首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Shalene Jha  John H. Vandermeer 《Oikos》2009,118(8):1174-1180
It is hypothesized that two main factors drive the foraging patterns of native and exotic species: food resource availability and habitat composition. These factors are particularly relevant for native bees and exotic honeybees, essential crop pollinators that are sensitive to floral resources and habitat management, and that have recently exhibited alarming population declines. Mechanisms driving native and exotic bee foraging patterns may critically depend on floral resource availability and habitat composition, yet the impacts of these factors on bee foraging have never been simultaneously analyzed. In a coffee producing region in southern Mexico, we investigated the influence of coffee floral resource levels and habitat management on native and exotic bee foraging. We measured the amount of flowering coffee available at multiple spatial scales within two distinct agroforestry habitat types (high-shade and low-shade coffee) and recorded visits to coffee flowers, documenting bee species, visit duration and visit frequency. We observed a significantly greater number of visits in high-shade coffee habitats than in low-shade coffee habitats for both native and exotic bees. In high-shade coffee habitats, native solitary bee and native social bee visitation decreased significantly in response to increasing floral resource availability, exhibiting a 'dilution effect' at the smallest spatial scale. In contrast, in low-shade coffee habitats, Africanized honeybees exhibited a 'concentration effect', increasing visitation significantly in response to increasing floral resource availability at the largest spatial scale. This study is the first to show that foraging patterns of native bees and exotic honeybees contrast in response to floral resource level and scale and that this response is mediated by the vegetation management of the local habitat.  相似文献   

2.
Evidence for interspecific competition between honey bees and wild bees was studied on 15 calcareous grasslands with respect to: (1) foraging radius of honey bees, (2) overlap in resource use, and (3) possible honey bee effects on species richness and abundance of flower-visiting, ground-nesting and trap-nesting wild bees. The grasslands greatly differed in the number of honey bee colonies within a radius of 2 km and were surrounded by agricultural habitats. The number of flower-visiting honey bees on both potted mustard plants and small grassland patches declined with increasing distance from the nearest apiary and was almost zero at a distance of 1.5–2.0 km. Wild bees were observed visiting 57 plant species, whereas honey bees visited only 24 plant species. Percentage resource overlap between honey bees and wild bees was 45.5%, and Hurlbert’s index of niche overlap was 3.1. In total, 1849 wild bees from 98 species were recorded on the calcareous grasslands. Neither species richness nor abundance of wild bees were negatively correlated with the density of honey bee colonies (within a radius of 2 km) or the density of flower-visiting honey bees per site. Abundance of flower- visiting wild bees was correlated only with the percentage cover of flowering plants. In 240 trap nests, 1292 bee nests with 6066 brood cells were found. Neither the number of bee species nor the number of brood cells per grassland was significantly correlated with the density of honey bees. Significant correlations were found only between the number of brood cells and the percentage cover of shrubs. The number of nest entrances of ground-nesting bees per square metre was not correlated with the density of honey bees but was negatively correlated with the cover of vegetation. Interspecific competition by honey bees for food resources was not shown to be a significant factor determining abundance and species richness of wild bees. Received: 22 March 1999 / Accepted: 24 September 1999  相似文献   

3.
Carla J. Essenberg 《Oecologia》2013,171(1):187-196
Responses of flower-visiting animals to floral density can alter interactions between plants, influencing a variety of biological processes, including plant population dynamics and the evolution of flowering phenology. Many studies have found effects of floral or plant density on pollinator visitation rates at patch scales, but little is known about responses of flower visitors to floral densities at larger scales. Here, I present data from an observational field study in which I measured the effects of floral density on visitation to the annual composite Holocarpha virgata at both patch (4 m2) and site (12.6 ha) spatial scales. The species composition of flower visitors changed with floral density, and did so in different ways at the two scales. At the site scale, average floral density within patches of H. virgata or within patches of all summer-flowering species combined had a significant positive effect on per-flowerhead visitation by the long-horned bee Melissodes lupina and no significant effects on visitation by any other taxa. At the patch scale, per-flowerhead visitation by honeybees significantly increased whereas visitation by M. lupina often decreased with increasing floral density. For both species, responses to patch-scale floral density were strongest when site-scale floral density was high. The scale-dependence of flower visitor responses to floral density and the interactions between site- and patch-scale effects of floral density observed in this study underscore the importance of improving our understanding of pollinators’ responses to floral density at population scales.  相似文献   

