H NMR data indicate that the duplexes are right-handed and B-form. Conformational changes due to the presence of the abasic site extend to the two base pairs adjacent to the lesion site with the local conformation of the DNA being dependent on whether the abasic site is in the alpha or beta configuration. The aromatic base of residue A17 in the position opposite the abasic site is predominantly stacked in the helix as is G17 in the analogous sample. Imino lifetimes of the AT base pairs are much longer in samples with an abasic site than in those containing a Watson-Crick base pair. The conformational and dynamical properties of the duplex DNAs containing the naturally occurring aldehyde abasic site are different from those of duplex DNAs containing a variety of analogues of the abasic site.  相似文献   

9.
A unique characteristic of ionizing radiation and radiomimetic anticancer drugs is the induction of clustered damage: two or more DNA lesions (oxidized bases, abasic sites, or strand breaks) occurring in the same or different strands of the DNA molecule within a single turn of the helix. In spite of arising at a lower frequency than single lesions, clustered DNA damage represents an exotic challenge to the repair systems present in the cells and, in some cases, these lesions may escape detection and/or processing. To understand the structural properties of clustered DNA lesions we have prepared two oligodeoxynucleotide duplexes containing adjacent tetrahydrofuran residues (abasic site analogues), positioned one in each strand of the duplex in a 5' or 3' orientation, and determined their solution structure by NMR spectroscopy and molecular dynamics simulations. The NMR data indicate that both duplex structures are right-handed helices of high similarity outside the clustered damage site. The thermal stability of the duplexes is severely reduced by the presence of the abasic residues, especially in a 5' orientation where the melting temperature is 5 degrees C lower. The structures show remarkable differences at the lesion site where the extrahelical location of the tetrahydrofuran residues in the (AP)(2)-5'-staggered duplex contrasts with their smooth alignment along the sugar-phosphate backbone in the (AP)(2)-3'-staggered duplex.  相似文献   

10.
Peterson LA  Vu C  Hingerty BE  Broyde S  Cosman M 《Biochemistry》2003,42(45):13134-13144
The pyridyloxobutylating agents derived from metabolically activated tobacco-specific nitrosamines can covalently modify guanine bases in DNA at the O(6) position. The adduct formed, O(6)-[4-oxo-4-(3-pyridyl)butyl]guanine ([POB]dG), results in mutations that can lead to tumor formation, posing a significant cancer risk to humans exposed to tobacco smoke. A combined NMR-molecular mechanics computational approach was used to determine the solution structure of the [POB]dG adduct within an 11mer duplex sequence d(CCATAT-[POB]G-GCCC).d(GGGCCATATGG). In agreement with the NMR results, the POB ligand is located in the major groove, centered between the flanking 5'-side dT.dA and the 3'-side dG.dC base pairs and thus in the plane of the modified [POB]dG.dC base pair, which is displaced slightly into the minor groove. The modified base pair in the structure adopts wobble base pairing (hydrogen bonds between [POB]dG(N1) and dC(NH4) amino proton and between [POB]dG(NH2) amino proton and dC(N3)). A hydrogen bond appears to occur between the POB carbonyl oxygen and the partner dC's second amino proton. The modified guanine purine base, partner cytosine pyrimidine base, and POB pyridyl ring form a triplex via this unusual hydrogen-bonding pattern. The phosphodiester backbone twists at the lesion site, accounting for the unusual phosphorus chemical shift differences relative to those for the control DNA duplex. The helical distortions and wobble base pairing induced by the covalent binding of POB to the O(6)-position of dG help explain the significant decrease of 17.6 degrees C in melting temperature of the modified duplex relative to the unmodified control.  相似文献   

