首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biodegradation and hydrophobicity of Pseudomonas spp. and Bacillus spp. strains were tested at different concentrations of the biosurfactant Quillaya saponin. A model mixture of hydrocarbon (dodecane and hexadecane) was used for estimating the influence of surfactants on biodegradation. The bacterial adhesion to hydrocarbon method for determination of bacterial cell surface hydrophobicity was exploited. Among the tested bacterial strains the higher hydrophobicity was noticed for Pseudomonas aeruginosa TK. The hydrophobicity of this strain was 84%. The highest hydrocarbon biodegradation was observed for P. aeruginosa TK (49%) and Bacillus subtilis (35%) strains after 7 days of experiments. Generally the addition of Quillaya saponin increased hydrocarbon biodegradation remarkably. The optimal concentration proved to be 80 mg l−1. The degree of hydrocarbon biodegradation was 75% for P. aeruginosa TK after the addition of saponin. However the most significant increase in biodegradation after addition of Quillaya saponin was in the case of P. aeruginosa 25 and Pseudomonas putida (the increase of biodegradation from 21 to 52% and from 31 to 66%, respectively). It is worth mentioning that decrease of hydrophobicity is correlated with the best biodegradation by P. aeruginosa strain. For the remaining strains, no significant hydrophobicity changes in relation to the system without surfactant were noticed.  相似文献   

2.
The development of a simple laboratory methodology allows theimplementation of in situbioremediation of polluted soils with diesel fuel. In thisinvestigation microbiological and chemical analyses and a suitable bioreactor design, were veryuseful for suggesting the best ways to improve biodegradation extents in a diesel-enrichedsoil. Biostimulation with inorganic nitrogen and phosphorus produced the best resultsin a simple bioreactor, with biodegradation extents higher than 90% after 45 days. Also,the addition of activated sludge from a domestic wastewater plant increased the degradationrate to a great extent. In both cases, microbiological studies showed the presence ofAcinetobacter sp. degrading most of thehydrocarbons. Simultaneously, a diesel fuel release(approximately 400,000 l) was studied. Samples taken in polluted soil and water revealed thatbacteria from the genus Acinetobacterwere predominant. In plate studies, Acinetobacter coloniesproduced a whitish substance with the characteristics of a biosurfactant. Remarkably, thepresence of this product was evident at the field site, both in the riverbanks and in the physicalrecovery plant. The study of the similarities between laboratory results and the diesel spillsite strongly suggested that natural conditions at the field site allowed the implementationof in situ bioremediation after physical removal of LNAPL (light nonaqueous-phase liquids).  相似文献   

3.
Rhizodegradation is a technique involving plants that offers interesting potential to enhance biodegradation of persistent organic pollutants such as polycyclic aromatic hydrocarbons (PAHs). Nevertheless, the behaviour of PAHs in plant rhizosphere, including micro-organisms and the physico-chemical soil properties, still needs to be clarified. The present work proposes to study the toxicity and the dissipation of phenanthrene in three artificially contaminated soils (1 g kg-1 DW). Experiments were carried out after 2 months of soil aging. They consisted in using different systems with two plant species (Ryegrass—Lolium perenne L. var. Prana and red clover—Trifolium pratense L. var. fourragère Caillard), three kinds of soils (a silty-clay-loam soil “La Bouzule”, a coarse sandy-loam soil “Chenevières” and a fine sandy-loam soil “Maconcourt”). Phenanthrene was quantified by HPLC in the beginning (T 0) and the end of the experiments (30 days). Plant biomass, microbial communities including mycorrhizal fungi, Rhizobium and PAH degraders were also recorded. Generally phenanthrene contamination did not affect plant biomass. Only the red clover biomass was enhanced in Chenevières and La Bouzule polluted soils. A stimulation of Rhizobium red clover colonisation was quantified in spiked soils whereas a drastic negative phenanthrene effect on the mycorrhization of ryegrass and red clover was recorded. The number of PAH degraders was stimulated by the presence of phenanthrene in all tested soils. Both in ryegrass and red clover planted soils, the highest phenanthrene dissipation due to the rhizosphere was measured in La Bouzule soils. On the contrary, in non-planted soils, La Bouzule soils had also the lowest pollutant dissipation. Thus, in rhizospheric and non-rhizospheric soils the phenanthrene dissipation was found to depend on soil clay content.  相似文献   