4.
Restored habitats require long-term management to maintain biodiversity and ensure ecosystem functions. Management strategies are often developed for plant communities, including through seeding and disturbance management, but these actions are taken with a focus on plant dynamics and with little knowledge of the effects on non-plant organisms. Wild bees are often expected to respond to such management actions via their effects on local floral resource availability, but management may also affect bees by altering survival and nesting independently of plant community responses. Working in restoration plantings within a large, actively managed tallgrass prairie preserve, we separated the effects of management and landscape context on bee community abundance and richness from the effects of these covariates on bees mediated through the abundance and richness of the local flowering plant community. We found that bees responded primarily to disturbance management (via bison) and the amount of prairie and forest habitat in the landscape, indicating that across landscapes with relatively abundant flowers and nest-sites, these landscape-level resources are more important than local floral resources for structuring bee communities. In contrast, floral communities responded to restoration age and prescribed burning. Because bees respond to different factors and at a different landscape scale than local plant communities, we conclude that management designed for plants is not sufficient for pollinators. Landscape level restoration may therefore require targeted habitat design and management to successfully restore functionally important animals.  相似文献   

5.
Aim Anthropogenic changes in land use may have major consequences for global biodiversity. However, species diversity is determined by a suite of factors that may affect species differently at different spatial scales. We tested the combined effects of land use and spatial scale on α, β and γ diversity in the tropics using experimental communities of cavity‐nesting bees and waSPS (Hymenoptera: Aculeata). We aimed to determine whether: (1) land‐use intensity negatively affects species richness of cavity‐nesting Hymenoptera, (2) β diversity, both within and between plots, is higher in more natural systems, (3) species richness of flowering herbs correlates positively with species richness of Hymenoptera within and across habitats, (4) richness of cavity‐nesting Hymenoptera in highly modified habitats declines with increasing distance from natural or semi‐natural habitats, (5) the effects of land use, herb diversity and forest distance on Hymenoptera α and β diversity vary at different spatial scales, and (6) bees and waSPS respond to land use in a similar way. Location Manabi, south‐west Ecuador. Methods We examined diversity (species richness) within 48 plots of five habitat types that comprised a gradient of decreasing agricultural intensity from rice and pasture to coffee agroforests, unmanaged abandoned agroforests and forest fragments, using standardized nesting resources for reproducing communities of cavity‐nesting bees and waSPS. Results (1) Land use significantly affected α diversity of trap‐nesting bees and waSPS at the subplot (per trap) scale, but not subplot β diversity or plot‐scale species richness (γ diversity). (2) Beta diversity was surprisingly higher between plots within a land‐use type than between land‐use types. (3) Species richness of bees and waSPS increased with diversity of flowering herbs at the subplot (trap) scale only. (4) Forest distance correlated positively with bee species richness at the plot scale only. (5) Land use, herb diversity and forest distance each showed significant correlations with bee and wasp diversity at only one spatial scale. (6) Despite differences in life history, bees and waSPS responded to land‐use intensity in a similar way. Main conclusions The effects of land use on species richness were highly dependent on spatial scale. Subplot‐scale analyses showed that rice and pasture contained the highest species diversity, whereas plot‐scale analyses showed no significant difference in the diversity of different land‐use types. We emphasize caution in the estimation of biodiversity at only one spatial scale, and highlight the surprisingly large contribution of managed land to the regional biodiversity of these species.  相似文献   