11.
Minor adducts, derived from the covalent binding of anti-benzo[a]pyrene-7,8-dihydroxy-9,10-epoxide to cellular DNA, may play an important role in generating mutations and initiating cancer. We have applied a combined NMR-computational approach including intensity based refinement to determine the solution structure of the minor (+)-cis-anti-[BP]dA adduct positioned opposite dT in the d(C1-T2-C3-T4-C5-[BP]A6-C7-T8-T9-C10-C11). (d(G12-G13-A14-A15-G16-T17-G18-A19-G20+ ++-A21-G22) 11-mer duplex. The BP ring system is intercalated toward the 5'-side of the [BP]dA6 lesion site without disrupting the flanking Watson-Crick dC5.dG18 and [BP]dA6.dT17 base pairs. This structure of the (+)-cis-anti-[BP]dA.dT 11-mer duplex, containing a bay region benzo[a]pyrenyl [BP]dA adduct, is compared with the corresponding structure of the (+)-trans-anti-[BPh]dA.dT 11-mer duplex (Cosman et al., Biochemistry 32, 12488-12497, 1993), which contains a fjord region benzo[c]phenanthrenyl [BPh]dA adduct with the same R stereochemistry at the linkage site. The carcinogen intercalates toward the 5'-direction of the modified strand in both duplexes (the adduct is embedded within the same sequence context) with the buckling of the Watson-Crick [BP]dA6.dT17 base pair more pronounced in the (+)-cis-anti-[BP]dA.dT 11-mer duplex compared to its Watson-Crick [BPh]dA.dT17 base pair in the (+)-trans-anti-[BPh]dA.dT 11-mer duplex. The available structural studies of covalent polycyclic aromatic hydrocarbon (PAH) carcinogen-DNA adducts point toward the emergence of a general theme where distinct alignments are adopted by PAH adducts covalently linked to the N(6) of adenine when compared to the N(2) of guanine in DNA duplexes. The [BPh]dA and [BP]dA N(6)-adenine adducts intercalate their polycyclic aromatic rings into the helix without disruption of their modified base pairs. This may reflect the potential flexibility associated with the positioning of the covalent tether and the benzylic ring of the carcinogen in the sterically spacious major groove. By contrast, such an intercalation without modified base pair disruption option appears not to be available to [BP]dG N(2)-guanine adducts where the covalent tether and the benzylic ring are positioned in the more sterically crowded minor groove. In the case of [BP]dG adducts, the benzopyrenyl ring is either positioned in the minor groove without base pair disruption, or if intercalated into the helix, requires disruption of the modified base pair and displacement of the bases out of the helix.  相似文献   

12.
Proton NMR studies are reported on the complementary d(C-A-T-G-G-G-T-A-C).d(G-T-A-C-epsilon A-C-A-T-G) nonanucleotide duplex (designated epsilon dA.dG 9-mer duplex), which contains exocyclic adduct 1,N6-ethenodeoxyadenosine positioned opposite deoxyguanosine in the center of the helix. The present study focuses on the alignment of dG5 and epsilon dA14 at the lesion site in the epsilon dA.dG 9-mer duplex at neutral pH. This alignment has been characterized by monitoring the NOEs originating from the NH1 proton of dG5 and the H2, H5, and H7/H8 protons of epsilon dA14 in the central d(G4-G5-G6).d(C13-epsilon A14-C15) trinucleotide segment of the epsilon dA.dG 9-mer duplex. These NOE patterns establish that epsilon dA14 adopts a syn glycosidic torsion angle that positions the exocyclic ring toward the major groove edge while all the other bases including dG5 adopt anti glycosidic torsion angles. We detect a set of intra- and interstrand NOEs between protons (exchangeable and nonexchangeable) on adjacent residues in the d(G4-G5-G6).d(C13-epsilon A14-C15) trinucleotide segment which establish formation of right-handed helical conformations on both strands and stacking of the dG5(anti).epsilon dA14(syn) pair between stable dG4.dC15 and dG6.dC13 pairs. The energy-minimized conformation of the central d(G4-G5-G6).d(C13-epsilon A14-C15) segment establishes that the dG5(anti).epsilon dA14(syn) alignment is stabilized by two hydrogen bonds from the NH1 and NH2-2 of dG5(anti) to N9 and N1 of epsilon dA14(syn), respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Structural properties of the fluorescent alpha-anomeric 1,N(6)ethenodeoxyadenosine residue placed in opposition to all four canonical deoxynucleotide units within 11-mer DNA duplexes have been studied. The duplex with alpha-epsilondA / dG pairing is most thermodynamically stable while the alpha-epsilondA / dC one is the least stable. Fluorescence measurements confirm the thermodynamic data and indicate base-pair dependent stacking properties of alpha-epsilondA within duplex structures. Results of molecular dynamics (MD) simulations in aqueous solution for the most stable duplex point to the presence of different conformational states of the alpha-1,N(6)etheno-deoxyadenosine residue, including formation of a hydrogen bonded pair with the dG and possible occurrence of severe kinking in the duplex.  相似文献   

14.
Abstract

Structural properties of the fluorescent α-anomeric 1,N(6)ethenodeoxyadenosine residue placed in opposition to all four canonical deoxynucleotide units within 11-mer DNA duplexes have been studied. The duplex with α-εedA / dG pairing is most thermodynamically stable while the α-edA / dC one is the least stable. Fluorescence measurements confirm the thermodynamic data and indicate base-pair dependent stacking properties of α-edA within duplex structures. Results of molecular dynamics (MD) simulations in aqueous solution for the most stable duplex point to the presence of different conformational states of the α-1,N(6)etheno-deoxyadenosine residue, including formation of a hydrogen bonded pair with the dG and possible occurrence of severe kinking in the duplex.  相似文献   

