首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract Changes in plant abundance within a eucalypt savanna of north‐eastern Australia were studied using a manipulative fire experiment. Three fire regimes were compared between 1997 and 2001: (i) control, savanna burnt in the mid‐dry season (July) 1997 only; (ii) early burnt, savanna burnt in the mid‐dry season 1997 and early dry season (May) 1999; and (iii) late burnt, savanna burnt in the mid‐dry season 1997 and late dry season (October) 1999. Five annual surveys of permanent plots detected stability in the abundance of most species, irrespective of fire regime. However, a significant increase in the abundance of several subshrubs, ephemeral and twining perennial forbs, and grasses occurred in the first year after fire, particularly after late dry season fires. The abundance of these species declined toward prefire levels in the second year after fire. The dominant grass Heteropogon triticeus significantly declined in abundance with fire intervals of 4 years. The density of trees (>2 m tall) significantly increased in the absence of fire for 4 years, because of the growth of saplings; and the basal area of the dominant tree Corymbia clarksoniana significantly increased over the 5‐year study, irrespective of fire regime. Conservation management of these savannas will need to balance the role of regular fires in maintaining the diversity of herbaceous species with the requirement of fire intervals of at least 4‐years for allowing the growth of saplings >2 m in height. Whereas late dry season fires may cause some tree mortality, the use of occasional late fires may help maintain sustainable populations of many grasses and forbs.  相似文献   

2.
The fragmentation of mediterranean climate landscapes where fire is an important landscape process may lead to unsuitable fire regimes for many species, particularly rare species that occur as small isolated populations. We investigate the influence of fire interval on the persistence of population fragments of the endangered shrub Verticordia fimbrilepis Turcz. subsp. fimbrilepis in mediterranean climate south-west of Western Australia. We studied the population biology of the species over 5 years. While the species does recruit sporadically without fire this occurs only in years with above average rainfall, so fire seems to be the main environmental factor producing extensive recruitment. Transition matrix models were constructed to describe the shrub’s population dynamics. As the species is killed by fire and relies on a seed bank stimulated to germinate by smoke, stochastic simulations to compare different fire frequencies on population viability were completed. Extinction risk increased with increasing average fire interval. Initial population size was also important, with the lowest extinction risk in the largest population. For populations in small reserves where fire is generally excluded, inevitable plant senescence will lead to local extirpation unless fires of suitable frequency can be used to stimulate regeneration. While a suitable fire regime reduces extinction risk small populations are still prone to extinction due to stochastic influences, and this will be exacerbated by a projected drying climate increasing rates of adult mortality and also seedling mortality in the post-fire environment.  相似文献   

3.
In the southern California foothills and mountains, pronounced and complex topographic gradients support fire regimes that vary over short distances. We used LANDIS, a spatially explicit landscape model of disturbance and plant succession, to examine the resilience of dominant plant species, representing different disturbance response strategies, to the effect of varying fire rotation intervals (FRI). The simulated fire regimes represented natural, current and very long FRIs for the foothill shrublands less than 1,400 m (90, 30 and 150 years) and montane forest greater than 1400 m (30, 150, 500 years). The 30-year FRI allowed obligate resprouting shrubs to dominate over obligate seeders, whereas the 90-year FRI resulted in a stable spatial distribution of both of these shrub functional types. This is consistent with the literature that suggests that shifts in shrubland composition are most likely to result from human-caused increases in fire frequency at the low-elevation urban-wildland interface. An ecotone conifer, Pinus coulteri, showed dramatic shifts in distribution under different FRIs, and retreated to the portion of the landscape representing its temporal regeneration niche. Both low and high frequency fire maintained the fire tolerant dominant pine (P. jeffreyi) in the montane zone. This contradicts the literature that suggests that a high frequency ground fire regime is required for the persistence of a pine-dominated forest, but is consistent with studies showing that conifer forests in the western U.S. have experienced, and are resilient to, a broad range of natural FRIs that include low frequency, high intensity crown fires.  相似文献   