4.
The aim of the present work was to observe microbial decolorization and biodegradation of the Direct Violet 51 azo dye by Candida albicans isolated from industrial effluents and study the metabolites formed after degradation. C. albicans was used in the removal of the dye in order to further biosorption and biodegradation at different pH values in aqueous solutions. A comparative study of biodegradation analysis was carried out using UV–vis and FTIR spectroscopy, which revealed significant changes in peak positions when compared to the dye spectrum. Theses changes in dye structure appeared after 72 h at pH 2.50; after 240 h at pH 4.50; and after 280 h at pH 6.50, indicating the different by-products formed during the biodegradation process. Hence, the yeast C. albicans was able to remove the color substance, demonstrating a potential enzymatic capacity to modify the chemical structure of pigments found in industrial effluents.  相似文献   

5.
An indigenous polychlorinated biphenyl (PCB)-degrading bacterial consortium was obtained from soils contaminated by transformer oil with a high content of PCBs. The PCB degrader strains were isolated and identified as Brevibacterium antarcticum, Pandoraea pnomenusa, and Ochrobactrum intermedium by 16S rRNA gene sequence phylogenetic analysis. The PCB-degrading ability of the consortium and of individual strains was determined by using GC/MS. The PCB-degrading capacities of the consortium were evaluated for three concentrations of transfomer oil ranging from 55 to 152 μM supplemented with 0.001% biphenyl and 0.1% of Tween 80 surfactant. PCB biodegradation by the consortium was favored in the presence of both additives and the greatest extent of biodegradation (67.5%) was obtained at a PCB concentration of 55 μM. Each bacterial species exhibited a particular pattern of degradation relating to specific PCB congeners. Isolated strains showed a moderate degradation capability towards tetra-, hepta-, and octa-chlorobiphenyls; although no effect on penta-, hexa-, and nona-chlorobiphenyls was observed. Recently, PCB degradation capacity was recognized in a Pandorea member; however, this is the first study that describes the ability of Brevibacterium and Ochrobactrum species to degrade PCBs.  相似文献   

6.
Kamil Hudec 《Biologia》2007,62(3):287-291
Presented study focused on the influence of Cochliobolus sativus isolates origin on pathogenicity towards wheat and barley seedlings in comparison with pathogenicity of certain Fusarium species and Microdochium nivale. The efficacy of fungicide seed treatment against C. sativus was estimated. The C. sativus isolates were collected from different locations and were isolated from wheat, barley and sunflower seeds. The pathogenicity of C. sativus, Fusarium species and M. nivale towards germinating seedlings were expressed as germination (GA) retardation and coleoptile growth rate retardation (CGR). Of wheat only, the CGR was significantly influenced by the isolate origin. The C. sativus isolates obtained from sunflower seeds were the most aggressive. Of the barley seeds, the barley isolates were the most aggressive. Barley was significantly more susceptible to damage by C. sativus isolates than wheat. The pathogenicity of tested fungal species declined in the order: F. culmorum, F. graminearum, C. sativus, F. avenaceum, M. nivale, F. poae for both barley and wheat. The results highlighted high pathogenicity potential of C. sativus equal to that of F. avenaceum and M. nivale. The symptoms of C. sativus on coleoptile and roots were very similar or the same as the symptoms caused by Fusarium species and M. nivale, except of white, pink or red colours. Of wheat sprouts, the fungicide efficacy (FE) against C. sativus declined in the order: tebuconazole + thiram, carboxin + thiram, quazatine, difenoconazole, iprodione + triticonazole (in term of GA) and carboxin + thiram, iprodione + triticonazole, tebuconazole + thiram, difenoconazole, quazatine (in term of CGR). In barley, the FE declined in the order: carboxin + thiram, iprodione + triticonazole, tebuconazole + thiram, difenoconazole, quazatine (in term of GA) and carboxin + thiram, tebuconazole + thiram, difenoconazole, iprodione + triticonazole, quazatine (in term of CGR).  相似文献   