15.
Most duplex DNAs that are in the "B" conformation are not immunogenic. One important exception is poly(dG) X poly(dC), which produces a good immune response even though, by many criteria, it adopts a conventional right-handed helix. In order to investigate what features are being recognized, monoclonal antibodies were prepared against poly(dG) X poly(dC) and the related polymer poly(dG) X poly(dm5C). Jel 72, which is an immunoglobulin G, binds only to poly(dG) X poly(dC), while Jel 68, which is an immunoglobulin M, binds approximately 10-fold more strongly to poly(dG) X poly(dm5C) than to poly(dG) X poly(dC). For both antibodies, no significant interaction could be detected with any other synthetic DNA duplexes including poly[d(Gm5C)] X poly[d(Gm5C)] in both the "B" and "Z" forms, poly[d(Tm5Cm5C)] X poly[d(GGA)], and poly[d(TCC)] X poly[d(GGA)], poly(dI) X poly(dC), or poly(dI) X poly(dm5C). The binding to poly(dG) X poly(dC) was inhibited by ethidium and by disruption of the DNA duplex, confirming that the antibodies were not recognizing single-stranded or multistranded structures. Furthermore, Jel 68 binds significantly to phage XP-12 DNA, which contains only m5C residues and will precipitate this DNA in the absence of a second antibody. The results suggest that (dG)n X (dm5C)n sequences in natural DNA exist in recognizably distinct conformations.  相似文献   

16.
The environmental and endogenous mutagen acrolein reacts with cellular DNA to produce several isomeric 1,N(2)-propanodeoxyguanosine adducts. High resolution NMR spectroscopy was used to establish the structural features of the major acrolein-derived adduct, gamma-OH-1,N(2)-propano-2'-deoxyguanosine. In aqueous solution, this adduct was shown to assume a ring-closed form. In contrast, when gamma-OH-1,N(2)-propano-2'-deoxyguanosine pairs with dC at the center of an 11-mer oligodeoxynucleotide duplex, the exocyclic ring opens, enabling the modified base to participate in a standard Watson-Crick base pairing alignment. Analysis of the duplex spectra reveals a regular right-handed helical structure with all residues adopting an anti orientation around the glycosidic torsion angle and Watson-Crick alignments for all base pairs. We conclude from this study that formation of duplex DNA triggers the hydrolytic conversion of gamma-OH-1,N(2)-propano-2'-deoxyguanosine to an open chain form, a structure that facilitates pairing with dC during DNA replication and accounts for the surprising lack of mutagenicity associated with this DNA adduct.  相似文献   

17.
Structural effect of the anticancer agent 6-thioguanine on duplex DNA   总被引:2,自引:2,他引:0  
The incorporation of 6-thioguanine (S6G) into DNA is an essential step in the cytotoxic activity of thiopurines. However, the structural effects of this substitution on duplex DNA have not been fully characterized. Here, we present the solution structures of DNA duplexes containing S6G opposite thymine (S6G·T) and opposite cytosine (S6G·C), solved by high-resolution NMR spectroscopy and restrained molecular dynamics. The data indicate that both duplexes adopt right-handed helical conformations with all Watson–Crick hydrogen bonding in place. The S6G·T structures exhibit a wobble-type base pairing at the lesion site, with thymine shifted toward the major groove and S6G displaced toward the minor groove. Aside from the lesion site, the helices, including the flanking base pairs, are not highly perturbed by the presence of the lesion. Surprisingly, thermal dependence experiments suggest greater stability in the S6G-T mismatch than the S6G-C base pair.  相似文献   

