首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polar solvent extracts of tobacco snuff under acidic conditions were mutagenic in Salmonella typhimurium. Using the Griess reagent test, nitrite ranging from approximately 1.8 to 5.4 mg/g of snuff was found in the polar fraction of extracts. After acid treatment, nitroso compounds in the amount corresponding to the nitrite concentration were detected. The mutagenic potency of the acid-treated extracts was consistent with the content of nitroso compounds generated. Formation of nitroso compounds and the mutagenic activity under acidic conditions was inhibited by ascorbic acid. The results indicate that a nitrosation process was involved in snuff extracts during acid treatment. Studies related to the source of nitrite in tobacco snuff demonstrated that snuff contained bacteria which were able to reduce nitrate to nitrite and that the amount of nitrite in snuff extracts could be further increased by incubation of the extracts with the bacteria. Since snuff contains a considerable amount of nitrate, it seems that reduction of nitrate in snuff to nitrite by bacteria, and nitrosation of certain constituents in snuff by nitrite under acidic conditions to form mutagenic nitroso compounds are possible mechanisms responsible for the acid-mediated mutagenicity of snuff extracts.  相似文献   

2.
Using the Salmonella/microsome assay system, the mutagenicity of chewing tobacco extracts (CTE) treated with and without sodium nitrite under acidic conditions was examined. Mutagenic activity was found only for nitrite-treated CTE in both tester strains, TA98 and TA100, and was independent of metabolic activation. Formation of mutagenic substances from CTE by nitrite was dependent on acidic pHs (the highest at pH 2) and could be inhibited by ascorbate. The mutagenic potency of CTE plus nitrite was proportional to the content of nitroso compounds generated in the reaction mixture, indicating that the nitrosation process was involved. The possible in vivo nitrosation and the potential health effect are discussed.  相似文献   

3.
Three naturally occurring indoles were evaluated for potential nitrosatability using the Nitrosation Assay Procedure (NAP test) as recommended by the World Health Organisation. All three indoles i.e. tryptophan, tryptamine and 5-hydroxy-tryptamine were nitrosated to products which were directly mutagenic for S. typhimurium TA1537. In addition, the products of nitrosation of tryptamine and 5-hydroxytryptamine were also mutagenic for strains TA1538, TA98 and TA1535 without the need for metabolic activation. The sensitivities of the frameshift-detecting strains TA1537, TA1538 and TA98 were of particular interest, since nitroso compounds are characteristically base-substitution mutagens. The mutagenic effects of the products formed after nitrosation of each indole at pH 3.6, were eliminated in the presence of S9 mix. This was not the case when the nitrosation assay was carried out at pH 2.6. At this pH the mutagenicity of the nitrosated products varied in the presence of S9 mix and depended upon the nature of the indole undergoing nitrosation, and the bacterial test strain utilised for the mutagenicity assay. This indicated that more than one mutagenic product was responsible for the observed effects. As well as pH, a number of other factors influenced the formation of mutagenic nitroso products. Most notably, the concentrations of precursor compounds (sodium nitrite, and indole) present in the NAP test were of critical importance. As the sodium nitrite concentration was reduced from that recommended by the W.H.O. (40 mM), so the mutagenicity decreased. For all three compounds significant mutagenic effects were lost at sodium nitrite concentrations below 15 mM. In conclusion the data presented in this paper clearly demonstrates that individuals are chronically exposed to naturally occurring substances which readily nitrosate in excess nitrous acid and yield bacterial mutagens.  相似文献   

4.
Nitrosation of propranolol under standard conditions recommended by the World Health Organization (10mM propranolol hydrochloridre, 40mM sodium nitrite, pH 3.5) was performed in the absence and in the presence of benzoic acid and of twelve mono-, di- and tri-hydroxybenzoic acids, added to the nitrosation mixture in concentrations ranging from 2 to 40mM, in order to examine their effect on the nitrosation reaction. The yield of N-nitrosopropranol (NOP) was reduced by benzoic acid and, with potency decreasing in the following order, by 2,3,4-tri-hydroxybenzoic acid>/=3,4-tri-hydroxybenzoic acid>2,5-di-hydroxybenzoic acid>2,3-di-hydroxybenzoic acid>3-hydroxybenzoic acid>2-hydroxybenzoic acid>3,4,5-tri-hydroxybenzoic acid>4-hydroxybenzoic acid; their inhibiting effect was concentration-dependent. In contrast, 2,4-di-hydroxybenzoic acid, 2,6-di-hydroxybenzoic acid and 2,4,6-tri-hydroxybenzoic acid caused an increase in the yield of NOP that was inversely related to their concentration. 3,5-Di-hydroxybenzoic acid was substantially inactive. These findings indicate that, depending on the positions of carboxyl group and hydroxyl groups on the benzene ring, mono-, di- and tri-hydroxybenzoic acids may inhibit or hasten nitrosation reactions. As compared with benzenediols and benzenetriols [Mutat. Res. 398 (1998) 75], hydroxybenzoic acids inhibit the nitrosation of propranolol to a greater extent and have the advantage of being nonmutagenic and less toxic.  相似文献   