7.
This study investigated the enhanced crude oil biodegradability of Pseudomonas aeruginosa ZJU, a strain isolated from the Shengli oil field (Shandong Province, China), after preservation in a crude oil-containing medium. This strain previously could not emulsify crude oil during preservation, but after switching to a subculture in a glycerol medium for passages, it expressed increased biodegradation of crude oil within the first six passages and this biodegradation sharply decreased after the seventh passage. It is noticed that about 70% of crude oil was degraded by Pseudomonas aeruginosa ZJU in the third passage while this biodegradability was less than 19% in the seventh passage. Similar to the trend on biodegradation of crude oil, rhamnolipid production increased during the first six passages and later sharply decreased. Thus, it seems that biodegradability was proportionally related to the rhamnolipid productivity in each passage in glycerol medium. Interestingly, both rhamnolipid production and crude oil biodegradation were maintained if this strain was continuously preserved in crude oil and could be retrieved if this strain was then re-preserved in crude oil-containing medium for seven days after the significant decline in these two characteristics previously observed in the seventh passage.  相似文献   

8.
Saxena  Deepak  Stotzky  G. 《Plant and Soil》2002,239(2):165-172
The culture of transgenic Bt corn (Zea mays L.) has resulted in concern about the uptake of the Cry1Ab protein toxin by crops subsequently grown in soils in which Bt corn has been grown. The toxin released to soil in root exudates of Bt corn, from the degradation of the biomass of Bt corn, or as purified toxin, was not taken up from soil, where the toxin is bound on surface-active particles (e.g. clays and humic substances), or from hydroponic culture, where the toxin is not bound on particles, by non-Bt corn, carrot (Daucus carota L.), radish (Raphanus sativus L.), and turnip (Brassica rapa L.). The persistence of the toxin in soil for 90 days after its addition in purified form or for 120–180 days after its release in exudates or from biomass, the longest times evaluated, confirmed that the toxin was bound on surface-active particles in soil, which protected the toxin from biodegradation. The greater toxicity of the toxin in soil amended with 9% montmorillonite or kaolinite than in soil amended with 3% of these clay minerals indicated that the binding and persistence of the toxin increased as the clay concentration was increased.  相似文献   

9.
To demonstrate the potential of biodegradation of soils enriched with kerosene and diesel, an ex-situ study with the objective of evaluating and comparing the effects of three different fungal isolates P. janthinellum, P. decumbens, and A. terreus was performed. The study dealt with the biodegradation of artificially enriched kerosene and diesel soils by 5%, 10%, and 15% (w/w). The experiment was performed by ex-situ large-scale tray method using 24 plastic trays 6′′ X 3′′ X 1′′ in each containing 60 kg enriched soil. After eight weeks of inoculation of the fungal isolates, P. janthinellum was found to have potential compared to the other two and displayed the highest kerosene and diesel degradative capacity, resulting in 98.29%, 97%, 96%, 82%, 70%, and 62% degradation at 5, 10, and 15% kerosene- and diesel-enriched soils after 45 and 60 days, respectively. Moreover, the total fungal population was found to increase as a function of time. A first-order kinetic model equation showed that the specific biodegradation rate constant “k” value were 0.1023 and 0.0285 day?1 for 5% kerosene and diesel enrichment by P. janthinellum treatment strategy, which was comparatively higher than the values for the other two organisms tested. Thus, the degree of effectiveness of these bioremediation strategies in the soils enriched with kerosene and diesel is in the following order: P. janthinellum>P. decumbens>A. terreus.  相似文献   