6.
Effects of habitat isolation on pollinator communities and seed set   总被引:32,自引:4,他引:28  
Destruction and fragmentation of natural habitats is the major reason for the decreasing biodiversity in the agricultural landscape. Loss of populations may negatively affect biotic interactions and ecosystem stability. Here we tested the hypothesis that habitat fragmentation affects bee populations and thereby disrupts plant-pollinator interactions. We experimentally established small ”habitat islands” of two self-incompatible, annual crucifers on eight calcareous grasslands and in the intensively managed agricultural landscape at increasing distances (up to 1000 m) from these species-rich grasslands to measure effects of isolation on both pollinator guilds and seed set, independently from patch size and density, resource availability and genetic erosion of plant populations. Each habitat island consisted of four pots each with one plant of mustard (Sinapis arvensis) and radish (Raphanus sativus). Increasing isolation of the small habitat islands resulted in both decreased abundance and species richness of flower-visiting bees (Hymenoptera: Apoidea). Mean body size of flower-visiting wild bees was larger on isolated than on nonisolated habitat islands emphasizing the positive correlation of body size and foraging distance. Abundance of flower-visiting honeybees depended on the distance from the nearest apiary. Abundance of other flower visitors such as hover flies did not change with increasing isolation. Number of seeds per fruit and per plant decreased significantly with increasing distance from the nearest grassland for both mustard and radish. Mean seed set per plant was halved at a distance of approximately 1000 m for mustard and at 250 m for radish. In accordance with expectations, seed set per plant was positively correlated with the number of flower-visiting bees. We found no evidence for resource limitation in the case of mustard and only marginal effects for radish. We conclude that habitat connectivity is essential to maintain not only abundant and diverse bee communities, but also plant-pollinator interactions in economically important crops and endangered wild plants. Received: 7 May 1999 / Accepted: 19 July 1999  相似文献   

7.
8.
Bumble bees can forage on a large number of wild plants and crops. The survival of a colony depends on the availability of suitable food resources within foraging range and throughout their forage season. We studied the spatial and temporal use of floral resources by bumble bees in a set of 30 local plant communities and used these data to model colony survival under different combinations of patch size and bumble bee flight distance. Floral resources vary spatially and temporally at the landscape level, and bumble bees track these resources across the landscape during the season. The simulation model showed that different patterns of resources availability could affect the survival and distribution of bumble bee nests across the landscape. This model can be used to generate hypotheses explaining bumble bee richness and abundance that can be tested in real landscapes. Integrating the spatial and temporal dynamics of the flower resources used by bumble bees provides a new perspective that can be used to inform bumble bee conservation, particularly in the context of their widespread decline in recent decades.  相似文献   

9.
10.
We examined patterns of shrub species diversity relative to landscape‐scale variability in environmental factors within two watersheds on the coastal flank of the Santa Ynez Mountains, California. Shrub species richness and dominance was sampled at a hierarchy of spatial units using a high‐powered telescope from remote vantage points. Explanatory variables included field estimates of total canopy cover and percentage rock cover, and modeled distributions of slope, elevation, photosynthetically active radiation, topographic moisture index, and local topographic variability. Correlation, multiple regression, and regression tree analyses showed consistent relationships between field‐based measurements of species richness and dominance, and topographically‐mediated environmental variables. In general, higher richness and lower dominance occurred where environmental conditions indicated greater levels of resource limitation with respect to soil moisture and substrate availability. Maximum richness in shrub species occurred on high elevation sites with low topographic moisture index, rocky substrate, and steep slopes. Maximum dominance occurred at low elevation sites with low topographic variability, high potential solar insolation, and high total shrub canopy cover. The observed patterns are evaluated with respect to studies on species‐environment relations, resource use, and regeneration of shrubs in chaparral and coastal sage scrub. The results are discussed in the context of existing species‐diversity hypotheses that hinge on reduced competitive dominance and increased resource heterogeneity under conditions of resource limitation.  相似文献   