5.
The objective of this study was to simulate in vitro at least some of the conditions that prevail in man during ingestion of nitrate and nitrosable compounds. Human saliva has been chosen because most chemicals ingested through food will interact with saliva. The nitrosation of methylurea was used as a model because the nitrosation products can be readily detected by their mutagenic (his+ revertants of S. typhimurium) and clastogenic (chromosome aberrations in CHO cells) properties. The results show that human saliva inhibits the formation of mutagenic and clastogenic nitrosation products when present during nitrosation. A 50% inhibition of mutagenicity results from the addition of a saliva sample diluted at 5% of the original concentration. In the test system used a similar inhibitory effect was obtained by 2.5 mM ascorbic acid or 2.0 mM chlorogenic acid. The main inhibitory agents seem to reside in a deproteinized fraction which was filtered through an ultrafilter UM2 (greater than 1000 MW). At strong acid levels (below pH 2) the saliva loses its inhibitory effect on the nitrosation of methylurea. The contribution of saliva to the inhibition of endogenous nitrosation within the oral cavity or stomach is discussed.  相似文献   

6.
Several alkylating agents of widely varying reported carcinogenicity (dimethylsulfate, diethylsulfate, ethylmethanesulfonate, methylnitrosourea, ethylnitrosourea and ethylnitrosoguanidine) were reacted with poly(U) at pH values ranging from 4.5 to 7.5. All nucleophilic centers (internal phosphate groups, ribose hydroxyls, and O2, N-3 and O4 sites of the uracil base) were found reactive, though to different extents, at neutrality and in slightly acid solution. The distribution of products is a function of the alkylating agent and pH. The nitroso compounds are more reactive toward oxygens than are dialkylsulfates and alkylalkanesulfonates. The ratio of N : O alkyl products is strongly pH dependent, primarily due to the N-3 being most reactive at the higher pH values, while the diester is most reactive at the lower pH values. The extent of reaction of the O2, O4 or 2'-O or ribose is not greatly affected over the pH range tested. At pH 5.0 alkyl ribophosphotriesters mainly lose alchol to re-form a stable phosphodiester. With increasing OH- concentration, the favored reaction is chain scission at the 3'-O-P bond.  相似文献   

7.
Environmental chemicals including pesticides carrying secondary and tertiary amino groups are suggested to be a health hazard to man since potentially carcinogenic nitroso compounds may be formed in the presence of nitrite at low pH values resembling conditions in the human stomach. Nitrosation of the isopropylamino-triazine Prometryne, the n-dodecyl guanidine Dodine and the N-methylcarbamate carbaryl was investigated in the presence of HCl and acetic acid at pH 1 and excess sodium nitrite for 4 h at 37 degrees C. The reaction products were extracted with CCl4 and were analyzed qualitatively and quantitatively by infrared spectroscopy, nuclear-resonance spectrometry, GC/mass spectrometry and by spectrophotometry. All compounds investigated formed N-nitroso derivatives in the following yields: carbaryl 67%, Dodine 12% and Prometryne 14%. The N-nitroso derivatives per se were not or only slightly mutagenic to Escherichia coli K12 or Salmonella typhimurium TA 1538. However, significantly increased mutation frequencies were seen after metabolic activation by mouse-liver microsomes. These results add to the observations that among environmental chemicals not only those containing methyl- or ethyl-substituted amino groups form potentially carcinogenic nitroso derivatives but also those with iso-propylamino groups as well as alkyl-substituted guanidine derivatives.  相似文献   