10.
In vitro studies were carried out to investigate a possible integrated use of chemical and biological means to control the peach twig blight pathogen,Monilinia laxa. Three fungal antagonists ofM. laxa (Penicillium purpurogenum, Penicillium frequentans andEpicoccum nigrum) and six fungicides (vinclozolin, iprodione, thiram, captan, benomyl and thiophanate-methyl) were used in the study. Sensitivity of the fungal isolates to the fungicides was determined in vitro by calculating ED50 values. Benomyl and thiophanate-methyl were the most fungitoxic compounds and captan was the least fungitoxic.M. laxa andP. purpurogenum were the most sensitive to all chemicals tested, whileE. nigrum andP. frequentans presented bigger differences in their sensitivity to chemicals compared toM. laxa. E. nigrum was consistently less sensitive to benomyl (ED50=2.26 ppm), thiophanate-methyl (ED50=9.61 ppm) and vinclozolin (ED50=3.89 ppm) than the other fungi.P. frequentans was less sensitive to captan, vinclozolin, iprodione, thiophanate-methyl and thiram thanM. laxa (8, 7, 5, 4 and 2 times respectively). These results suggest thatE. nigrum andP. frequentans could be successfully used in an integrated control programme that combines biological and chemical methods.  相似文献   

11.
The genetic systems that are responsible for naphthalene catabolism were analyzed in 18 naphthalene-degrading Pseudomonas fluorescens strains isolated from oil-contaminated soils in different regions of Russia. It was found that 13 strains contain plasmids, from 20 to 120 kb in size, at least 5 of which are conjugative and bear the catabolic genes responsible for the complete utilization of naphthalene and salicylate. Five plasmids belong to the P-7 incompatibility group, and two plasmids belong to the P-9 incompatibility group. The naphthalene biodegradation genes of P. fluorescens are highly homologous to each other. The study revealed a new group of the nahAc genes and two new variants of the nahG gene. The suggestion is made that the key genes of naphthalene biodegradation, nahAc and nahG, evolve independently and occur in P. fluorescens strains in different combinations.Translated from Mikrobiologiya, Vol. 74, No. 1, 2005, pp. 70–78.Original Russian Text Copyright © 2005 by Izmalkova, Sazonova, Sokolov, Kosheleva, Boronin.  相似文献   

12.
Summary Pinus pinaster plants were regenerated from cotyledons excised from in vitro germinated seeds and axenically cultured on induction medium (GMD). 6-Benzyladenine (2.2 μM) induced the highest frequency of direct bud formation from cotyledons. An average of 13.1 ± 2.1 elongated shoots per cotyledon was obtained. Germination time influenced shoot induction, and the organogenic potential decreased with explant age. Cotyledons remained for 21 d on induction medium, and in order to promote adventitious shoot elongation, they were transferred to Gupta and Durzan’s DCR medium without growth regulators, containing 0.5% (wt/vol) activated charcoal and 3% (wt/vol) sucrose. Rooting was achieved by application of an indole-3-butyric acid, (396.6 μM) pulse (24 h at 4° C), followed by transfer to a sterile mixture of peat plus perlite (1:1 vol/vol). Ninety-eight to 100% of the regenerated plants were successfully acclimatized. All plants have survived after transfer to the field.  相似文献   