11.
Despite the global trend in urbanization, little is known about patterns of biodiversity or provisioning of ecosystem services in urban areas. Bee communities and the pollination services they provide are important in cities, both for small-scale urban agriculture and native gardens. To better understand this important ecological issue, we examined bee communities, their response to novel floral resources, and their potential to provide pollination services in 25 neighborhoods across Chicago, IL (USA). In these neighborhoods, we evaluated how local floral resources, socioeconomic factors, and surrounding land cover affected abundance, richness, and community composition of bees active in summer. We also quantified species-specific body pollen loads and visitation frequencies to potted flowering purple coneflower plants (Echinacea purpurea) to estimate potential pollination services in each neighborhood. We documented 37 bee species and 79 flowering plant genera across all neighborhoods, with 8 bee species and 14 flowering plant genera observed on average along each neighborhood block. We found that both bee abundance and richness increased in neighborhoods with higher human population density, as did visitation to purple coneflower flower heads. In more densely populated neighborhoods, bee communities shifted to a suite of species that carry more pollen and are more active pollinators in this system, including the European honey bee (Apis mellifera) and native species such as Agapostemon virescens. More densely populated neighborhoods also had a greater diversity of flowering plants, suggesting that the positive relationship between people and bees was mediated by the effect of people on floral resources. Other environmental variables that were important for bee communities included the amount of grass/herbaceous cover and solar radiation in the surrounding area. Our results indicate that bee communities and pollination services can be maintained in dense urban neighborhoods with single-family and multi-family homes, as long as those neighborhoods contain diverse and abundant floral resources.  相似文献   

12.
Reports of world-wide decline of pollinators, and of bees in particular, raise increasing concerns about maintenance of pollination interactions. While local factors of bee decline are relatively well known and potential mitigation strategies at the landscape scale have been outlined, the regional and continental-scale threats to bee diversity have only been marginally explored. Here we document large-scale spatial patterns for a representative bee subfamily, the determinants of its species richness, and assess major threats to these pollinators. Using a comprehensive global dataset of Colletinae (genera Colletes, also called “polyester” or “cellophane” bees for their underground nests lined with a polyester secretion, and Mourecotelles), a species-rich subfamily whose organismal and physiological ecology is representative of many bees, we measured species richness and endemism on global to continental scales. We explored the relationships between bee species richness and potential environmental stress factors grouped into three categories: contemporary climate, habitat heterogeneity, and anthropogenic pressure. Bees of the subfamily Colletinae demonstrate the reversed latitudinal gradient in species richness and endemism suggested for bees; the highest species richness of Colletinae was found between 30° and 50° latitude in both the northern and southern hemispheres. Centres of endemism largely overlapped with those of species richness. The importance of the Greater Cape Floristic Region, previously identified as a centre of richness and endemism of bees, was confirmed for Colletinae. On the global scale, present-day climate was a significant predictor of species richness as was flowering plant diversity represented by vascular plant species richness and centres of plant diversity. Our main conclusion is that climate change constitutes a potential threat to bee diversity, as does declining diversity of vascular plants. However, a significant overlap between centres of bee richness and plant diversity might increase chances for developing conservation strategies.  相似文献   

13.
Bees require distinct foraging and nesting resources to occur in close proximity. However, spatial and temporal patterns in the availability and quantity of these resources can be affected by disturbances like wildfire. The potential for spatial or temporal separation of foraging and nesting resources is of particular concern for solitary wood‐cavity‐nesting bees as they are central‐place, short‐distance foragers once they have established their nest. Often the importance of nesting resources for bees have been tested by sampling foraging bees as a proxy, and nesting bees have rarely been studied in a community context, particularly postdisturbance. We tested how wood‐cavity‐nesting bee species richness, nesting success, and nesting and floral resources varied across gradients of wildfire severity and time‐since‐burn. We sampled nesting bees via nesting boxes within four wildfires in southwest Montana, USA, using a space‐for‐time substitution chronosequence approach spanning 3–25 years postburn and including an unburned control. We found that bee nesting success and species richness declined with increasing time postburn, with a complete lack of successful bee nesting in unburned areas. Nesting and floral resources were highly variable across both burn severity and time‐since‐burn, yet generally did not have strong effects on nesting success. Our results together suggest that burned areas may provide important habitat for wood‐cavity‐nesting bees in this system. Given ongoing fire regime shifts as well as other threats facing wild bee communities, this work helps provide essential information necessary for the management and conservation of wood‐cavity‐nesting bees.  相似文献   