18.
Z Gu  A Gorin  B E Hingerty  S Broyde  D J Patel 《Biochemistry》1999,38(33):10855-10870
A solution structural study has been undertaken on the aminofluorene-C8-dG ([AF]dG) adduct located at a single-strand-double-strand d(A1-A2-C3-[AF]G4-C5-T6-A7-C8-C9-A10-T11-C12-C13). d(G14-G15-A16-T17-G18-G19-T20- A21-G22-N23) 13/10-mer junction (N = C or A) using proton-proton distance restraints derived from NMR data in combination with intensity-based relaxation matrix refinement computations. This single-strand-double-strand junction models one arm of a replication fork composed of a 13-mer template strand which contains the [AF]dG modification site and a 10-mer primer strand which has been elongated up to the modified guanine with either its complementary dC partner or a dA mismatch. The solution structures establish that the duplex segment retains a minimally perturbed B-DNA conformation with Watson-Crick hydrogen-bonding retained up to the dC5.dG22 base pair. The guanine ring of the [AF]dG4 adduct adopts a syn glycosidic torsion angle and is displaced into the major groove when positioned opposite dC or dA residues. This base displacement of the modified guanine is accompanied by stacking of one face of the aminofluorene ring of [AF]dG4 with the dC5.dG22 base pair, while the other face of the aminofluorene ring is stacked with the purine ring of the nonadjacent dA2 residue. By contrast, the dC and dA residues opposite the junctional [AF]dG4 adduct site adopt distinctly different alignments. The dC23 residue positioned opposite the adduct site is looped out into the minor groove by the aminofluorene ring. The syn displaced orientation of the modified dG with stacking of the aminofluorene and the looped out position of the partner dC could be envisioned to cause polymerase stalling associated with subsequent misalignment leading to frameshift mutations in appropriate sequences. The dA23 residue positioned opposite the adduct site is positioned in the major groove with its purine ring aligned face down over the van der Waals surface of the major groove and its amino group directed toward the T6.A21 base pair. The Hoogsteen edge of the modified guanine of [AF]dG4 and the Watson-Crick edge of dA23 positioned opposite it are approximately coplanar and directed toward each other but are separated by twice the hydrogen-bonding distance required for pairing. This structure of [AF]dG opposite dA at a model template-primer junctional site can be compared with a previous structure of [AF]dG opposite dA within a fully paired duplex [Norman, D., Abuaf, P., Hingerty, B. E., Live, D. , Grunberger, D., Broyde, S., and Patel, D. J. (1989) Biochemistry 28, 7462-7476]. The alignment of the Hoogsteen edge of [AF]dG (syn) positioned opposite the Watson-Crick edge of dA (anti) has been observed for both systems with the separation greater in the case of the junctional alignment in the model template-primer system. However, the aminofluorene ring is positioned in the minor groove in the fully paired duplex while it stacks over the junctional base pair in the template-primer system. This suggests that the syn [AF]dG opposite dA junctional alignment can be readily incorporated within a duplex by a translation of this entity toward the minor groove.  相似文献   

19.
Hazel RD  Tian K  de Los Santos C 《Biochemistry》2008,47(46):11909-11919
Ionizing radiation produces clustered lesions in DNA. Since the orientation of bistranded lesions affects their recognition by DNA repair enzymes, clustered damages are more difficult to process and thus more toxic than single oxidative lesions. In order to understand the structural determinants that lead to differential recognition, we used NMR spectroscopy and restrained molecular dynamics to solve the structure of two DNA duplexes, each containing two stable abasic site analogues positioned on opposite strands of the duplex and staggered in the 3' (-1 duplex, (AP) 2-1 duplex) or 5' (+1 duplex, (AP) 2+1 duplex) direction. Cross-peak connectivities observed in the nonexchangeable NOESY spectra indicate compression of the helix at the lesion site of the duplexes, resulting in the formation of two abasic bulges. The exchangeable proton spectra show the AP site partner nucleotides forming interstrand hydrogen bonds that are characteristic of a Watson-Crick G.C base pairs, confirming the extra helical nature of the AP residues. Restrained molecular dynamics simulations generate a set of converging structures in full agreement with the spectroscopic data. In the (AP) 2-1 duplex, the extra helical abasic site residues reside in the minor groove of the helix, while they appear in the major groove in the (AP) 2+1 duplex. These structural differences are consistent with the differential recognition of bistranded abasic site lesions by human AP endonuclease.  相似文献   

20.
Fapy.dA is produced in DNA as a result of oxidative stress. Recently, this lesion and its C-nucleoside analogues were incorporated in chemically synthesized oligonucleotides at defined sites. The interaction of DNA containing Fapy.dA or nonhydrolyzable analogues with Fpg and MutY is described. Fpg efficiently excises Fapy.dA (K(m) = 1.2 nM, k(cat) = 0.12 min(-1)) opposite T. The lesion is removed as efficiently from duplexes containing Fapy.dA:dA or Fapy.dA:dG base pairs. Multiple turnovers are observed for the repair of Fapy.dA mispairs in a short period of time, indicating that the enzyme does not remain bound to the product duplex. MutY does not incise dA from a duplex containing this nucleotide opposite Fapy.dA, nor does it exhibit an increased level of binding compared to DNA composed solely of native base pairs. MutY also does not incise Fapy.dA when the lesion is opposite dG. These data suggest that Fapy.dA could be deleterious to the genome. Fpg strongly binds duplexes containing the beta-C-nucleoside analogue of Fapy.dA (beta-C-Fapy.dA) opposite all native nucleotides (K(D) < 27 nM), as well as the alpha-C-nucleoside (alpha-C-Fapy.dA) opposite dC (K(D) = 7.1 +/- 1.5 nM). A duplex containing a beta-C-Fapy.dA:T base pair is an effective inhibitor (K(I) = 3.5 +/- 0.3 nM) of repair of Fapy.dA by Fpg, suggesting the C-nucleoside may have useful therapeutic properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号