13.
The Cry3Bb1 protein, insecticidal to the corn rootworm complex (Diabrotica spp.), of Bacillus thuringiensis (Bt) subsp. kumamotoensis was released in root exudates of transgenic Bt corn (event MON863) in sterile hydroponic culture (7.5 +/- 1.12 ng/ml after 28 days of growth) and in nonsterile soil throughout growth of the plants (2.2 +/- 0.62 ng/g after 63 days of growth). Kitchawan soil, which contains predominantly kaolinite (K) but not montmorillonite (M), was amended to 3 or 6% (vol./vol.) with K (3K and 6K soils) or M (3M and 6M soils) and with 1, 3, 5, or 10% (wt./wt.) of ground biomass of Bt corn expressing the Cry3Bb1 protein and incubated at 25 +/- 2 degrees C at the -33-kPa water tension for 60 days. Soils were analyzed for the presence of the protein every 7 to 10 days with a western blot assay (ImmunoStrip) and verified by ELISA. Persistence of the protein varied with the type and amount of clay mineral and the pH of the soils and increased as the concentration of K was increased but decreased as the concentration of M was increased. Persistence decreased when the pH of the K-amended soils was increased from ca. 5 to ca. 7 with CaCO(3): the protein was not detected after 14 and 21 days in the pH-adjusted 3K and 6K soils, respectively, whereas it was detected after 40 days in the 3K and 6K soils not adjusted to pH 7. The protein was detected for only 21 days in the 3M soil and for 14 days in the 6M soil, which were not adjusted in pH. These results indicate that the Cry3Bb1 protein does not persist or accumulate in soil and is degraded rapidly.  相似文献   

14.
Two decades after the manufacture and use of polychlorinated biphenyls (PCBs) were banned, PCB contamination remains widespread in the environment. Technologies available for PCB remediation are limited and often impractical for soils with dispersed PCB contamination. In this study, two remediation processes have been integrated for use on PCB-contaminated soils. This remediation strategy links in situ surfactant washing of PCBs from soil with aerobic biodegradation of the resulting surfactant-PCB solution by two field application vectors (F A Vs), Pseudomonas putida IFL5::TnPCB and Ralstonia eutropha B30F4::TnPCB, which utilize surfac-tants as growth substrates and cometabolize PCBs. A bench-scale demonstration of this process was performed using PCB-contaminated soils from an electric power substation site. In a 2-day recycling wash using a 1% (wt/vol) surfactant solution, greater than 70% of the PCBs were removed from the soil. In the biodegradation phase, greater than 90% of the surfactant and 35% of the PCBs were biodegraded in 12 days. The residual PCBs were partitioned onto a solid carrier resulting in greater than 90% removal of PCBs from the bioreactor effluent and a 50-fold reduction in the amount of PCB-contaminated material.  相似文献   

15.
Gea FJ  Tello JC  Honrubia M 《Mycopathologia》1996,136(3):133-137
Twenty isolates of Verticillium fungicola var. fungicola collected from diseased fruit-bodies of Agaricus bisporus from prochloraz-treated crops, were exposed to a range of concentrations of six chemicals (benomyl, chlorothalonil, formaldehyde, iprodione, prochloraz-Mn-complex and prochloraz + carbendazim) in vitro. EC50 values were determined for each fungus-fungicide combination. All isolates were more sensitive to prochloraz-Mn-complex (EC50 values less than 5 mg 1–1) than to the remainder fungicides, and only seven isolates were moderately sensitive (EC50 values between 5 and 50 mg 1–1) to prochloraz + carbendazim. All isolates were moderately sensitive to formaldehyde, whereas the majority of isolates were very resistant to the other three fungicides (benomyl, chlorothalonil and iprodione).  相似文献   

16.
The free radical scavengers α-tocopherol and butylated hydroxytoluene, but not ascorbate, diminished the growth-inhibiting effects of the dicarboximide fungicide, iprodione in Alternaria alternata. Growth of A. alternata in the presence of iprodione increased the activities of superoxide dismutase and glutathione reductase while catalase was unaffected. Four iprodione sensitive and four iprodione resistant isolates of A. alternata were compared for activity of free radical enzymes. The isolates of A. alternata resistant to iprodione had more catalase activity than those which were sensitive, but did not differ in superoxide dismutase of glutathione reductase, activities. 3-Amino-1.24.-triazole, a specific inhibitor of catalas, reduced the ability of DAR 69775, a dicarboximide resistant isolate of A. alternata. to grow in the presence of iprodione. In A. alternata dicarboximide resistance appeats to be at least partially mediated by enhanced activitiesof, catalase.  相似文献   

