首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Both increased gamma-aminobutyric acid (GABA)-ergic and decreased glutamatergic neurotransmission have been suggested relative to the pathophysiology of hepatic encephalopathy. This proposed disturbance in neurotransmitter balance, however, is based mainly on brain tissue analysis. Because the approach of whole tissue analysis is of limited value with regard to in vivo neurotransmission, we have studied the extracellular concentrations in the cerebral cortex of several neuroactive amino acids by application of the in vivo microdialysis technique. During acute hepatic encephalopathy induced in rats by complete liver ischemia, increased extracellular concentrations of the neuroactive amino acids glutamate, taurine, and glycine were observed, whereas extracellular concentrations of aspartate and GABA were unaltered and glutamine decreased. It is therefore suggested that hepatic encephalopathy is associated with glycine potentiated glutamate neurotoxicity rather than with a shortage of the neurotransmitter glutamate. In addition, increased extracellular concentration of taurine might contribute to the disturbed neurotransmitter balance. The observation of decreasing glutamine concentrations, after an initial increase, points to a possible astrocytic dysfunction involved in the pathophysiology of hepatic encephalopathy.  相似文献   

2.
A cortical cup model with continuous perfusion of artificial cerebrospinal fluid (containing 134 mM NaCl) was used to investigate the effects of anion channel blockers on the hyposmotically-induced release of amino acids from the in vivo rat cerebral cortex. The hyposmotic stimulus (25 mM NaCl) evoked a release of taurine, glutamate, aspartate, glycine, phosphoethanolamine and GABA. Topically applied anion channel blockers 4,4-diisothiocyanatostilbene-2,2-disulfonic acid (1 mM); 4-acetamido-4-isothiocyanatostilbene-2,2-disulfonic acid (2 mM); 5-nitro-2-(3-phenylpropylamino) benzoic acid (350 M); niflumic acid (500 M); tamoxifen (20 M) and arachidonic acid (0.5 M) all significantly reduced the hyposmotically-induced release of taurine. The releases of glutamate, aspartate, glycine, phosphoethanolamine and GABA were variably susceptible to inhibition by these compounds. These results demonstrate that osmoregulatory processes in cortical cells, in vivo, involve amino acids, with taurine playing a dominant role. The efflux of taurine and, to a lesser extent, the other amino acids may be mediated by anion channels.  相似文献   

3.
Abstract: The effect of anoxia and ischemia on the release of amino acid transmitters from cerebellar slices induced by veratridine or high [K+] was studied. Synaptic specificity was tested by examining the tetradotoxin (TTX)-sensitive and the Ca2+-dependent components of stimulated release. Evoked release of endogenous amino acids was investigated in addition to more detailed studies on the stimulated efflux of preloaded [14C]GABA and d -[3H]aspartate (a metabolically more stable anologue of acidic amino acids).[14C]GABA release evoked by either method of stimulation was unaffected by periods of up to 35 min of anoxia and declined moderately by 45 min. In contrast, induced release of d -[3H]Asp increased markedly during anoxia to a peak at about 25 min, followed by a decline when anoxia was prolonged to 45 min. Evidence was obtained that the increased evoked efflux of d -[3H]Asp from anoxic slices was not due to impaired reuptake of the released amino acid and that it was completely reversible by reoxygenation of the slices. Results of experiments examining the evoked release of endogenous amino acids in anoxia were consistent with those obtained with the exogenous amino acids. Only 4 of the 10 endogenous amino acids studied exhibited TTX-sensitive veratridine-induced release under aerobic conditions (glutamate, aspartate, GABA, and glycine). Anoxia for 25 min did not affect the stimulated efflux of these amino acids with the exception of glutamate, which showed a significant increase. Compared with anoxia, effects of ischemia on synaptic function appeared to be more severe. Veratridine-evoked release of [14C]GABA was already depressed by 10 min and that of d -[3H]Asp showed a modest elevation only at 5 min. Stimulated release of d -Asp and labelled GABA declined progressively after 5 min. These findings were compared with changes in tissue ATP concentrations and histology. The latter studies indicated that in anoxia the earliest alterations are detectable in glia and that nerve terminals were the structures by far the most resistant to anoxic damage. The results thus indicated that evoked release of amino acid transmitters in the cerebellum is compromised only by prolonged anoxia in vitro. In addition, it would appear that the stimulated release of glutamate is selectively accentuated during anoxia. This effect may have a bearing on some hypoxic behavioral changes and, perhaps, also on the well-known selective vulnerability of certain neurons during hypoxia.  相似文献   