4.
K. McPherson  K. Williams 《Oecologia》1998,117(4):460-468
Sabal palmetto (Walt.) Lodd. ex Schultes (cabbage palm) is an arborescent palm common in many plant communities throughout Florida, U.S.A., and the Caribbean. Although its seedlings grow very slowly in forest understories, they survive damage and defoliation well, and the species may increase in dominance following disturbances such as fire, logging, and hurricanes. We investigated the potential importance of total nonstructural carbohydrate (TNC) pools in the ability of cabbage palm seedlings to recover from the loss of aboveground tissue such as that caused by fire, grazing, or shallow burial by storm debris. TNC concentrations in belowground organs of seedlings from a forest understory were high, and TNC pools were sufficient to theoretically replace >50% of a seedling's canopy. The largest fraction of the belowground TNC pool was in stem tissue, where TNC in unclipped plants accounted for 26–54% of stem dry mass. Experimental reduction of TNC pools by repeated defoliation slowed seedling regrowth, and seedlings with inherently smaller pools (smaller seedlings) suffered higher mortality after repeated defoliation than did larger seedlings. Although regrowth and recovery after the loss of aboveground tissue was related to the size of the TNC pool in belowground organs, even the smallest seedlings with the smallest pools had sufficient stores to withstand at least two defoliations at frequent (7-week) intervals. Large belowground TNC pools in S. palmetto seedlings appear to enable them to survive all but the most frequent defoliations (e.g., frequent grazing or mowing). Allocation of resources to these stores, however, may contribute to the slow growth rates of S. palmetto seedlings in natural communities. Received: 13 April 1998 / Accepted: 28 August 1998  相似文献   

5.
Abstract Fire is often used as a management tool in fire‐prone communities to reduce fuel loads with the intention of reducing the severity and extent of unplanned fires, often resulting in the increased occurrence of fire in the dry sclerophyll vegetation of Australia. This study examined the effects of fire frequency (length of the inter‐fire interval) on the reproductive output of seven plant species in the Proteaceae, including obligate seeding shrubs (Hakea teretifolia, Petrophile pulchella), resprouting shrubs (Banksia spinulosa, Isopogon anemonifolius, Lambertia formosa) and resprouting trees (Banksia serrata, Xylomelum pyriforme). Reproductive output (measured as either number of confructescences or follicles) and relative size were estimated for 100 individuals at each of five sample sites, covering a range of past fire frequencies over 26 years including repeated short inter‐fire intervals. Patterns in reproductive output (after standardizing for size) were related to the life‐history attributes of the species. In areas that had experienced short inter‐fire intervals, obligate seeders had greater reproductive output compared with longer intervals, and the reproductive output of resprouting shrubs was less. Fire frequency did not affect reproductive output of the resprouting trees. The decreased reproductive output of the resprouting shrubs could be due to the allocation of resources to regrowth following fire rather than to reproduction. It is less clear what process resulted in the increased reproductive output of obligate seeders in high fire frequency areas, but it could be due to the most recent fires being more patchy in the areas experiencing shorter inter‐fire intervals, or it may have resulted from the selection for early reproduction in the high fire frequency areas. These results highlight the need to take into account past fire frequency at a site, in addition to time since the last fire, when planning prescribed fires.  相似文献   

6.
Banksia serrata and Isopogon anemonifolius are serotinous resprouters (single-stemmed tree, multi-stemmed shrub, respectively) found in forests within the Sydney region. Studies were conducted to predict the population dynamics of these species. Seed production and survival and the accumulation of seed-bank within cones were estimated in relation to time since fire. Emergence, survival and development of lignotubers were measured in young juveniles and the time taken to reach adulthood was estimated. This information and published data on survival were used to estimate the amount of recruitment of adults and juveniles necessary for stands to remain in a stable state under frequent (<16 years), high and low intensity fire regimes. The effects of longer intervals (up to 80 years) between fires were also estimated. It was predicted that B. serrata populations will decline in numbers when the interval between high intensity fires is <9 years, while under low intensity fires the critical interval was 12–13 years. In I. anemonifolius the predicted intervals were 14 and 16 years, respectively. When fires are timed so that maximum seed-bank is available (about 30 year interval), it is unlikely that resprouters will dominate communities because the seed-banks and rates of growth of seedlings of obligate seeder shrubs are greater than these resprouters. Populations of these resprouters may be more able to persist than obligate seeders when the fire frequency is either very high (<6 years) or low (>50years), though the density of resprouter populations may slowly decline under such fire regimes.  相似文献   