14.
Given the predicted expansion of cities throughout the world, understanding the effect of urbanization on bee fauna is a major issue for the conservation of bees. The aim of this study was to understand how urbanization affects wild bee assemblages along a gradient of impervious surfaces and to determine the influence of landscape composition and floral resource availability on these assemblages. We chose 12 sites with a proportion of impervious surfaces (soil covered by parking, roads, and buildings) ranging from 0.06% to 64.31% within a 500 m radius. We collected using pan trapping and estimated the landscape composition of the sites within a 500 m radius and the species richness of plant assemblages within a 200 m radius. We collected 1104 bees from 74 species. The proportion of impervious surfaces at the landscape scale had a negative effect on wild bee abundance and species richness, whereas local flower composition had no effect. Ground‐nesting bees were particularly sensitive to the urbanization gradient. This study provides new evidences of the impact of urbanization on bee assemblages and the proportion of impervious surfaces at the landscape scale emerged as a key factor that drives those assemblages.  相似文献   

15.
The European honey bee exploits floral resources efficiently and may therefore compete with solitary wild bees. Hence, conservationists and bee keepers are debating about the consequences of beekeeping for the conservation of wild bees in nature reserves. We observed flower-visiting bees on flowers of Calluna vulgaris in sites differing in the distance to the next honey-bee hive and in sites with hives present and absent in the Lüneburger Heath, Germany. Additionally, we counted wild bee ground nests in sites that differ in their distance to the next hive and wild bee stem nests and stem-nesting bee species in sites with hives present and absent. We did not observe fewer honey bees or higher wild bee flower visits in sites with different distances to the next hive (up to 1,229 m). However, wild bees visited fewer flowers and honey bee visits increased in sites containing honey-bee hives and in sites containing honey-bee hives we found fewer stem-nesting bee species. The reproductive success, measured as number of nests, was not affected by distance to honey-bee hives or their presence but by availability and characteristics of nesting resources. Our results suggest that beekeeping in the Lüneburg Heath can affect the conservation of stem-nesting bee species richness but not the overall reproduction either of stem-nesting or of ground-nesting bees. Future experiments need control sites with larger distances than 500 m to hives. Until more information is available, conservation efforts should forgo to enhance honey bee stocking rates but enhance the availability of nesting resources.  相似文献   

16.
Native wildflower plantings can be used to provide nutritional resources to support pollinating insects, yet the effects of planting size and bloom richness on the density, diversity, and function of these insects are not well understood. We established stands of twelve native flowering perennial plant species in replicated plots ranging in size from 1 to 100 m2. These plots were sampled for insect pollinators, bloom richness, and seed production by three wildflower species. Honeybees, wild bees, and hoverflies all responded positively to increasing flower richness, whereas particular insect pollinator groups responded differently to the size of the flowering plant area. The density of honeybees and hoverflies was not affected by increasing flowering patch size, whereas in general, wild bees were observed at higher density and diversity in the 30 and 100 m2 patches. Increasing wildflower patch size, and thus wild bee density, resulted in greater seed set in the sampled wildflowers. These results indicate that wild bees are sensitive to the area and richness of floral resources in patches, even at relatively small scales. Therefore, larger wildflower plantings with more diverse flower species mixes are more suitable for the conservation of wild pollinators and reproduction of sown species.  相似文献   

17.
Plant facilitation (positive plant–plant interactions) strongly influences biodiversity, structure, and dynamics in plant communities, and the topic has received considerable attention among ecologists. Most studies of facilitation processes by shrubs have been conducted at small spatial scales between shrubs and their neighboring species. Yet, we know little about whether facilitation processes by shrubs at a small scale (i.e., a patch scale) also work at a larger scale (i.e., a site scale) in terms of the maintenance of biodiversity. Here, we report that the facilitative effects of shrubs on plant diversity at a larger scale can be explained by changing ecological stoichiometry. The soil fertility showed unimodal shape along shrub cover gradient, suggesting that the facilitative effects of a shrub do not necessarily increase as the shrub develops. The unimodal shape of dependence of plant species richness on shrub cover probably was generated by the unimodal dependence of soil fertility on shrub cover. Soil nutrient enrichment by shrubs shifted low N:P ratios of plant communities with low levels of shrub cover to more balanced N:P ratios at intermediate levels of shrub cover. At the peak N:P ratio along the gradient in shrub cover, the maximum species richness and functional richness were observed, which was consistent with the unimodal relationship predicted by the resource balance hypothesis. Thus, our findings showed that facilitation processes by shrubs at a patch scale also work at a larger scale in terms of the maintenance of biodiversity. Because observed larger-scale facilitation processes are enhanced at some intermediate levels of shrub cover, this study offers practical insight into the need for management practices that allow some intermediate levels of grazing by livestock for optimizing the role of larger-scale facilitation processes in the maintenance of biodiversity and ecosystem functioning in arid and semi-arid rangelands.  相似文献   