8.
Aspartame, a high intensity sweetener, is used extensively worldwide in over 5,000 products. Upon ingestion, aspartame is completely metabolized to two amino acids and methanol (approximately 50% phenylalanine, 40% aspartic acid, and 10% methanol). The effects of aspartame on cognitive function, electroencephalograms (EEGs) and biochemical parameters were evaluated in 48 adult (21 men, 27 women) heterozygotes for phenylketonuria (PKUH). PKUH subjects whose carrier status had been proven by DNA analysis ingested aspartame (either 15 or 45 mg/kg/day) and placebo for 12 weeks on each treatment using a randomized, doubleblind, placebo-controlled, crossover study. A computerized battery of neuropsychological tests was administered at baseline weeks -2 and -1, and during treatment at weeks 6, 12, 18, and 24. Samples for plasma amino acids and urinary organic acids were also collected during these visits. EEGs were evaluated by conventional and spectral analysis at baseline week -1 and treatment weeks 12 and 24. The results of the neuropsychological tests demonstrated that aspartame had no effect on cognitive function. Plasma phenylalanine significantly increased, within the normal range for PKUH, at 1 and 3 h following the morning dose of aspartame in the group receiving the 45 mg/kg per day dose only. There were no significant differences in the conventional or spectral EEG analyses, urinary organic acid concentrations, and adverse experiences when aspartame was compared with placebo. This study reaffirms the safety of aspartame in PKUH and refutes the speculation that aspartame affects cognitive performance, EEGs, and urinary organic acids.  相似文献   

9.
Abstract Bacteria isolated from the normal and the hypoacidic stomach were investigated for their ability to catalyse the nitrosation of the secondary amine morpholine. Bacterial numbers were found to be dependent upon pH and species characteristic of the faecal flora were found only in the hypoacidic group. A range of nitrosating abilities was found. The inclusion of 5 mM nitrite during growth produced strain-specific results, in some cases stimulating the catalysis, in others providing inhibition. It is proposed thar catalysis may involve a nitrite reductase and that the different effects of nitrite on nitrosation may be due to contributions from two or more types of reductase activity.  相似文献   

10.
37 nitrogenous pesticides, belonging to the chemical groups of amides, carbamates and ureas, were nitrosated with sodium nitrite in vitro. The nitrosated compounds were tested for mutagenic activity in the bacterial spot test with Salmonella typhimurium his G 46. Those pesticides reacting positively in this test after nitrosation were then fed to mice in combination with sodium nitrite in order to assess the formation and mutagenicity of these nitroso compounds in vivo. With the already known exception of ethylenethiourea (ETU), no pesticide produced enhanced numbers of micronuclei in mouse bone-marrow erythrocytes when fed together with nitrite. Dose-response experiments with intraperitoneal injection of N-nitroso-ETU revealed an apparent no-effect level of about 15--18 mg/kg. The findings are correlated with the pesticide residues actually present in the environment.  相似文献   

11.
Background. Both N‐nitroso compounds and colonization with Helicobacter pylori represent known risk‐factors for the development of gastric cancer. Endogenous formation of N‐nitroso compounds is thought to occur predominantly in acidic environments such as the stomach. At neutral pH, bacteria can catalyze the formation of N‐nitroso compounds. Based on experiments with a noncarcinogenic N‐nitroso compound as end product, and using only a single H. pylori strain, it was recently reported that H. pylori only displays a low nitrosation capacity. As H. pylori is a highly diverse bacterial species, it is reasonable to question the generality of this finding. In this study, several genetically distinct H. pylori strains are tested for their capacity to form carcinogenic N‐nitrosamines. Materials and Methods. Bacteria were grown in the presence of 0–1000 µM morpholine and nitrite (in a 1 : 1 molar ratio), at pH 7, 5 and 3. Results. Incubation of Neisseria cinerea (positive control) with 500 µM morpholine and 500 µM nitrite, resulted in a significant increase in formation of N‐nitrosomorpholine, but there was no significant induction of N‐nitrosomorpholine formation by any of the H. pylori strains, at any of the three pH conditions. Conclusion. H. pylori does not induce formation of the carcinogenic N‐nitrosomorpholine in vitro. The previously reported weak nitrosation capacity of H. pylori is not sufficient to nitrosate the more difficultly nitrosatable morpholine. This probably also holds true for other secondary amines. These results imply that the increased incidence of gastric cancer formation that is associated with gastric colonization by H. pylori is unlikely to result from the direct induced formation of carcinogenic nitrosamines by H. pylori. However, this has to be further confirmed in in vivo studies.  相似文献   