7.
Fire is a process that shaped and maintained most terrestrial ecosystems worldwide. Changes in land use and patterns of human settlement have altered fire regimes and led to fire suppression resulting in numerous undesirable consequences spanning individual species and entire ecosystems. Many obvious and direct consequences of fire suppression have been well studied, but several, albeit less obvious, costs of alteration to fire regimes on wildlife are unknown. One such phenomenon is the response of carnivores to fire events—something we refer to as pyric‐carnivory. To investigate the prevalence of pyric‐carnivory in raptors, we monitored 25 prescribed fires occurring during two different seasons and across two different locations in tallgrass prairie of the central United States. We used paired point counts occurring before and during prescribed fires to quantify the use of fires by raptors. We found a strong attraction to fires with average maximum abundance nearly seven times greater during fires than prior to ignitions (before:  = 2.90, SE = 0.42; during:  = 20.20; SE = 3.29) and an average difference between fire events and immediately before fires of 15.2 (±2.69) raptors. This result was driven by Swainson's hawks (Buteo swainsoni), which were the most abundant (n = 346) of the nine species we observed using fires. Our results illustrate the importance of fire as integral disturbance process that effects wildlife behavior through multiple mechanisms that are often overshadowed by the predominant view of fire as a tool used for vegetation management.  相似文献   

8.
  • Several Cerrado tree species have traits and structures that protect from fires. The effectiveness of a trait depends on the fire regime, especially the frequency. We used Vochysia elliptica, a common Cerrado tree, as a model to test whether different fire frequencies alter crown architecture and flower, fruit and seed production.
  • We analysed the effect of fire on the production of inflorescences, fruits and seeds, as well as seed germination and tree architecture of 20 trees in each of three plots of a long‐term ecological experiment managed with different fire regimes: burned every 2 years (B), burned every 4 years (Q) in mid‐dry season and an area protected from fire (C).
  • We found a large negative effect of fire frequency on crown architecture and on flower and fruit production. Trees in C and Q had significantly more main branches and a larger crown area than trees in B. At its peak, a tree in C was expected to produce 2.4 times more inflorescences than Q, and 15.5 times more than B, with similar magnitudes for fruits. Sixty per cent of trees in B and 10% in Q produced no fruits.
  • The differences in architecture might explain the reduction in sexual reproduction due to a smaller physical space to produce flowers at the branch apices. Resource limitation due to plant investment to replace burned vegetative parts may also decrease sexual reproduction. Our results indicate potentially severe consequences of high fire frequencies for population dynamics and species persistence in Cerrado communities.
  相似文献   

9.
Understanding species’ responses to fire regimes, particularly rare or threatened species, is important for land managers tasked with managing for biodiversity. Hickman's Allanaspides (Allanaspides hickmani, Anaspidesidae) is a rare, primitive, shrimp‐like crustacean, with high conservation value. It is restricted to a single catchment in the island state of Tasmania, Australia, where it occurs within moorland pools typically containing crayfish (Ombrastacoides spp.) burrows. Although its moorland habitat has a long history of firing, adverse fire regimes are a potential threat to the species. A large part of its range is subject to planned burning to help manage the detrimental effects of high‐intensity wildfires. The resilience of A. hickmani to low–moderate‐intensity fires was investigated over 13 years using a replicated before‐after‐control‐impact design. The fires resulted in an initial reduction in vegetation cover and surface water and an increase in water temperature. There was no effect of fire on A. hickmani captures 4 months after small‐scale, low‐intensity autumn burns. However, 5 months later, following an unintended larger‐scale, medium‐intensity spring burn, there was an 80–90% reduction in A. hickmani captures and their numbers did not recover until 6–9 years post‐fire. It is not known whether the reduced catch was due to a reduction in the number of A. hickmani or their movement from pools into crayfish burrows. These findings together with evidence of a varied fire history, including high‐intensity wildfires, within their range suggests that A. hickmani and its habitat are resilient to a range of fire frequencies and intensities provided that the fire regime does not degrade or lead to a complete loss of peat. Climate change predictions for warmer and drier summers in western Tasmania will increase the risk of peat loss. Planned burning is likely to be important for the protection of A. hickmani habitat from predicted adverse fire regimes.  相似文献   