18.
Question: What is the effect of shrubs on herbaceous species richness at three spatial scales: quadrat, site, and region? Location: Prepuna, subtropical semi‐arid Andes. Methods: At eight sites, we recorded the presence of herbaceous species in spaces beneath shrubs/small trees and in open areas. At the quadrat scale, the average species number per quadrat was calculated and compared between the two microhabitats (shrubs/open). At the local (site) scale, all quadrats of each site were pooled according to microhabitat, and all sites were then combined for the regional analysis. Results and conclusions: We found greater herbaceous species richness below shrubs at all three spatial scales considered. Several species were found exclusively associated with the shrub undercanopy. This effect seems to depend more on greater inventory diversity at the different scales than on greater differentiation diversity in the herbaceous communities associated with shrubs. Facilitation seems to be responsible for the increase of species richness beneath shrubs, but further experimental study is needed to obtain insight into the underlying mechanisms.  相似文献   

19.
Agricultural intensification is a major driver of wild bee decline. Vineyards may be inhabited by plant and animal species, especially when the inter‐row space is vegetated with spontaneous vegetation or cover crops. Wild bees depend on floral resources and suitable nesting sites which may be found in vineyard inter‐rows or in viticultural landscapes. Inter‐row vegetation is managed by mulching, tillage, and/or herbicide application and results in habitat degradation when applied intensively. Here, we hypothesize that lower vegetation management intensities, higher floral resources, and landscape diversity affect wild bee diversity and abundance dependent on their functional traits. We sampled wild bees semi‐quantitatively in 63 vineyards representing different vegetation management intensities across Europe in 2016. A proxy for floral resource availability was based on visual flower cover estimations. Management intensity was assessed by vegetation cover (%) twice a year per vineyard. The Shannon Landscape Diversity Index was used as a proxy for landscape diversity within a 750 m radius around each vineyard center point. Wild bee communities were clustered by country. At the country level, between 20 and 64 wild bee species were identified. Increased floral resource availability and extensive vegetation management both affected wild bee diversity and abundance in vineyards strongly positively. Increased landscape diversity had a small positive effect on wild bee diversity but compensated for the negative effect of low floral resource availability by increasing eusocial bee abundance. We conclude that wild bee diversity and abundance in vineyards is efficiently promoted by increasing floral resources and reducing vegetation management frequency. High landscape diversity further compensates for low floral resources in vineyards and increases pollinating insect abundance in viticulture landscapes.  相似文献   

20.
1. Organisms respond to the abundance and spatial distribution of resources at both individual and population scales but there have been relatively few attempts to link insights from studies of these different phenomena, especially for wide-ranging vertebrates.
2. Deer Mice ( Peromyscus maniculatus ) were live-trapped and tracked across a gradient of shrub cover in shortgrass prairie to determine patterns of abundance, microhabitat use and movements.
3. In areas with few shrubs, mice preferred shrub microhabitats and their movement trails were relatively straight. Both trail tortuosity and population density increased with increasing shrub cover, so that mice tended to accumulate in areas where their trails were most convoluted. However, movements were also linear where shrubs were dense, presumably because mice could achieve the benefits of association with shrubs without travelling directly beneath them. Areas with dense shrubs also had high but variable population densities, suggesting that other factors such as intraspecific interactions may have affected movements on a larger, home-range scale.
4. Apparent thresholds in the selective vs random use of shrubs, movement patterns and abundance occurred over a narrow range of shrub cover where shrubs were most aggregated, underscoring the importance of both shrub density and dispersion. Non-linear relationships in the response to resources at both behavioural and population scales thus may complicate our ability to predict abundance from individual movements across a broad range of resource distributions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号