17.
Biodegradation of Pinus radiata softwood by white- and brown-rot fungi   总被引:4,自引:0,他引:4  
The weight and component losses of Pinus radiata wood after decay by six species of white-rot and two species of brown-rot fungi for periods varying from 30 to 360 days were evaluated. Three groups of decayed wood samples were identified based on the principal component analysis (PCA) of the data on their weight and component losses. Selective lignin degradation was produced by Ceriporiopsis subvermispora and Punctularia atropurpurascens within different periods, the longest one lasting 90 days, and also by Merulius tremellosus after 90 days of biodegradation. Comparing the data on biodegradation of P. radiata by Trametes versicolor with the ones reported for biodegradation of Eucalyptus globulus and E. grandis indicated that P. radiata is as susceptible to wood decay by this white-rot fungus as the two types of hardwood.  相似文献   

18.
Summary The rate of metabolism and biosynthetic processes makein vitro cultures very sensitive to environmental changes, and therefore subject to physiological and morphological alterations leading to senescence in the short term. The effect of three different calibrated atmospheric compositions were studied duringin vitro culture ofPrunus avium shoots. At 0.034% CO2-21% O2 (vol/vol), which stimulate the natural atmosphere, the highest growth rate and chlorophyll content were recorded. When grown at 0.09% CO2-8% O2 (vol/vol), a favorable condition for photosynthesis and growth, cultures showed a higher percentage of dry matter and elevated ethylene production, but total chlorophyll was lower. These shoots were also highly lignified and fibrous with red pigmentation along the leaves and stems. At 0% CO2-21% O2 (vol/vol), in contrast, growth and ethylene formation were inhibited; chlorophyll content was lowest in comparison with the other two environmental conditions, but regreening of tissues was observed after the first half of the culture period. Senescence symptoms, as indicated by decreased chlorophyll, appeared after about 18 d of culture for tissues grown in CO2-containing atmospheres. These experiments provided evidence that in CO2-enriched cultures biomass production steadily increased even when chlorophyll decreased. A possible role of CO2 in promoting tissue-senescence through activation of photooxidative events and ethylene synthesis is discussed.  相似文献   

19.
Factors affecting the microbial degradation of phenanthrene in soil   总被引:9,自引:0,他引:9  
Summary Because phenanthrene was mineralized more slowly in soils than in liquid media, a study was conducted to determine the environmental factors that may account for the slow biodegradation in soil. Mineralization was enhanced by additions of phosphate but not potassium, and it was reduced by additions of nitrate. Aeration or amending the soil with glucose affected the rate of mineralization, although not markedly. Phenanthrene was sorbed to soil constituents, the extent of sorption being directly related to the percentage of organic matter in the soil. Soluble phenanthrene was not detected after addition of the compound to a muck soil. The rate of mineralization was slow in the organic soil and higher in mineral soils with lower percentages of organic matter. We suggest that sorption by soil organic matter slows the biodegradation of polycyclic aromatic hydrocarbons that are otherwise readily metabolized. Offprint requests to: M. Alexander  相似文献   

20.
Drimys winteri and Nothofagus dombeyi, two native Chilean wood species with high potential for pulp production, were biodegraded by Ganoderma australe. This fungus is known to provoke extensive and selective biodelignification of these wood species in the field. Under laboratory conditions, N. dombeyi underwent higher weight and component losses than D. winteri. In neither case was the lignin removal selective, because glucan loss was almost simultaneous with lignin degradation. The decayed wood chips became progressively discoloured throughout the biodegradation time. The brightness increase was only partly reversed in thermal reversion assays. Nothofagus dombey solubility in 1% NaOH increased by 13.7% after 9 weeks of biodegradation, while D. winteri solubility increased by 14.2% in a shorter period (6 weeks). In both cases, the solubility increase was proportional to the liquor absorbance increase at 272 nm, which indicates that the wood solubility in 1% NaOH was dependent of lignin solubilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号