10.
Sustainable use of nontimber forest products (NTFPs) can be affected by levels of extractions as well as by other anthropogenic influences such as fire and grazing. We examined the effects of fire on the demography of Phyllanthus emblica, an important NTFP in the forests of Biligiri Rangan Hills, India. We then assessed demographic responses to the combined effects of fire and current fruit harvesting patterns. Fruits of Phyllanthus are commercially harvested by an indigenous forest dwelling people. Using matrix population models, we compared demographic indices across a chronosequence of time since last fire. Population growth rates (λ) ranged from 0.7692 to 1.1443 across the five times since last fire. λ was the lowest at times since last fire of 2 and 3 yr. Frequent fires increased time to maturity by altering growth and survival rates, thereby causing a demographic shift from growth to regressions or negative growth. Elasticity analysis revealed that stasis of adults makes the biggest contribution to λ. Simulations of periodic and stochastic fire regimes suggest that higher λ and population persistence can be achieved at fire-return intervals of ≥7 and ≥9 yr, respectively. These fire-return intervals became longer when the simulations included harvesting and fire. Extinction probabilities under the current fire regimes (every 2–3 yr) suggest that populations will decline to lower densities. Our findings provide critical information for developing guidelines for sustainable use and management of NTFPs in Biligiri Rangan Hills, and demonstrate the need to incorporate various human-generated physical regimes in assessing sustainability of NTFPs.  相似文献   

11.
Aim While niche models are typically used to assess the vulnerability of species to climate change, they have been criticized for their limited assessment of threats other than climate change. We attempt to evaluate this limitation by combining niche models with life‐history models to investigate the relative influence of climate change and a range of fire regimes on the viability of a long‐lived plant population. Specifically, we investigate whether range shift due to climate change is a greater threat to an obligate seeding fire‐prone shrub than altered fire frequency and how these two threatening processes might interact. Location Australian sclerophyll woodland and heathland. Methods The study species is Leucopogon setiger, an obligate seeding fire‐prone shrub. A spatially explicit stochastic matrix model was constructed for this species and linked with a dynamic niche model and fire risk functions representing a suite of average fire return intervals. We compared scenarios with a variety of hypothetical patches, a patch framework based upon current habitat suitability and one with dynamic habitat suitability based on climate change scenarios A1FI and A2. Results Leucopogon setiger was found to be sensitive to fire frequency, with shorter intervals reducing expected minimum abundances (EMAs). Spatial decoupling of fires across the landscape reduced the vulnerability of the species to shortened fire frequencies. Shifting habitat, while reducing EMAs, was less of a threat to the species than frequent fire. Main conclusions Altered fire regime, in particular more frequent fires relative to the historical regime, was predicted to be a strong threat to this species, which may reflect a vulnerability of obligate seeders in general. Range shifts induced by climate change were a secondary threat when habitat reductions were predicted. Incorporating life‐history traits into habitat suitability models by linking species distribution models with population models allowed for the population‐level evaluation of multiple stressors that affect population dynamics and habitat, ultimately providing a greater understanding of the impacts of global change than would be gained by niche models alone. Further investigations of this type could elucidate how particular bioecological factors can affect certain types of species under global change.  相似文献   

12.
Grass populations in tropical savannas are highly resilient in relation to different fire regimes, but the mechanisms conferring such resilience have been poorly studied. Here we examine one such mechanism, high adult survival during fire, for three perennial grass species in an Australian savanna: Eriachne triseta Nees ex Steud, Eriachne avenacea R.Br and Chrysopogon latifolius S.T.Blake. The study examined survivorship after 3 years, at plots subject to experimental fire regimes (experiencing 0, 1, 2 or 3 fires over the study period) at the Territory Wildlife Park near Darwin in the Northern Territory, Australia. Mean survivorship was 79.9%, 64.3% and 62.0% for E. avenacea, E. triseta and C. latifolius respectively. For the two species of Eriachne, mean survivorship was highest (E. avenacea, 94.6%; E. triseta, 77.1%) in unburnt plots, whereas survivorship of C. latifolius was highest (71.7%) under highest fire frequency. However, variation in survivorship among fire regime treatments was not statistically significant for any of the study species. This negligible difference in survivorship among regimes points to fire tolerance (sprouting ability) as an important mechanism contributing to the resilience and persistence of perennial grasses in these savannas.  相似文献   