4.
5.
Membranes from rat cerebral cortex are able to bind S-adenosyl-L-homocysteine (SAH) with a KD of 5 . 10(-7) M and n of 170 pmol/g fresh tissue (i.e. 20 mg protein). The binding is enhanced by Mg2+ and Ca2+ but not K+ and Na+. gamma-Aminobutyric acid, diazepine, noradrenaline and alpha antagonists are without any effect; S-adenosyl-L-methionine, adenosine and adenosine triphosphate inhibit SAH binding. Linkage with an adenosine receptor has not been expressly demonstrated by our method. SAH binding proteins are more abundant in the crude synaptosomal pellet (P2). A similar fixation seems to occur on brain membranes after [3H]SAH administration to rat. The binding might be linked to a methylase activity or an adenosine receptor.  相似文献   

6.
The effect of kainate on extracellular levels of amino acids in corpus striatum was investigated in vitro and in vivo, to elucidate the mechanism underlying its neurotoxicity. Kainate increased extracellular glutamate and aspartate in both striatal slices in vitro and intact striatum in vivo, as previously reported. Both in vitro and in vivo, DL-threo-3-hydroxyaspartate increased extracellular glutamate and aspartate levels (to between 150 and 200% of basal), and also enhanced their kainate-evoked release. The action of kainate in vivo was reduced by prior frontal decortication, whereas in vitro the kainate-evoked responses were only slightly reduced by tetrodotoxin, and remained above control values. These results confirm that kainate increases extracellular glutamate and aspartate, and provide evidence that this is due to synaptic release evoked by an action on receptors on glutamatergic neurone terminals. These findings may be relevant to the understanding of epilepsy.  相似文献   

7.
The effects of selective adenosine receptor agonists [N6-cyclopentyladenosine (CPA) and N-ethylcarboxamidoadenosine (NECA)] and antagonists [8-cyclopentyl-1,3-dipropylxanthine (DPCPX) and 9-chloro-2-(2-furanyl)-5,6-dihydro-1,2,4-triazolo[1,5-c]quinazoline-5-im ine (CGS-15943A)] on aspartate and glutamate release from the ischemic rat cerebral cortex were studied with the cortical cup technique. Cerebral ischemia (for 20 min) was elicited by four-vessel occlusion. Excitatory amino acid releases were compared from control ischemic rats and drug-treated rats. Basal levels of aspartate and glutamate release were not greatly affected by pretreatment with the adenosine receptor agonists or antagonists. However, CPA (10(-10) M) and NECA (10(-9) M) significantly inhibited the ischemia-evoked release of aspartate and glutamate into cortical superfusates. The ability to block ischemia-evoked release of excitatory amino acids was not evident at higher concentrations of CPA (10(-6) M) or NECA (10(-5) M). The selective A1 receptor antagonist DPCPX also had no effect on release when administered at a low dosage (0.01 mg/kg, i.p.) but blocked the ischemia-evoked release of aspartate and glutamate at a higher dosage (0.1 mg/kg). Evoked release was inhibited by the selective A2 receptor antagonist CGS-15943A (0.1 mg/kg, i.p.). Thus, adenosine and its analogs may suppress ischemia-evoked release of excitatory neurotransmitter amino acids via high-affinity A1 receptors, whereas coactivation of lower-affinity A2 receptors may block (or reverse) the A1-mediated response.  相似文献   