12.
Salivary nitrite is suggested to enhance the antimicrobial properties of gastric juice by conversion to nitric oxide (NO) and other reactive nitrogen intermediates in the stomach. Intubated patients exhibit extremely low gastric levels of NO, because they do not swallow their saliva. The present investigation was designed to examine the antibacterial effects of human saliva and gastric juice. Furthermore, we studied a new mode of NO delivery, involving formation from acidified nitrite, which could prevent bacterial growth in the gastric juice of intubated patients in intensive care units. The growth of Escherichia coli ATCC 25922 and the formation of NO and nitroso/nitrosyl species were determined after incubation of gastric juice with saliva from healthy volunteers that was rich (nitrate ingestion) or poor (overnight fasting) in nitrite. In a stomach model containing gastric juice from intubated patients, we inserted a catheter with a silicone retention cuff filled with ascorbic acid and nitrite and determined the resulting antibacterial effects on E. coli and Candida albicans. Saliva enhanced the bactericidal effect of gastric juice, especially saliva rich in nitrite. Formation of NO and nitroso/nitrosyl species by nitrite-rich saliva was 10-fold greater than that by saliva poor in nitrite. In our stomach model, E. coli and C. albicans were killed after exposure to ascorbic acid and nitrite. In conclusion, saliva rich in nitrite enhances the bactericidal effects of gastric juice, possibly through the generation of reactive nitrogen intermediates, including NO. Acidified nitrite inside a gas-permeable retention cuff may be useful for restoring gastric NO levels and host defense in critically ill patients.  相似文献   

13.
In a cortical P2 fraction, [14C]gamma-aminobutyric acid ([14C]GABA), [14C]glycine, [14C]taurine, and [14C]glutamic and [14C]aspartic acids are transported by four separate high-affinity transport systems with L-glutamic acid and L-aspartic acid transported by a common system. GABA transport in cortical synaptosomal tissue occurs by one high-affinity system, with no second, low-affinity, transport system detectable. Only one high-affinity system is observed for the transport of aspartic/glutamic acids; as with GABA transport, no low-affinity transport is detectable. In the uptake of taurine and glycine (cerebral cortex and pons-medulla-spinal cord) both high- and low-affinity transport processes could be detected. The high-affinity GABA and high-affinity taurine transport classes exhibit some overlap, with the GABA transport system being more specific and having a much higher Vmax value. High-affinity GABA transport exhibits no overlap with either the high-affinity glycine or the high-affinity aspartic/glutamic acid transport class, and in fact they demonstrate somewhat negative correlations in inhibition profiles. The inhibition profiles of high-affinity cortical glycine transport and those of high-affinity cortical taurine and aspartic/glutamic acid transport also show no significant positive relationship. The inhibition profiles of high-affinity glycine transport in the cerebral cortex and in the pons-medulla-spinal cord show a significant positive correlation with each other; however, high-affinity glycine uptake in the pons-medulla-spinal cord is more specific than that in the cerebral cortex. The inhibition profile of high-affinity taurine transport exhibits a nonsignificant negative correlation with that of the aspartic/glutamic acid transport class.  相似文献   

14.
Summary Using hexafluoroacetone as protecting and activating reagent, multifunctional amino acids like aspartic acid can be functionalized regioselectively. This strategy offers i.a. a two-step synthesis for aspartame and preparatively simple access to multifunctional natural and unnatural amino acids, like 4-oxo-L-amino acids, 5-diazo-4-oxo-L-amino acids, 4-substituted L-proline derivatives and various heterocyclic L-amino acids. On application of this strategy to amino diacetic acid N-substituted glycines become readily available.  相似文献   