13.
Large‐scale wildfires are expected to accelerate forest dieback in Amazônia, but the fire vulnerability of tree species remains uncertain, in part due to the lack of studies relating fire‐induced mortality to both fire behavior and plant traits. To address this gap, we established two sets of experiments in southern Amazonia. First, we tested which bark traits best predict heat transfer rates (R) through bark during experimental bole heating. Second, using data from a large‐scale fire experiment, we tested the effects of tree wood density (WD), size, and estimated R (inverse of cambium insulation) on tree mortality after one to five fires. In the first experiment, bark thickness explained 82% of the variance in R, while the presence of water in the bark reduced the difference in temperature between the heat source and the vascular cambium, perhaps because of high latent heat of vaporization. This novel finding provides an important insight for improving mechanistic models of fire‐induced cambium damage from tropical to temperate regions. In the second experiment, tree mortality increased with increasing fire intensity (i.e. as indicated by bark char height on tree boles), which was higher along the forest edge, during the 2007 drought, and when the fire return interval was 3 years instead of one. Contrary to other tropical studies, the relationship between mortality and fire intensity was strongest in the year following the fires, but continued for 3 years afterwards. Tree mortality was low (≤20%) for thick‐barked individuals (≥18 mm) subjected to medium‐intensity fires, and significantly decreased as a function of increasing tree diameter, height and wood density. Hence, fire‐induced tree mortality was influenced not only by cambium insulation but also by other traits that reduce the indirect effects of fire. These results can be used to improve assessments of fire vulnerability of tropical forests.  相似文献   

14.
Questions: Is post‐fire persistence of resprouting species lower in restored sites, and is survival related to lignotuber size? Location: Southwestern Australia, Eneabba, 300 km north of Perth. Methods: Post‐fire persistence of 10 lignotuberous shrub species was compared between three sites restored 8–24 years ago after mineral‐sand mining and three surrounding natural shrubland sites (8–24 years since previous fire). Results: Overall persistence of species was 11–93% in restored sites (mean 52%) and 79–100% in natural sites (mean 96%). Persistence increased with time since rehabilitation for five species with <25% of individuals in three species surviving in the youngest stand. For equivalent crown size, average lignotuber circumferences were 50% smaller at restored sites and this probably accounted for their higher post‐fire mortality. Apart from differences in the age of plants, restored sites had lower soil penetrability than natural sites, which may have restricted rootstock development. A tradeoff favoring a higher crown volume to lignotuber size ratio was apparent in nine of the ten species with greater crown volumes (by 37%) and smaller lignotubers (by 36%) in restored sites. Two resprouting species for which crown seed store was quantified had much higher fecundity in restored sites. Conclusions: Fires reduced resprouter persistence in restored sites owing to poor development/insufficient size of lignotubers. Further management after fires is required, including application of resprouter seeds/seedlings on restored topsoil, transplanting adult resprouters (where viable) from natural areas ahead of the mining front. Low intensity/patchy fires are recommended on long unburnt sites. Resprouter survival would have likely been much greater in the first place if a deeper sandy soil profile was rehabilitated, thereby providing a more suitable medium for lignotuber development.  相似文献   