8.
Verapamil at 200 microM, prevented the respiratory stimulation, K+ loss, transmitter release, and 45Ca2+ entry into incubated synaptosomes evoked by veratrine (25 to 75 microM) or by high K+ (56 mM). Verapamil (100 microM) also blocked gamma-aminobutyric acid homoexchange, whilst tetrodotoxin was ineffective. Much lower concentrations of verapamil (less than 1 microM) blocked the 45Ca2+ entry caused by veratrine, but not its action in releasing neurotransmitter or K+. It is concluded that verapamil, at 30 to 200 microM, blocks active Na+ channels, thereby preventing depolarization. At greater than 1 microM, verapamil blocks Ca+ channels selectively.  相似文献   

9.
Amino acid neurotransmitters in the nucleus tractus solitarius (NTS) are thought to play a key role in the mediation of visceral reflexes and glutamate has been proposed as the neurotransmitter of visceral afferent nerves projecting to this region. The present studies sought to characterize the use of in vivo microdialysis to examine extracellular fluid levels of amino acids in the NTS of anesthetized rats. Using a microdialysis probe that was 450 μm in length and a sensitive HPLC assay for amino acids, amino acids could be measured in dialysate samples collected from the NTS. Perfusion of the microdialysis probe with 60 mM K±, to elicit depolarization of nerve terminals in the vicinity of the probe, resulted in increased dialysate fluid levels of aspartate, glutamate, glycine, taurine, and GABA. In contrast, glutamine and tyrosine were decreased and other amino acids were not significantly affected. Prior removal of the ipsilateral nodose ganglion did not alter the K±-evoked changes in dialysate levels of any of these amino acids. Electrical stimulation of the vagus nerves, using a variety of stimulus parameters, did not significantly alter dialysate levels of glutamate or any of the other amino acids that were measured. Blockade of glutamate uptake with dihydrokainate increased dialysate levels of glutamate, aspartate, and GABA, but in the presence of dihydrokainate vagal stimulation did not alter dialysate levels of these amino acids. The results show that in vivo microdialysis can be used to examine amino acid efflux in the rat NTS and provide further evidence for amino acidergic neural transmission in the NTS. However, these studies fail to support the hypothesis that vagal afferents release glutamate or aspartate.  相似文献   

10.
The effects of a potent adenosine deaminase inhibitor, deoxycoformycin, on purine and amino acid neuro-transmitter release from the ischemic rat cerebral cortex were studied with the cortical cup technique. Cerebral ischemia (20 min) was elicited by four-vessel occlusion. Purine and amino acid releases were compared from control ischemic animals and deoxycoformycin-pretreated ischemic rats. Ischemia enhanced the release of glutamate, aspartate, and gamma-aminobutyric acid into cortical perfusates. The levels of adenosine, inosine, hypoxanthine, and xanthine in the same perfusates were also elevated during and following ischemia. Deoxycoformycin (500 micrograms/kg) enhanced ischemia-evoked release of adenosine, indicating a marked rise in the adenosine content of the interstitial fluid of the cerebral cortex. Inosine, hypoxanthine, and xanthine levels were depressed by deoxycoformycin. Deoxycoformycin pretreatment failed to alter the pattern of amino acid neurotransmitter release from the cerebral cortex in comparison with that observed in control ischemic animals. The failure of deoxycoformycin to attenuate amino acid neurotransmitter release, even though it markedly enhanced adenosine levels in the extracellular space, implies that the amino acid release during ischemia occurs via an adenosine-insensitive mechanism. Inhibition of excitotoxic amino acid release is unlikely to be responsible for the cerebroprotective actions of deoxycoformycin in the ischemic brain.  相似文献   