15.
Background. Nitric oxide (NO), a ubiquitous molecule involved in a plethora of signaling pathways, is produced from dietary nitrate in the gut through the so-called nitrate–nitrite–NO pathway. In the stomach, nitrite derived from dietary nitrate triggers a network of chemical reactions targeting endogenous and exogenous biomolecules, thereby producing new compounds with physiological activity.Objective. The aim of this study was to ascertain whether compounds with physiological relevance are produced in the stomach upon consumption of nitrate- and ethanol-rich foods.Design. Human volunteers consumed a serving of lettuce (source of nitrate) and alcoholic beverages (source of ethanol). After 15 min, samples of the gastric headspace were collected and ethyl nitrite was identified by GC–MS. Wistar rats were used to study the impact of ethyl nitrite on gastric smooth muscle relaxation at physiological pH.Result. Nitrogen oxides, produced from nitrite in the stomach, induce nitrosation of ethanol from alcoholic beverages in the human stomach yielding ethyl nitrite. Ethyl nitrite, a potent vasodilator, is produced in vivo upon the consumption of lettuce with either red wine or whisky. Moreover, at physiological pH, ethyl nitrite induces gastric smooth muscle relaxation through a cGMP-dependent pathway. Overall, these results suggest that ethyl nitrite is produced in the gastric lumen and releases NO at physiological pH, which ultimately may have an impact on gastric motility. Systemic effects may also be expected if ethyl nitrite diffuses through the gastric mucosa reaching blood vessels, therefore operating as a NO carrier throughout the body.Conclusion. These data pinpoint posttranslational modifications as an underappreciated mechanism for the production of novel molecules with physiological impact locally in the gut and highlight the notion that diet may fuel compounds with the potential to modulate gastrointestinal welfare.  相似文献   

16.
A high gastric cancer mortality in Fujian province (Peoples Republic of China) has been associated with the consumption of certain salted fermented fish products such as fish sauce (FS). We have investigated the levels and nature of N-nitroso compounds (NOC) and genotoxins present, before and after nitrosation, in 49 FS samples collected from villages in this high-risk area, pooled into six samples. The concentrations of total NOC before nitrosation ranged from 0.2 to 16 mumoles/l, and after nitrosation at pH 2 and pH 7, they rose by up to 4800- and 100-fold, respectively. In nitrosated samples, 40-50% of total NOC was not extractable into organic solvents; volatile N nitrosamines accounted for 1-2% and N-nitrosamino acids for 8-16% of total NOC. None of the FS samples exhibited genotoxic activity, but after nitrosation all were weakly active in the SOS chromotest. The highest SOS-inducing potency was observed with nitrosated ethyl acetate extracts of most samples. The formation of methylating agents was measured by incubation of nitrosated FS with DNA and subsequent analysis of 7-methylguanine adduct. 2 of the 6 nitrosated FS samples caused a slight increase in DNA methylation. 1 pooled home-made FS sample (the only one tested) contained tumour promoter-like substances, as measured by expression of certain EBV genes in Raji cells. HPLC fractionation of ethyl acetate extracts of FS samples allowed identification of three UV-absorbing peaks that, upon nitrosation, produced direct-acting genotoxins. This genotoxicity was partly ascribed to the formation of nitrite-derived arene diazonium cations that were characterized by a coupling reaction with N-ethyl-1-naphthylamine and thin-layer chromatography.  相似文献   

17.
The effects of turmeric extract and its pure yellow pigments curcumin I, II and III were tested on the nitrosation of methylurea by sodium nitrite at pH 3.6 and 30 degrees C. The nitrosomethylurea formed was monitored by checking the mutagenicity in S. typhimurium strains TA1535 and TA100 without metabolic activation. Turmeric extract as well as curcumins exhibit dose-dependent decreases of nitrosation. Curcumin III was the most effective nitrosation inhibitor among the compounds tested. The simultaneous treatment of inhibitor with nitrosation precursors was essential and pre- or post-treatment of inhibitor had no effect on the mutagenicity of nitrosomethylurea. The binding of nitrite with the inhibitors was studied at pH 3.6 and 30 degrees C. Curcumin I shows a dose-dependent depletion of nitrite ions thus making nitrite non-available for nitrosation. Curcumin I and III when tested also showed a time-dependent depletion of nitrite ions at pH 3.6 and 30 degrees C. Curcumin III has a higher affinity for nitrite ions than curcumin I.  相似文献   