15.
In ecosystems subject to regular canopy fires, woody species have evolved two general strategies of post‐fire regeneration. Seeder species are killed by fire and populations regenerate solely by post‐fire recruitment from a seed bank. Resprouter species survive fire and regenerate by vegetative regrowth from protected organs. Interestingly, the abundance of these strategies varies along environmental gradients and across regions. Two main hypotheses have been proposed to explain this spatial variation: the gap dependence and the environmental‐variability hypotheses. The gap‐dependence model predicts that seeders are favoured in sparse vegetation (vegetation gaps allowing effective post‐fire recruitment of seedlings), while resprouters are favoured in densely vegetated sites (seedlings being outcompeted by the rapid crown regrowth of resprouters). The environmental‐variability model predicts that seeders would prevail in reliable rainfall areas, whereas resprouters would be favoured in areas under highly variable rainfall that are prone to severe dry events (leading to high post‐fire seedling mortality). We tested these two models using distribution data, captured at the scale of quarter‐degree cells, for seeder and resprouter species of two speciose shrub genera (Aspalathus and Erica) common in fire‐prone fynbos ecosystems of the mediterranean‐climate part of the Cape Floristic Region. Contrary to the predictions of the gap‐dependence model, species number of both resprouters and seeders increased with values of the Normalized Difference Vegetation Index (a widely used surrogate for vegetation density), with a more marked increase for seeders. The predictions of the environmental‐variability hypothesis, by contrast, were not refuted by this study. Seeder and resprouter species of both genera showed highest richness in environments with high rainfall reliability. However, with decreasing reliability, seeder numbers dropped more quickly than those of resprouters. We conclude that the environmental‐variability model is better able to explain the abundance of woody seeder and resprouter species in Southern Hemisphere fire‐prone shrublands (fynbos and kwongan) than the gap‐dependence model.  相似文献   

16.
Abstract This study investigated the effect of three experimental fire regimes on the fecundity, ovule development and seedfall of two common wet-dry tropical savanna eucalypts, Eucalyptus minima and Eucalyptus tetrodonta, in northern Australia. Both species flower early in the dry season and ovule development occurs during the dry season. This coincides with a period of frequent fires. The three fire regimes considered were applied for four years between 1990 and 1994. These regimes were (i) Unburnt, (ii) Early, fires lit early in the dry season, and (iii) Late, fires lit late in the dry season. The treatments were applied to nine catchments (15–20 km2) with each fire regime replicated three times. Fire intensity typically increases as the dry season proceeds. Therefore, early dry season fires generally differ from late dry season fires in both their intensity and their timing in relation to the reproductive phenology of the eucalypts. Late dry season burning significantly reduced the fecundity of both species, whereas Early burning had no significant effect. Ovule success was significantly reduced by the Early burning for both species. The Late burning significantly reduced ovule success in E. tetrodonta, but not in E. miniata. The results suggest that fire intensity and fire timing may both be important determinants of seed supply. Fire intensity may be a determinant of fecundity, whereas fire timing in relation to the reproduction phenology may have a significant impact on ovule survival. Both fire regimes resulted in a substantial reduction in seed supply compared with the Unburnt treatment. This may have a significant impact on seedling regeneration of these tropical savanna eucalypts.  相似文献   

17.
The effects of fire recurrence on vegetation patterns in Quercus suber L. and Erica-Cistus communities in Mediterranean fire-prone ecosystems of south-eastern France were examined on stands belonging to 5 fire classes, corresponding to different numbers of fires (from 0 to 4) and time intervals between fires since 1959. A common pool of species was identified among the plots, which was typical of both open and closed maquis. Fire recurrence reduced the abundance of trees and herbs, whereas it increased the abundance of small shrubs. Richness differed significantly between the most contrasting classes of fire recurrence, with maximal values found in control plots and minimal values in plots that had burned recurrently and recently. Equitability indices did not vary significantly, in contrast to Shannon's diversity index which mostly correlated with richness. Forest ecosystems that have burnt once or twice in the last 50 years were resilient; that is to say they recovered a biomass and composition similar to that of the pre-fire state. However, after more than 3-4 fires, shrubland communities displayed lower species richness and diversity indices than unburned plots. The time since the last fire and the number of fires were the most explanatory fire variables, governing the structure of post-fire plant communities. However, environmental factors, such as slope or exposure, also made a significant contribution. Higher rates of fire recurrence can affect the persistence or expansion of shrublands in the future, as observed in other Mediterranean areas.  相似文献   