11.
The concentration of extracellular excitatory amino acids in the striatum of conscious, unrestrained rats was measured using intracerebral microdialysis, during chemical stimulation of the striatum in intact and hemidecorticate animals. Chemical stimulation of the striatum with tityustoxin (0.1 microM) evoked a rise in dialysate concentration of glutamate (to 383% of basal) and aspartate (to 156% of basal), accompanied by a drop in glutamine (to 55% of basal). These changes showed significant attenuation after treatment with L-proline (1 mM) or 2-chloroadenosine (15 microM). Unilateral degeneration of the corticostriate pathway, produced by frontal hemidecortication, caused a reduction in both basal and stimulated levels of glutamate in the lesioned side, whereas no effect was observed in the intact side. Similarly, basal and stimulated levels of glutamine were unchanged in the intact side, but were increased in the lesioned side. These results provide in vivo evidence for glutamate and possibly aspartate being neurotransmitters in the corticostriate pathway. In addition they lend support to previous studies in vitro, which implicated glutamine as the principal precursor for neurotransmitter glutamate.  相似文献   

12.
Abstract: The tissue content and the interstitial fluid levels of glutamate, aspartate, GABA, glutamine, glycine, and serine were studied in amygdaloid-kindled rat brain. Interstitial levels were studied in vivo before and during stage 5 full limbic seizures using microdialysis. Slices of amygdala from kindled and sham-operated animals were used to study baseline and KCl-evoked release in vitro. The contents of these amino acids were measured in slices of amygdala, hippocampus, and cerebral cortex from kindled and sham-operated animals. Kindled brains showed two- to threefold higher levels of glutamate, aspartate, and GABA and 12-fold higher levels of glutamine than sham-operated controls. Correlating with this, interstitial fluid levels of glutamate were two- to threefold higher from kindled amygdala than from control both in vivo (microdialysis) and in vitro (superfusion). GABA levels in interstitial fluid from kindled amygdala were reduced by 67% compared with control amygdala.  相似文献   

13.
Effects of Kainic Acid on Brain Calcium Fluxes Studied In Vivo and In Vitro   总被引:1,自引:6,他引:1  
The effect of in vivo administration of kainic acid into the rabbit hippocampus was studied with brain dialysis and subsequent determination of the Ca2+ concentration in the dialysate. When included in the perfusing medium, kainic acid as well as veratridine induced a decrease in extracellular Ca2+. The effect of kainic acid (but not of veratridine) was insensitive to tetrodotoxin. In vitro studies revealed no effect of kainic acid on 45Ca2+ uptake by isolated astrocytes, but showed an enhancement of synaptosomal 45Ca2+ accumulation. This was, however, only 25% of the stimulatory effect of high K+ depolarization. Glutamate activated synaptosomal Ca2+ uptake, whereas dihydrokainate had no effect. The uptake evoked by kainate and glutamate was independent of the K+ level in the medium which indicates the involvement of other than voltage-sensitive Ca2+ channels. The results confirm previous finding that kainic acid promotes the uptake of Ca2+ in brain cells. Kainate affects Ca2+ fluxes pre- and postsynaptically. Presynaptic Ca2+ influx may be mediated by chemically gated mechanisms.  相似文献   

14.
Blocks of tissue from the hypothalamus, olfactory bulb, or striatum of rats were incubated in vitro to study the basal and potassium-stimulated release of endogenous catecholamines. When ethanol (100-250 mM) was added to these preparations in vitro no changes in release were observed. When ethanol (3.0 g X kg-1) was injected intraperitoneally in vivo, however, and 3,4-dihydroxyphenylethylamine (DA, dopamine) release was measured in vitro at various times after drug administration, significant increases in the basal release and decreases in the potassium-stimulated release were observed in striatum and olfactory bulb. In striatum, these changes showed a more rapid onset and a longer duration than in olfactory bulb. In both brain regions, DA release did not differ from controls at 4-6 h after the ethanol injection, although blood ethanol concentrations remained elevated. This may imply the tissue's acquisition of acute functional tolerance to the drug. Similar increases and decreases in the basal and the potassium-induced release of DA from striatal tissues were also found at 1 h after injection of a lower dose of ethanol (1.0 g X kg-1). In terms of behavior, this lower dose of ethanol produced only mild intoxication and ataxia, in contrast to the loss of righting reflex following the higher dose.  相似文献   