18.
A method is described to express and purify human DNA (cytosine-5) methyltransferase (human DNMT1) using a protein splicing (intein) fusion partner in a baculovirus expression vector. The system produces approximately 1 mg of intact recombinant enzyme >95% pure per 1.5 x 10(9) insect cells. The protein lacks any affinity tag and is identical to the native enzyme except for the two C-terminal amino acids, proline and glycine, that were substituted for lysine and aspartic acid for optimal cleavage from the intein affinity tag. Human DNMT1 was used for steady-state kinetic analysis with poly(dI-dC).poly(dI-dC) and unmethylated and hemimethylated 36- and 75-mer oligonucleotides. The turnover number (k(cat)) was 131-237 h(-1) on poly(dI-dC).poly(dI-dC), 1.2-2.3 h(-1) on unmethylated DNA, and 8.3-49 h(-1) on hemimethylated DNA. The Michaelis constants for DNA (K(m)(CG)) and S-adenosyl-L-methionine (AdoMet) (K(m)(AdoMet)) ranged from 0.33-1.32 and 2.6-7.2 microM, respectively, whereas the ratio of k(cat)/K(m)(CG) ranged from 3.9 to 44 (237-336 for poly(dI-dC).poly(dI-dC)) x 10(6) M(-1) h(-1). The preference of the enzyme for hemimethylated, over unmethylated, DNA was 7-21-fold. The values of k(cat) on hemimethylated DNAs showed a 2-3-fold difference, depending upon which strand was pre-methylated. Furthermore, human DNMT1 formed covalent complexes with substrates containing 5-fluoro-CNG, indicating that substrate specificity extended beyond the canonical CG dinucleotide. These results show that, in addition to maintenance methylation, human DNMT1 may also carry out de novo and non-CG methyltransferase activities in vivo.  相似文献   

19.
It was previously demonstrated that insulins to which positive charge has been added by substituting B13 glutamic acid with a glutamine residue, B27 threonine with an arginine or lysine residue, and by blocking the C-terminal carboxyl group of the B-chain by amidation, featured a prolonged absorption from the subcutis of rabbits and pigs after injection in solution at acidic pH. The phenomenon is ascribed to a low solubility combined with the readiness by which these analogs crystallize as the injectant is being neutralized in the tissue. However, acid solutions of insulin are chemically unstable as A21 asparagine both deamidates to aspartic acid and takes part in formation of covalent dimers via alpha-amino groups of other molecules. In order to circumvent the instability, substitutions were introduced in position A21, in addition to those in B13, B27 and B30, challenging the fact that A21 asparagine has been conserved in this position throughout the evolution. Biological potency was retained when glycine, serine, threonine, aspartic acid, histidine and arginine were introduced in this position, although to a varying degree. In the crystal structure of insulin a hydrogen bond bridges the alpha-nitrogen of A21 with the backbone carbonyl of B23 glycine. In order to investigate the importance of this hydrogen bond for biological activity a gene for the single-chain precursor B-chain(1-29)-Ala-Ala-Lys-A-chain(1-21) featuring an A21 proline was synthesized. However, this single-chain precursor failed to be properly produced by yeast, pointing to the formation of this hydrogen bond as an essential step in the folding process. The stability of the A21-substituted analogs in acid solutions (pH 3-4) with respect to deamidation and formation of dimers was approximately 5-10 times higher than that of human insulin in neutral solution. The rate of absorption of most insulins is decreased by increasing the Zn2+ concentration of the preparation. However, one analog with A21 glycine showed first-order absorption kinetics in pigs with a half-life of approximately 25 h, independent of the Zn2+ concentration. The day-to-day variation of the absorption of this analog was significantly lower than that of the conventional insulin suspensions, a property that might render such an insulin useful in the attempts to improve glucose control in diabetics by a more predictable delivery of basal insulin.  相似文献   

20.
The genotoxicity of endogenously formed N-nitrosamines from secondary amines and sodium nitrite (NaNO(2)) was evaluated in multiple organs of mice, using comet assay. Groups of four male mice were orally given dimethylamine, proline, and morpholine simultaneously with NaNO(2). The stomach, colon, liver, kidney, urinary bladder, lung, brain, and bone marrow were sampled 3 and 24 h after these compounds had been ingested. Although secondary amines and the NaNO(2) tested did not yield DNA damage in any of the organs tested, DNA damage was observed mainly in the liver following simultaneous oral ingestion of these compounds. The administration within a 60 min interval also yielded hepatic DNA damage. It is considered that DNA damage induced in mouse organs with the coexistence of amines and nitrite in the acidic stomach is due to endogenously formed nitrosamines. Ascorbic acid reduced the liver DNA damage induced by morpholine and NaNO(2). Reductions in hepatic genotoxicity of endogenously formed N-nitrosomorpholine by tea polyphenols, such as catechins and theaflavins, and fresh apple, grape, and orange juices were more effective than was by ascorbic acid. In contrast with the antimutagenicity of ascorbic acid in the liver, ascorbic acid yielded stomach DNA damage in the presence of NaNO(2) (in the presence and absence of morpholine). Even if ascorbic acid acts as an antimutagen in the liver, nitric oxide (NO) formed from the reduction of NaNO(2) by ascorbic acid damaged stomach DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号