18.
Questions: How does the time interval between subsequent stand‐replacing fire events affect post‐fire understorey cover and composition following the recent event? How important is fire interval relative to broad‐ or local‐scale environmental variability in structuring post‐fire understorey communities? Location: Subalpine plateaus of Yellowstone National Park (USA) that burned in 1988. Methods: In 2000, we sampled understorey cover and Pinus contorta density in pairs of 12–yr old stands at 25 locations. In each pair, the previous fire interval was either short (7–100 yr) or long (100–395 yr). We analysed variation in understorey species richness, total cover, and cover of functional groups both between site pairs (using paired t‐tests) and across sites that experienced the short fire intervals (using regression and ordination). We regressed three principal components to assess the relative importance of disturbance and broad or local environmental variability on post‐fire understorey cover and richness. Results: Between paired plots, annuals were less abundant and fire‐intolerant species (mostly slow‐growing shrubs) were more abundant following long intervals between prior fires. However, mean total cover and richness did not vary between paired interval classes. Across a gradient of fire intervals ranging from 7–100 yr, total cover, species richness, and the cover of annuals and nitrogen‐fixing species all declined while the abundance of shrubs and fire‐intolerant species increased. The few exotics showed no response to fire interval. Across all sites, broad‐scale variability related to elevation influenced total cover and richness more than fire interval. Conclusions: Significant variation in fire intervals had only minor effects on post‐fire understorey communities following the 1988 fires in Yellowstone National Park.  相似文献   

19.
  1. The frosted elfin (Callophrys irus) butterfly inhabits landscapes that may be subject to frequent fire to be sustained. Frosted elfins pupate primarily in leaf litter, at the soil surface, or just below it, and may suffer high mortality rates when fires occur. Gathering better information on this source of mortality is critical to planning prescribed fire operations in a manner conducive to the long-term survival of the species.
  2. We buried lab-reared frosted elfin pupae (n = 61) at 0.75 cm (n = 31) or 1.75 cm (n = 30) below the ground and conducted two experimental fires that mimicked typical prescribed fires.
  3. Eighteen of 30 (60%) buried at 1.75 cm survived 4 weeks postburn; no pupae buried at 0.75 cm survived. Most (n = 17) of the pupae that survived successfully enclosed the following year. Surviving pupae encountered lower maximum temperatures and were exposed to shorter durations of above-lethal temperatures compared to those that died.
  4. Our data demonstrate that high mortality rates can be expected due to fire, yet fire remains a critical tool for maintaining the habitat. Fire practitioners should mitigate losses by using ignition patterns and suboptimal burn conditions to reduce fire intensity, or burn in a mosaic pattern across the landscape to ensure enough survival to perpetuate frosted elfin populations.
  相似文献   

20.
Shrub encroachment occurring worldwide in savannas and grasslands has commonly been hypothesized to result from anthropogenically altered environments. Two disturbance‐based approaches to restoration have involved: (1) application of selective herbicides to reduce density/cover of shrubs; (2) reinstatement of natural fire regimes to generate environmental conditions favoring herbaceous species. We studied short‐term responses of native shrubs, vines, and grasses in a Louisiana pine savanna to herbicides followed by a prescribed fire and fire alone. Plots established in the summer, 2013, were hand‐sprayed in the fall with Imazapyr and Triclopyr, Triclopyr alone, or no herbicide, then prescribed burned the following spring. Numbers of species of shrubs and vines at scales of 1 and 100 m2, numbers of stems and regrowth of stems produced by six common species of shrubs, and the number of flowering culms of perennial C4 grasses were assessed postfire in 2014. Compared with fire alone, herbicides followed by fire resulted in (1) small reductions in species richness of shrubs and no effects on vines, (2) fewer stems comprising shrub genets, but similar postfire regrowth of resprouting shrub stems, and (3) fewer flowering culms of C4 grasses. Underground storage organs of savanna shrubs and vines survived both aboveground disturbances. Thus, single applications of herbicides followed by fires reduced, but did not reverse shrub encroachment and negatively affected grasses. Because effects of herbicides overrode those of prescribed fires, these disturbances did not act synergistically, suggesting that reinstating natural fire regimes should be a priority in restoration of savannas and grasslands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号