15.
Abstract: The effect of tetanus toxin on the uptake and release of radiolabelled transmitters from slices prepared from substantia nigra (SN) and striatum of rats has been investigated. Tetanus toxin-500–750 mouse lethal doses (MLD)-injected into the SN 6 h before preparing the slices significantly reduced the calcium-dependent, potassium-evoked release of [3H]GABA. Endogenous GABA levels in the SN and [3H]GABA uptake by nigral slices were unaffected by pretreatment with the toxin. Injections of tetanus toxin (1000–2000 MLD) into the striatum significantly reduced the calcium-dependent, potassium-evoked release of [14C]GABA and also [3H]dopamine, but had no effect on the K+-evoked release of [3H]5-hydroxytryptamine or [14C]acetylcholine. It is concluded that tetanus toxin inhibits GABA release directly and not by interference with synthesis or inactivation processes.  相似文献   

16.
Endogenous amino acid release was measured in developing cerebellar neuronal cells in primary culture. In the presence of 25 mM K+ added to the culture medium, cerebellar cells survived more than 3 weeks and showed a high level of differentiation. These cultures are highly enriched in neurons, and electron-microscopic observation of these cells after 12 days in vitro (DIV) confirmed the presence of a very large proportion of cells with the morphological characteristics of granule cells, making synapses containing many synaptic vesicles. Synaptogenesis was also confirmed by immunostaining the cells with antisera against synapsin I and synaptophysin, two proteins associated with synaptic vesicles. From these cultures, endogenous glutamate release stimulated by 56 mM K+ was already detected after only a few days in culture, the maximal release value (1,579% increase over basal release) being reached after 10 DIV. In addition to that of glutamate, the release of aspartate, asparagine, alanine, and, particularly, gamma-aminobutyric acid (GABA) was stimulated by 56 mM K+ after 14 DIV, but to a lesser extent. No increase in serine, glutamine, taurine, or tyrosine release was observed during K+ depolarization. The effect of K+ on amino acid release was strictly Ca2+-dependent. Stimulation of the cells with veratridine resulted in a qualitatively similar effect on endogenous amino acid release. In the absence of Ca2+, 30% of the veratridine effect persisted. The Ca2+-dependent release was quantitatively similar after stimulation by veratridine and K+. Treatment of cerebellar cells with tetanus toxin (5 micrograms/ml) for 24 h resulted in a total inhibition of the Ca2+-dependent component of the glutamate release evoked by K+ or veratridine. It is concluded that glutamate is the main amino acid neurotransmitter of cerebellar cells developed in primary culture under the present conditions and that glutamate is probably mainly released through the exocytosis of synaptic vesicles.  相似文献   

17.
Effects of Neurotransmitters on Astrocyte Glycogen Stores In Vitro   总被引:2,自引:4,他引:2  
We have used receptor binding assays to determine the presence of three neurotransmitter receptors in a crude membrane fraction derived from neonatal rat cortical astrocyte cultures and subsequently determined the effects of transmitter receptor activation on astrocyte glycogen content in vitro. beta-Adrenergic (KD = 88 pM; Bmax = 51 fmol/mg of protein), serotonin (KD = 70 nM; Bmax = 44 pmol/mg of protein), and muscarinic cholinergic receptors (KD = 79 pM; Bmax = 44 fmol/mg of protein) were found to be present on astrocyte membranes using [3H]dihydroalprenolol, [3H]serotonin, and [3H]quinuclidinyl benzilate, respectively, as ligands. Astrocyte cultures exposed to noradrenaline but not specific alpha- and beta-receptor agonists contained 33% less glycogen than controls. Neither serotonin nor carbachol caused alterations in astrocyte glycogen content under normal conditions. Reserpine-treated cultures, however, responded to serotonin with a 28% decrease in glycogen content and contained higher levels of glycogen than non-reserpine-treated controls (a 55% increase). These results show that both noradrenaline and serotonin can evoke astrocyte glycogenolysis and that noradrenergic control of glycogen metabolism is probably exerted through both alpha- and beta-receptors. Neurotransmitter control of astrocyte glycogen turnover may represent a form of neuron-astrocyte signalling in addition to that provided by changes in external potassium concentration.  相似文献   

18.
The uptake and release of D-[3H]aspartate (used as a tracer for endogenous glutamate and aspartate) were studied in cultured glutamatergic neurons (cerebellar granule cells) and astrocytes at normal (5 mM) or high (55 mM) potassium and under conditions of hypoglycemia, anoxia or "ischemia" (combined hypoglycemia and anoxia). In glutamatergic neurons it was found that "ischemic" conditions led to a 2.4-fold increase in the potassium-induced release of D-[3H]aspartate as compared to normal conditions. Hypoglycemia or anoxia alone affected the release only marginally. The ischemia-induced induced increase in the evoked D-[3H]aspartate release was shown to be calcium-dependent. In astrocytes no difference was found in the potassium-induced release between the four conditions and the K+-induced release was not calcium-dependent. The uptake of D-[3H]aspartate was found to be stimulated at high potassium in both glutamatergic neurons (98%) and in astrocytes (70%). This stimulation of D-aspartate uptake, however, was significantly reduced under conditions of anoxia or "ischemia" in both cell types. In glutamatergic neurons (but not in astrocytes) hypoglycemia also decreased the potassium stimulation of D-aspartate uptake. In a previous report it was shown, using the microdialysis technique, that during transient cerebral ischemia in vivo the extracellular glutamate content in hippocampus was increased eightfold. In the present paper it is shown that essentially no increase in extracellular glutamate is seen under ischemia when the perfusion is performed using calcium-free, cobalt-containing perfusion media. The results from the in vitro and in vivo experiments indicate that the glutamate accumulated extracellularly under ischemia in vivo originates from transmitter pools in glutamatergic neurons.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The aim of the present work was to study the in vitro/in vivo characteristics of dutasteride loaded biodegradable microspheres designed for sustained release of dutasteride over four weeks. An O/W emulsion-solvent evaporation method was used to incorporate dutasteride, which is of interest in the treatment of benign prostatic hyperplasia (BPH), into poly(lactide-co-glycolide) (PLGA). A response surface method (RSM) with central composite design (CCD) was employed to optimize the formulation variables. A prolonged in vitro drug release profile was observed, with a complete release of the entrapped drug within 28 days. The pharmacokinetics study showed sustained plasma drug concentration-time profile of dutasteride loaded microspheres after subcutaneous injection into rats. The in vitro drug release in rats correlated well with the in vivo pharmacokinetics profile. The pharmacodynamics evaluated by determination of the BPH inhibition in the rat models also showed a prolonged pharmacological response. These results suggest the potential use of dutasteride loaded biodegradable microspheres for the management of BPH over long periods.  相似文献   

20.
We studied the effect of various energetic nutrients on metabolism of l-[U-14C]leucine and [1–14C]glycine in cerebral cortex of rats at different ages. At gestational age, glucose and lactate stimulated protein synthesis from l-[U-14C]leucine and [1–14C]glycine and from l-[U-14C]leucine, respectively; glucose, -OH-butyrate and lactate stimulated lipid synthesis from l-[U-14C]leucine. At 10 days of age, glucose, mannose, and fructose stimulated protein synthesis, and glucose and mannose stimulated oxidation to CO2 as well as lipid synthesis from l-[U-14C]leucine. In adult rats, glucose, mannose, and fructose stimulated protein synthesis from l-[U-14C]leucine and [1–14C]glycine; glutamine also markedly decreased the oxidation of l-[U-14C]leucine and [1–14C]glycine in 10–day-old and adult rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号